

Genetic Programming
Theory and Practice III

GENETIC PROGRAMMING SERIES
Series Editor

John Koza
Stanford University

Also in the series:

GENETIC PROGRAMMING AND DATA STRUCTURES: Genetic
Programming + Data Structures = Automatic Programming!
William B. Langdon; ISBN: 0-7923-8135-1

AUTOMATIC RE-ENGINEERING OF SOFTWARE USING
GENETIC PROGRAMMING, Conor Ryan; ISBN: 0-7923-8653-1

DATA MINING USING GRAMMAR BASED GENETIC
PROGRAMMING AND APPLICATIONS, Man Leung Wong and
Kwong Sak Leung; ISBN: 0-7923-7746-X

GRAMMATICAL EVOLUTION: Evolutionary Automatic
Programming in an Arbitrary Language, Michael O'Neill and
Conor Ryan; ISBN: 1-4020-7444-1

GENETIC PROGRAMMING IV: Routine Human-Computer Machine
Intelligence, John R. Koza, Martin A. Keane, Matthew J. Streeter,
William Mydlowec, Jessen Yu, Guido Lanza; ISBN: 1 -4020-7446-8

GENETIC PROGRAMMING THEORY AND PRACTICE, edited by
Rick Rich and Bill Worzel; ISBN; 0-4020-7581-2

AUTOMATIC QUANTUM COMPUTER PROGRAMMING: A Genetic
Programming Approach, Lee Spector; ISBN: 0-4020-7894-3

GENETIC PROGRAMMING THEORY AND PRACTICE II, edited by
Una-May O'Reilly, Tina Yu, Rick Riolo and Bill Worzel; ISBN: 0-
387-23253-2

The cover art was created by Leslie Sobel in Photoshop from an original
photomicrograph of plant cells and genetic programming code. More of
Sobel's artwork can be seen at www.lesliesobel.com..

http://www.lesliesobel.com

Genetic Programming
Theory and Practice III

Edited by

Tina Yu
Chevron Information Technology Company

Rick Riolo
Center for the Study of Complex Systems

University of Michigan

Bill Worzel
Genetics Squared, Inc,

Springer

Tina Yu
Chevron Information Technology Company

Rick Riolo
Center for the Study of Complex Systems
University of Michigan

Bill Worzel
Genetics Squared, Inc.

Library of Congress Control Number: 2003062632

ISBN-10: 0-387-28110-X e-ISBN: 0-387-28111-8

ISBN-13: 978-0387-28110-0

Printed on acid-free paper.

© 2006 by Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science -f- Business
Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression
of opinion as to whether or not they are subject to proprietary rights.
Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11378488

springeronline.com

http://springeronline.com

Contents

Contributing Authors vii

Preface xiii

Foreword xv

1
Genetic Programming: Theory and Practice 1
Tina Yu, RickRiolo and Bill Worzel

2
Evolving Swarming Agents in Real Time 15
H. Van Dyke Parunak

3
Automated Design of a Previously Patented Aspherical Optical Lens Sys- 33

tem by Means of Genetic Programming
Lee W. Jones, Sameer H. Al-Sakran and John R, Koza

4
Discrimination of Unexploded Ordnance from Clutter Using Linear Ge- 49

netic Programming
Frank D. Francone, Larry M. Deschaine, Tom Battenhouse and Jeffrey J. Warren

Rapid Re-evolution of an X-Band Antenna for NASA's Space Technology 65
5 Mission

Jason D, Lohn, Gregory S. Hornby and Derek S, Linden

6
Variable Selection in Industrial Datasets Using Pareto Genetic Programming 79
Guido Smits, Arthur Kordon, Katherine Vladislavleva
Elsa Jordaan and Mark Kotanchek

1
A Higher-Order Function Approach to Evolve Recursive Programs 93
Tina Yu

Trivial Geography in Genetic Programming 109
Lee Spector and Jon Klein

vi GENETIC PROGRAMMING THEORY AND PRACTICE III

9
Running Genetic Programming Backwards 125
Riccardo Poli and William B. Langdon

10
An Examination of Simultaneous Evolution of Grammars and Solutions 141
R. Muhammad Atif Azad and Conor Ryan

11
The Importance of Local Search 159
Tuan Hao Hoang, Xuan Nguyen, RI (Bob) McKay and Daryl Ess am

12
Content Diversity in Genetic Programming and its Correlation with Fitness 177
A. Almal, W. P Worzel, E, A. Wollesen and C D, MacLean

13
Genetic Programming inside a Cell 191
Christian Jacob and Ian Burleigh

14
Evolution on Neutral Networks in Genetic Programming 207
Wolfgang Banzhaf and Andre Leier

15
The Effects of Size and Depth Limits on Tree Based Genetic Programming 223
Ellery Fussell Crane and Nicholas Freitag McPhee

16
Application Issues of Genetic Programming in Industry 241
Arthur Kordon, Flor Castillo, Guido Smits, Mark Kotanchek

17
Challenges in Open-Ended Problem Solving with Genetic Programming 259
Jason Daida

18
Domain Specificity of Genetic Programming based Automated Synthesis: 275

a Case Study with Synthesis of Mechanical Vibration Absorbers
Jianjun Hu, Ronald C Rosenberg and Erik D. Goodman

19
Genetic Programming Industrial Analog CAD: Applications and Challenges 291
Trent McConaghy and Georges Gielen

Index 307

Contributing Authors

Arpit Arvindkumar Almal is an evolutionary engineer at Genetics Squared,
Inc., a computational discovery company (aalmal@umich.edu).

Sameer H. Al-Sakran is a researcher at Genetic Programming, Inc. in Moun­
tain View, CA (al-sakran@genetic-programming.com).

R. Muhammad Atif Azad is a Post Doctoral Researcher at the Biocomputing
and Developmental Systems Group in the Department of Computer Science
and Information Systems at University of Limerick, Ireland (atif.azad@ul.ie).

Wolfgang Banzhaf is Professor and Head of the Department of Computer
Science at Memorial University of Newfoundland, St. John's, Canada
(banzhaf @cs.mun.ca).

Ian Burleigh is a Ph.D student at the University of Calgary in the Department
of Computer Science (burleigh@cpsc.ucalgary.ca).

Flor A. Castillo is a Research Specialist in the Modeling Group within the
Engineering and Process Sciences R&D Organization of the Dow Chemical
Company (facastillo@dow.com).

Ellery Fussell Crane is an undergraduate at the University of Minnesota, Mor­
ris (cran0117@morris.umn.edu).

Jason M. Daida is an Associate Research Scientist in the Space Physics Re­
search Laboratory, Department of Atmospheric, Oceanic and Space Sciences,
and is affiliated with the Center for the Study of Complex Systems at the Uni­
versity of Michigan, Ann Arbor (daida@umich.edu).

mailto:aalmal@umich.edu
mailto:al-sakran@genetic-programming.com
mailto:atif.azad@ul.ie
mailto:burleigh@cpsc.ucalgary.ca
mailto:facastillo@dow.com
mailto:cran0117@morris.umn.edu
mailto:daida@umich.edu

viii GENETIC PROGRAMMING THEORY AND PRACTICE III

Daryl Essam is a lecturer of Computer Science at the Australian Defense Force
Academy, a school of the Universiy of New South Wales (daryl @cs.adfa.edu.au).

Georges Gielen is Full Professor in the ESAT-MICAS microelectronics group
at Katholieke Universiteit Leuven, Belgium
(Georges.Gielen@esat.kuleuven.be).

Erik D. Goodman is Professor of Electrical and Computer Engineering and of
Mechanical Engineering at Michigan State University (goodman @egr.msu.edu).

T\ian Hao Hoang is a lecturer in the School of Information Technology at Le
Quy Don University (Vietnamese Military Technical Academy), 100 Hoang
Quoc Viet, Hanoi, Vietnam.

Xuan Hoai Nguyen is a lecturer in the School of Information Technology at
Le Quy Don University (Vietnamese Technical Academy), 100 Hoang Quoc
Viet, Hanoi, Vietnam.

Gregory S. Hornby is a computer scientist with QSS Group Inc. working
in the Evolvable Systems group in the Intelligent Systems Division at NASA
Ames Research Center (homby@email.arc.nasa.gov).

Jianjun Hu is a Postdoctoral Fellow of the Department of Computer Science
at Purdue University (hujianju@purdue.edu).

Christian Jacob is Associate Professor of Computer Science and of Biochem­
istry & Molecular Biology at the University of Calgary (cjacob@ucalgary.ca).

Lee W. Jones is a researcher at Genetic Programming, Inc. in Mountain View,
CA (lee @ genetic-programming. com).

Elsa M. Jordaan is a Research Specialist in the Modelling Group within the
Engineering and Process Sciences R&D Organization of the Dow Chemical
Company (emjordaan@dow.com).

Jon Klein is a Senior Research Fellow in the School of Cognitive Science at
Hampshire College in Amherst, Massachusetts, and a doctoral candidate in

http://adfa.edu.au
mailto:Georges.Gielen@esat.kuleuven.be
mailto:homby@email.arc.nasa.gov
mailto:hujianju@purdue.edu
mailto:cjacob@ucalgary.ca
mailto:emjordaan@dow.com

Contributing Authors ix

Physical Resource Theory at Chalmers University of Technology and Göteborg
University in Göteborg, Sweden.

Arthur K. Kordon is a Research and Development Leader in the Modelling
Group within the Engineering and Process Sciences R&D Organization of the
Dow Chemical Company (akordon@dow.com).

Mark E, Kotanchek is a Research and Development Leader in the Modelling
Group within the Engineering and Process Sciences R&D Organization of the
Dow Chemical Company (mkotanchek@dow.com).

John R. Koza is Consulting Professor at Stanford University in the Biomedical
Informatics Program in the Department of Medicine and in the Department of
Electrical Engineering (koza@stanford.edu).

W. B. Langdon is a Senior Research Fellow of Computer Science in Essex Uni­
versity, England.His research includes the fundamentals of genetic program­
ming, whilst his applications include GP in Bioinformatics and drug discovery
(http://www.cs.essex.ac.uk/staffAV.Langdon/).

Andre Leier is a Postdoctoral Researcher in the Department of Computer
Science at Memorial University of Newfoundland, St. John's, Canada
(leier@cs.mun.ca).

Derek Linden is the Chief Technical Officer of Linden Innovation Research
LLC, a company which specializes in the automated design and optimization
of antennas and electromagnetic devices (dlinden@lindenir.com).

Jason Lohn leads the Evolvable Systems group in the Exploration Systems
Division at NASA Ames Research Center (jlohn@email.arc.nasa.gov).

Duncan MacLean is co-founder of Genetics Squared, Inc., a computational dis­
covery company working in the pharmaceutical industry (dmaclean@acm.org).

Trent McConaghy is a serial entrepreneur, and a Ph.D student in the ESAT-
MICAS microelectronics group at Katholieke Universiteit Leuven, Belgium.
(Trent.McConaghy@esat.kuleuven.be).

mailto:akordon@dow.com
mailto:mkotanchek@dow.com
mailto:koza@stanford.edu
http://www.cs.essex.ac.uk/staffAV.Langdon/
mailto:leier@cs.mun.ca
mailto:dlinden@lindenir.com
mailto:jlohn@email.arc.nasa.gov
mailto:dmaclean@acm.org
mailto:Trent.McConaghy@esat.kuleuven.be

X GENETIC PROGRAMMING THEORY AND PRACTICE III

Bob McKay is a Senior Visiting Research Fellow in the School of Information
Technology at the University of New South Wales (Australian Defence Force
Academy campus).

Nicholas Freitag McPhee is Associate Professor at the University
of Minnesota, Morris in the Division of Science and Mathematics
(mcphee@morris.umn.edu).

H. Van Dyke Parunak is Chief Scientist and Scientific Fellow at the Al-
tarum Institute, and leads research in applications of complex adaptive sys­
tems in the Emerging Markets Group of Altarum's Enterprise Systems Division
(van.parunak@altarum.org).

Riccardo Poli is Professor of Computer Science at the University of Essex
(rpoli@essex.ac.uk).

Rick Riolo is Director of the Computer Lab and Associate Research Scientist
in the Center for the Study of Complex Systems at the University of Michigan
(rlriolo@umich.edu).

Ronald C. Rosenberg is Professor of Mechanical Engineering at Michigan
State University (roserber@egr.msu.edu).

Conor Ryan is Senior Lecturer in the Department of Computer Science and
Information Systems at University of Limerick, Ireland where he leads the
Biocomputing and Developmental Systems Group (conor.ryan@ul.ie).

Guido R Smits is a Research and Development Leader in the Modelling Group
within the Engineering and Process Sciences R&D Organization of the Dow
Chemical Company (gfsmits@dow.com).

Lee Spector is Dean of the School of Cognitive Science and Professor of
Computer Science at Hampshire College in Amherst, Massachusetts (Ispec-
tor@hampshire.edu).

Katherine Vladislavleva is a Ph.D student at the Tilburg University and the
Modelling Group within the Engineering and Process Sciences R&D Organi­
zation of the Dow Chemical Company (cvladislavleva@dow.com).

mailto:mcphee@morris.umn.edu
mailto:van.parunak@altarum.org
mailto:rpoli@essex.ac.uk
mailto:rlriolo@umich.edu
mailto:roserber@egr.msu.edu
mailto:conor.ryan@ul.ie
mailto:gfsmits@dow.com
mailto:tor@hampshire.edu
mailto:cvladislavleva@dow.com

Contributing Authors xi

Eric A. Wollesen is a gradute of the University of Michigan. He is cur­
rently employed as a software developer by Genetics Squared, Inc., a com­
putational discovery company working in the pharmaceutical industry (er-
icw@genetics2.com).

Bill Worzel is the Chief Technology Officer and co-founder of Genetics
Squared, Inc., a computational discovery company working in the pharma­
ceutical industry (billw@genetics2.com).

Tina Yu is a computer scientist in the Mathematical Modeling Team at Chevron-
Texaco Information Technology Company (Tina.Yu@chevrontexaco.com).

mailto:icw@genetics2.com
mailto:billw@genetics2.com
mailto:Tina.Yu@chevrontexaco.com

Preface

The work described in this book was first presented at the Third Workshop
on Genetic Programming, Theory and Practice, organized by the Center for the
Study of Complex Systems at the University of Michigan, Ann Arbor, 12-14
May 2005. The goal of this workshop series is to promote the exchange of
research results and ideas between those who focus on Genetic Programming
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions, the number of talks
and participants was small and the time for discussion was large. Further,
participants were asked to review each other's chapters before the workshop.
Those reviewer comments, as well as discussion at the workshop, are reflected in
the chapters presented in this book. Additional information about the workshop,
addendums to chapters, and a site for continuing discussions by participants and
by others can be found at http://cscs.umich.edu:8000/GPTP-2005/.

We thank all the workshop participants for making the workshop an exciting
and productive three days. In particular we thank all the authors, without whose
hard work and creative talents, neither the workshop nor the book would be
possible. We also thank our keynote speakers Dr. H. Van Parunak of Altarum,
Ann Arbor, Professor Michael Yams, Biology-MCD, University of Colorado,
and Dr. Inman Harvey, CCNR (Centre for Computational Neuroscience and
Robotics) and Evolutionary and Adaptive Systems Group Informatics Univer­
sity of Sussex, who delivered three thought-provoking speeches that inspired a
great deal of discussion among the participants.

The workshop received support from these sources:

• The Center for the Study of Complex Systems (CSCS);

• Third Millennium Venture Capital Limited;

• State Street Global Advisors, Boston, MA;

• Biocomputing and Developmental Systems Group, Computer Science
and Information Systems, University of Limerick;

• Christopher T. May, RedQueen Capital Management;

http://cscs.umich.edu:8000/GPTP-2005/

xiv GENETIC PROGRAMMING THEORY AND PRACTICE III

• Dow Chemical, Core R&D/Physical Sciences;

• Michael Kom; and

• Genetics Squared, Inc., Ann Arbor, Michigan.

and from Professor Scott A. Moore of the University of Michigan School of
Business, for providing the Assembly Hall Board Room for the workshop. We
thank all of our sponsors for their kind and generous support for the workshop
and GP research in general.

A number of people made key contributions to running the workshop and
assisting the attendees while they were in Ann Arbor. Foremost among them
was Howard Oishi, assisted by Mike Charters. After the workshop, many
people provided invaluable assistance in producing this book. Special thanks
go to Sarah Chemg, who stepped in and learned a lot of lATEXand other skills in
a very short time, and who also did a wonderful job working with the authors,
editors and publishers to get the book completed very quickly. In addition
to thanking Bill Tozier for his extraordinary efforts reading and copy-editing
chapters, we also thank Duncan MacClean and Eric Wollesen for helping with
copy-editing. Melissa Fearon's editorial efforts were invaluable from the initial
plans for the book through its final publication. Thanks also to Valerie Schofield
and Deborah Doherty of Springer for helping with various technical publishing
issues. Finally, we thank Carl Simon, Director of CSCS, for his support for this
endeavor from its very inception.

TINA YU, RICK RIOLO AND BILL WORZEL

Foreword

Enabled by relentless advances in computing power and the increasing avail­
ability of distributed computing, genetic programming (GP) has become suc­
cessful in solving a wide array of previously intractable industrial problems.
However, as a relatively new kid on the block, this growing community of
early-GP-adopter faces many obstacles, such as entrenched institutional resis­
tance and the competition of other existing technologies (decision forests, kernel
learning methods, and support vector machines). Ultimately, the technique of
GP will find a home in industry if and only if it is competitive.

The Workshop of Genetic Programming Theory and Practice organized by
the Center for the Study of Complex Systems and held at the University of
Michigan, Ann Arbor, in May 2005, is a unique venue where applied and
theoretical researchers focus on how theory and practice should interact and
what they can learn from each other. Such exchange is essential in advancing
GP to overcome its adversaries.

I was very excited to receive an invitation to this workshop, since the appli­
cation of GP to industrial scale symbolic regression and classification problems
is a timely topic in our enterprise. After attending the workshop, I was ec­
static. Many of the most respected and influential GP researchers as well as
an impressive array of applied researchers from industrial sectors were in at­
tendance. They presented focused and topical papers and participated in the
discussion. With their knowledge and experiences, the discussion was deep and
enormously productive. We spent our days listening to workshop presentations,
asking questions, and our evenings writing programs. We left the workshop
with many practical issues resolved.

I hope to attend this event next year. If we are to advance the application
of GP in industry, it is critical to have a venue where applied and theoretical
researchers can exchange ideas, critically review past efforts, and inspire future
research directions.

Michael Koms
President and Chief Technologist,
Koms Associates Nevada, USA

Chapter 1

GENETIC PROGRAMMING:
THEORY AND PRACTICE

An Introduction to Volume III

Tina Yu/ Rick Riolo^ and Bill Worzel̂
1 2
Chevron Information Technology Company, Center for the Study of Complex Systems, UnU

versify of Michigan, Genetics Squared, Inc.

In theory, there is no difference between theory and practice. But, in practice, there is.
—Jan L.a. Van De Snepscheut

Keywords: genetic programming, theory, practice, continuous recurrent neural networks,
evolving robots, swarm agents

Close Encounter, the Third Time
To leverage theoretical and practical works in the field of genetic program­

ming (GP), the Genetic Programming Theory and Practice (GPTP) Workshop
series was conceived and launched in 2003. For the past two years, theoreti­
cians and practitioners have come to Ann Arbor to present their works and to
listen to others' (Riolo and Worzel, 2003) (O'Reilly et al, 2004). Gathered
in a friendly environment, they debated with enthusiasm, pondered in silence,
and laughed in between. All of these interactions have paved the way to future
integration of theory and practice.

In this year's workshop, we are very pleased to see some signs of conver­
gence:

2 GENETIC PROGRAMMING THEORY AND PRACTICE III

• Papers developing techniques tested on small-scale problems include dis­
cussion of how to apply those techniques to real-world problems, while
papers tackling real-world problems have employed techniques devel­
oped from theoretical work to gain insights.

• Multiple papers addressed GP open challenges, such as industry funding,
new opportunities and previously overlooked issues. During the open
discussion on the last day of the workshop, considerable enthusiasm was
generated regarding these topics.

All those developments indicate that both theoreticians and practitioners ac­
knowledge that their approaches complement each other. Together, they ad­
vance GP technology.

1. Three Challenging Keynote Talks
As in the first two GPTP workshops, each day commences with a keynote talk

from a distinguished researcher, one each with a strong background in the fields
of evolutionary computation, biology and application of advanced technologies
in real-world settings, respectively. For GPTP-2005 we were again fortunuate
to have three enlightening, inspiring, challenging and sometimes controversial
talks.

On the first day of the workshop. Van Parunak, Chief Scientist of Altarum
Institute, delivered a keynote on evolving "Swarms" of agents in real-time. As
a practitioner of population-based search techniques, one of Van's challenges is
mapping a real-world problem into an appropriate representation. Sometimes,
each individual in the population is the entire solution while other times, an
individual is one component (an agent) of a solution. In the later case, the
collection of individuals (the "Swarm") which yields the desired global behavior
is the solution. The art and craft of designing problem-specific representations
mentioned by Van was a challenge echoed by other presenters throughout the
workshop.

One type of real-world problem that Van works on is to evolve swarms
in real-time to meet a constantly changing environment. In Chapter 2, he
discusses two such systems they have developed. The first one plans flight
paths for uninhabited robotic vehicles (URVs). The path should lead URVs
to the target while avoiding threats on the way. To detect moving threats, an
URV generates many "ghost" agents which explore (in a virtual model of the
world) possible paths by depositing digital pheromones. Each step in the path
then is chosen based on information represented by the pheromone deposits,
using a parameterized equation associated with the ghost agent. The Altarum
group has explored several approaches to optimizing the parameters in real-time
to guide URVs, including evolutionary algorithms and human designers. The

An Introduction to Volume III 3

evolved parameters produce paths that are superior to those produced by human
designed parameters by an order of magnitude.

Using the ghost agent concept, they developed a second system to predict
future behavior of soldiers in urban combat. A soldier's behaviors are influenced
by his/her own personality, the behaviors of other soldiers and their surrounding
environment. To extrapolate a soldier's possible future behavior, a stream of
ghost agents are continuously generated. These ghost agents begin their lives
in the past using a faster clock than the clock used by the soldier it represents.
When the time reaches the present, the ghost agents whose behaviors match
well with the past behaviors of the soldier it represents are assigned a high
fitness. These ghost agents are allowed to bred offspring and to run past the
present into the future, where their behaviors are observed to derive predictions.

Modeling complex systems in real-time, with models that run and adapt
faster than real-time in order to allow for prediction, is a non-trivial task. Van
showed us one way to make it work. However, he acknowledged that their
efforts were aimed at solving the problems at hand, and hence so far they
have not focused on generating theoretical insights. However, he asserts that
although the systems they have developed doesn't give "perfect" predictions, it
outperforms the current systems in use. From the practical point of view, it is a
success. This evaluation standard is also used in other lines of business, such as
finance, chemical and oil companies, as confirmed by the work and comments
of other workshop participants.

The second day started with a keynote entitled "Evolution From Random
Sequences" by Mike Yarns, Professor of Molecular Biology at University of
Colorado, Boulder. This is not evolution by mutation of existing sequences with
a fixed translation mechanism generating "solutions," he emphasized. Instead,
it is a completely different process where both the genetic code (information)
and the translation system (a "machine") are randomly generated, and evolution
proceeds as selection acts upon this coupled pair.

Their studies are based on the laboratory examination of the RNA-binding
sites of eight biological amino acids, which show significant evidence that
cognate codons and/or anticodons are unexpectedly frequent at these binding
sites. Consequently, they proposed the Escaped triplet theory: The coding
triplets began as parts of amino acid binding sites, then escaped to become
codons and anticodons. In other words, at least part of the genetic code is
stereo-chemical in origin-from chemical interactions between amino acids and
RNA-like polymers. The code is not just Q. frozen accident as suggested by
Watson and Crick. Instead, the code's mapping is a result of selection based on
affinities between an amino acids and parts of random RNA sequences.

Not only the genetic code is selected from random sequences, Yargus argued—
so is the hardware for translation. He used the peptide transferase to support his
argument. Their laboratory study shows that proteins are assembled by reaction

4 GENETIC PROGRAMMING THEORY AND PRACTICE III

of the aa-RNAs within a cradle of RNA whose octamer can be selected from
random sequence. Therefore, both coding triples and the peptidyl transferase
emerge when random sequences are placed under selection. Put another way,
they were originally made by selection from populations of RNAs of arbitrary
sequence.

The issues involved with the invention of a genetic code are generally not
considered by the GP community, who usually assume the existence of a "code"
and machinery to map from a "genome" to active agents (^.g., programs). How­
ever, as a field constantly looking to biological mechanisms and processes for
inspiration, GP might due well to consider these issues in the future, perhaps
leading to more "open-ended" evolutionary systems.

Following a suggestion to be challenging and controversial, Inman Harvey
delivered a keynote on "Evolutionary Robotics for Both Engineering and Sci­
ence" with comments on some aspects of GP and the interaction of human
and evolution process. He started by describing their approach to evolve dy­
namic systems which interact with the environment in real-time. Formally, a
standard dynamic system is a set of (continuous) variables with equations that
determine how each variable changes over time as a function of all current
values. These equations are represented in Continuous Time Recurrent Neural
Networks (CTRNN) and are evolved using a steady-state GA with tournament
selection.

Inman was questioned about his decision to not use GP for the evolutionary
component. He gave his reasons based on his observations of the early GP
work. First, he thought GP-style evolution is wide and short, i.e. it consists of
a large population evolving for just a few {e.g., hundreds or fewer) generations.
But biological evolution is narrow and long, i.e. the number of generations
is generally far more than the size of the population. Secondly, biological
evolution is always an open-ended work in progress, not just an attempt to
solve a single specific problem. It seemd likely that Inman has not been in
touch with the GP field for a long time and thus he did not have much familiarity
with recent progress and trends. Workshop participants quickly corrected his
misconceptions, claiming that those ideas have been incorporated in some of the
more current GP systems. However, Inman's basic point should still be seriously
considered, i.e., while GP systems are run longer and are work toward more
openedness than in the past, it is clear that the ratio of generations to population
size is still far from that in biological systems, and that GP systems are still
generally applied to solve specific problems. It then remains to be seen how
important those differences are across the range of GP applications, given the
different goals researchers have for GP systems.

The subject then turned to the evolutionary robotics (ER) systems Inman's
group has built for scientific purposes. The first one is an artificial ant that has to
find its way back to its nest or hive with minimal noisy visual cues. Biologists

An Introduction to Volume III 5

used the system to compare simulation behaviors with the real ant behaviors to
disprove or to generalize hypothesis. For example, if the original hypothesis
states that a behavior requires A and the evolved artificial ant show the behavior
without A, a new hypotheses can be developed to explain this behavior. Another
ER system they developed is for studying the human ability to adjust to a world
turned upside-down. They incorporated some general homeostasis constraints
to evolve a robot with normal eyes first. After that, they switched the eyes
upside-down and ran the system again. A reasonable proportion (50%) of the
evolved robots with normal eyes can adapt, after time, to visual inversion. These
experiments allow generation of relatively unbiased models (Le., with minimal
assumptions) to challenge existing hypotheses and to generate new ones.

For engineering purposes, Inman and his group applied their ER technique
to evolve control systems for robots. Two such examples are a hexapod walker
for a robot for Mars exploration that is robust to damage and a humanoid biped
walker. They used an incremental approach to evolve the system. Initially, a
hand-designed system for a simple task is used at population 0. Once the evolved
system is able to perform the simple task reasonably well, a new task (parameters
and neurons) is added and starts a new evolutionary cycle. Evolution gradually
learns to perform new tasks without forgetting how to do the old task. This style
of incremental leaming through the interaction of human intervention and an
evolutionary algorithm is a practical approach to tackle this engineering task.
However, it seems to conflict with the work in progress evolutionary paradigm
that Inman advocated previously, pointed out by a workshop participants. Inman
agreed with this comment. Maybe devising an evolutionary system which
can continuously learn, i.e. always in work-in-progress mode, without human
intervention is a challenge for all who are interesting in evolutionary leaming,
not just those using GR

2. Real-World Application Success Stories
Besides the successful applications of evolutionary approaches described by

Van Parunak and Inman Harvey in their keynote addresses, clear-cut Genetic
Programming success stories were told in four presentations. They either pro­
duced better results than the preexisting systems, made breakthroughs or opened
a new frontier. These results cheered the spirits of all workshop participants.

In Chapter 3, Lee Jones, Sameer H. Al-Sakran and John Koza present their
success in delivering GP human-competitive results in a new domain: optical
design. In this work, the simple forms of representation, genetic operations and
fitness function were elaborated to work with this non-trivial domain, where
finding a solution is an art or craft rather than science. Many pathological
designs were identified and the system was adjusted accordingly to avoid gen­
erating such kinds of designs. As an invention machine, GP was able to create

6 GENETIC PROGRAMMING THEORY AND PRACTICE III

lens designs that gives characteristics, e,g, spherical aberration and distortion,
that are competitve with a lens design patented in 1996. Since the evolved
design differs considerably from the patented design, it does not infringe the
patent. Instead, it is considered as a new invention created by GR

Chapter 4 also reports the success of a GP solution that improves over a
preexisting technology. In this work, Frank Francone, Larry Deschaine, Tom
Battenhouse and Jeffery Warren applied a linear GP system to discriminate
unexploded Ordnance (UXO) from clutter (scrap metal that poses no danger to
the public) in retired military fields. A higher quality solution allows UXO to
be revealed by digging fewer holes, hence is more cost-effective. The project
was conducted in two phases. The first phase used sensor data gathered from
a military field where UXO and clutter locations are known. The quality of a
solution is evaluated by the percentage of UXO and clutter correctly identified.
They compared the GP-generated solution with solutions based on geophysics
first principles and by other technologies, and showed that the GP-generated
solution gives a significantly higher accuracy. In the second phase of the project,
the sensor data was collected from a different field where UXO and clutter
locations are unknown. In order to devise GP solutions, many more processing
steps, such as anomaly identification and feature extraction for the identified
targets, were conducted. Unlike the phase I study, the quality of a solution
in this phase is judged by the number of holes that must be dug to uncover
all UXO. They reported that their GP-generated solution improves over the
preexisting technique with 62% fewer holes dug. Although the data set is noisy
with only a small number of positive samples, a common dilemma in real-world
applications, GP is able to overcome the difficulties and deliver good solutions.

In last year's workshop, Lohn, Hornby and Linden presented their success
in evolving two human-competitive antennas for NASA's Space Technology
5 mission. While those antennas met the mission requirements at that time,
new requirements were introduced as a result of an orbit change. In Chapter 5,
they updated the project with two new antennas they evolved to meet the new
mission requirements. Unlike the conventionally designed quadrifilar antenna
which require several months to develop a new design and prototype it, their
antennas were evolved (with slightly modifications of their evolutionary sys­
tem) and prototyped in four weeks. These two antennas have passed the flight
testing and are expected to be launched into space in 2006, a "first" for systems
designed by evolutionary algorithms. This story highlights an important advan­
tage of evolutionary design over human design: the ability to rapidly re-evolve
new designs to meet changing requirements. It is an essential ingredient for
successful real-world applications.

Variable selection plays an important role in industrial data modeling, par­
ticularly in chemical process domain where the number of sensor readings is
normally large. To generate robust models, a small number of important vari-

An Introduction to Volume III 7

ables must be identified. Unfortunately, preexisting linear variable selection
methods, such as Principle Components Analysis (PCA) combined with Par­
tial Least Squared (PLS), fail to work on non-linear problems. In Chapter
6, Guido Smits, Arthur Kordon, Katherine Vladishlavleva, Elsa Jordaan and
Mark Kotanchek developed a non-linear variable selection method based on
their Pareto GP system. This method assigns variable importance by evenly
distributing an individual's fitness to all variables that appear in the individual.
The accumulated importance of each variable in the population in the Pareto
front archive is then used to rank their importance.

They have applied this method on two inferential sensors problems. The first
one (emission prediction) has 8 variables and GP selected 4 of them as highly
important while PCA-PLS gives a different ranking. The final deployed mod­
els, which were evolved by GP using the 4 selected variables, give very high
correlation coefficient values (0.93 and 0.94). This confirms that the 4 selected
variables are indeed important, which PCA-PLS fails to recognize. The second
inferential sensor (propylene concentration predication) has 23 variables. Four
important variables were selected by GP whereas PCA-PLS suggests 12 impor­
tant variables, which included only 3 of the 4 GP selected variables. The final
winning inferential model is an ensemble of 4 models, which included all 4
GP-selected variables and 1 variable recommended by an expert's model. The
GP solution also was more effective than the PCA-PLS solution in this case.

In addition to providing demonstrably better performace, one prerequisite
for "success" is acceptance by the people working in the problem domain. It
is only when the solutions are accepted by the users in the domain that the
technology will have a significant impact. Thus an important question is: Are
those fields where GP has been applied inclined to accept the solutions? If not,
how do we change their attitudes?

The feeling of the GPTP Workshop participants was that in general, the
more successful and mature a field is, the less likely it accepts new ideas.
Lens and analog circuit designs are two fields that have longer histories and
are considered more mature, said Koza. In contrast, antenna design engineers
and geophysicists working on UXO communities are very accepting of new
concepts as there is not solid theory and they don't know systematic approaches
for finding solutions themselves, according to Lohn and Francone. In terms of
enticing end-users to accept GP solutions, one critical step is to invite them
to participate in the project from the very beginning, said Kordon. Otherwise,
people tend to not accept any work that they have no part of. In corporate
environments, it also is important to show management the advantages the
technology can bring to them. If the success of a technology will lead to
problems for them, e.g. losing their jobs, they will make every effort to assure
the technology fails, commented by Goodman.

8 GENETIC PROGRAMMING THEORY AND PRACTICE III

3. Techniques with Real-World Applications in Mind
Although GP theory does not progress as rapidly as practice does, techniques

to enhance GP capabilities and theoretical work to analyze GP processes are
continually being developed. Four such papers were presented in the workshop.
These works so far have been applied to small scale problems. Nevertheless,
relevance to real-world applications was discussed.

In Chapter 7, Tina Yu introduced a functional technique to evolve recursive
programs. In functional programs, recursion is carried out by non-recursive
application of a higher-order function. This chapter demonstrates one way to
evolve this style of recursive programs by including higher-order functions in the
GP function set. Two small-scale problems were studied using this approach.
The first one is a challenge by Inman Harvey, STRSTR C library function, and
the second one is the Fibonacci sequence. In both cases, problem-specific
knowledge was used to design/select higher-order functions, and GP was able
to evolve the recursive programs successfully by evaluating a small number of
programs.

Programs with higher-order functions naturally give the structure of code
abstraction and reuse. For these two problems studied, the structures were
defined by the given higher-order functions. With an appropriate set-up, GP
can be used to discover the structure, Le, evolve the higher-order function. Such
a GP would be particularly suitable for solving open-ended designs where no
optimum is known and creativity is essential to problem solving. In this case,
evolved higher-order functions might deliver interesting solutions.

Lee Spector and Jon Kleinsold present their "trivial geography" technique
in Chapter 8. Trivial geography structures the GP population in a simple ge­
ographically distributed manner. The location of an individual is taken into
account when selection for competition and reproduction. This concept is not
new. Many existing evolutionary computation systems divide their populations
into discrete or overlapping sub-populations, often called demes, as a form of
geography. However, their implementation is significantly simpler; only a few
lines of programming code need to be added/modified, they argued. In their
implementation, a population is structured as a ring. When producing a new
generation, the location into which an offspring is going to be placed in the new
population decides where its parents are from; Le,, only the individuals near to
the location for the offspring are selected for tournament and thus are candi­
dates to be parents. This essentially gives overlapping sub-populations where
independent evolution takes place. Despite being such small change, this trivial
geographic bias in parent selection significantly improves performance for the
two problems they tested. Although the generality of the method has not been
studied yet, they recommended broader usage of the technique. "It is easy to
implement and you might be surprised what you can gain from it," said Lee.

An Introduction to Volume III 9

In Chapter 9, Riccardo Poll and Bill Langdon developed a backward chain­
ing technique to reduce GP computational efforts. This technique first reorders
the typical create-select-evaluate evolutionary system cycle to construct the ge­
nealogy network for the entire evolutionary run. After that, the genetic makeup
of the individuals are filled in a backward manner. This is done by tracing
the genealogy of each individual in the last population back to generation 0.
The "root individuals" are then initialized randomly and all their descendants
are created using genetic operators subsequently. Since only individuals in the
geneological network are created and evaluated, backward chaining GP is com­
putationally more effective than the traditional GP. However, there is trade-off
of memory to store the genealogy network. Mathematically, they computed
the time and space complexities to show the cost and saving. Experimentally,
they tested this technique on symbolic regression problems and reported that
using population size 10000 with tournament size 2, backward chaining GP
gives computational saving of 19.9%. Once the tournament size is increased
to 3, the saving is marginal. They recommend this method to GP systems with
very large populations, short runs and relatively small tournament sizes. The
computational saving for large scale real-world problem using this type of GP
might be significant.

Co-evolving grammar and the solutions defined by the grammar is an at­
tractive idea since the biases induced by the grammar are not always favorable
throughout the evolutionary run. Conceptually, it seems that it should be pos­
sible to learn good bias from the evolved good solutions. In Chapter 10, R.
Muhammad Atif Azad and Conor Ryan test the hypothesis by using a diploid
genotype: one part for the grammar rule and the other for solution mapped.
This approach is very similar to the co-evolution of genetic operation rates and
the solutions generated by the operation. By encoding the rate as a part of
the genotype, the rate is normally reduced as evolution progresses to provide
appropriate exploration and exploitation.

They added the diploid genotype to their Grammatical Evolution system and
tested it on a set of small scale problems. While the results are not as good as
expected—the system using static grammars finds better solutions—this talk
stimulated much discussion at the workshop. Many recommendations were
given to improve the system.

Chapter 11 is a contribution by Tuan Hao, Xuan Nguyen, Bob McKay and
Daryl Essam. This work applies their previously developed techniques to a
real-world problem, which is an important step to transfer the technology for
wider applications (Bob was not able to come to present the paper in person,
so there was not discussion of it at the workshop). Their work is based on Tree
Adjoining Grammar (TAG) GP which they have developed and used to study two
local search operators: point insertion and deletion. Local search operators are
generally useful to tune final solutions. While their previous study reported that

10 GENETIC PROGRAMMING THEORY AND PRACTICE III

they are also effective search engines on small-scale problems, when applied to
the larger scale ecological modeling problem described in Chapter 11, the results
are not conclusive. On training data, GP with local search operators produces
a better model than the model evolved by GP alone. However, on blind testing
data, it is the other way around. This indicates that local search operators
generate over-fitting solutions and reduce generality. They are continuing the
study to produce more robust solutions.

4. Visualization: A Practical Way to Understand GP
Process

Unlike the work describe by Mike Yarns in Section 1, which examines bio­
logical data to study evolution, A. Almal, W. P. Worzel, E. A. Wollesen and C.
D. MacLean analyze biomedical data for diagnostics and prognostics purposes.
One such project is modeling medical data to predict the stage of bladder can­
cer. Medical data is notorious in its small sample sets and large dimensionality,
which makes the modeling task very difficult. In Chapter 12, they describe
a tool to visualize the content diversity (the diversity of functions and termi­
nals) of GP populations and study its relationship to the fitness diversity of the
solutions.

They used the new tool they developed to plot population contents in gen­
eration 0, 10, 20 and 38, which show how diversity decreases as evolution
progress. Fitness diversity, however, does not have such a trend. The fitness
variance among individuals remained high throughout the runs, although high
fitness bands became dominant when the content diversity became very low, L e,,
the population's structures converged. This interesting relationship stimulated
much discussion at the workshop. The relationship between structure, content
and fitness in a population is a subject that always interests both theoreticians
and practitioners.

Visualization is a powerful and practical way to study many dynamical sys­
tems, including those generated by evolutionary processes. Thus, it may not
be surprising that there were three other visualization papers presented at the
workshop.

The first one is by Christian Jacob and Ian Burleigh. In Chapter 13, they
present an agent-based model that simulates lactose Operon gene regulatory
system. Although this is one of the most extensively studied biological sys­
tems, there are still many unknowns. A visual simulation can help biologists
to understand the complex system better. To develop such a model, they first
incorporated biological data/rules to construct the system. The simulation be­
haviors are then presented to biologists, whose feedbacks are used to improve
the model. This interactive evolution process led to parameters which give
behaviors close to the known behaviors. It appears that GP can be used to

An Introduction to Volume III 11

fine-tune the parameters. Furthermore, the mechanism of the gene regulatory
system may serve as an inspirational platform to design GP systems suitable
for complex systems modeling.

Biological systems have always been inspiration to GP. Motivated by the
research of neutral networks in biological systems, Wolfgang Banzhaf and An­
dre Leier investigate GP search behavior in a Boolean function space with the
presence of neutral networks. In Chapter 14, they enumerated the problem
search space and showed that the genotype to phenotype mapping is similar to
the RNA folding landscape: there are many very uncommon phenotypes and
few highly common phenotypes. This suggests that the neutral evolution the­
ory for biological systems might apply to this GP search space. They plotted
the phenotype network of the search space, including neutral networks where
the connected phenotypes having the same fitness. This visualization of the
network provides a clear picture of phenotypes with different fitness and how
they are connected.

Another work which relies heavily on visualization for analysis is by Ellery
Crane and Nie McPhee. In Chapter 15, they study the effects that size and depth
limits have on the dynamics of tree-based GP. Based on a simple one-than-zero
problem, many GP experiments were conducted using both tree-size and depth-
size limits. Visualization of the statistical results indicates that both kinds of
limit have similar effects on the average tree size (number of nodes) in the
population. However, depth limits effect program shapes more than size limits
do. With depth limits, the program shape in the population has less diversity.
They are investigating the generality of this phenomena by studying other type
of problems under different selection and genetic operation conditions, and if
practitioners adopt their recommendations for problem solving, we may leam
even more about its generality and usefulness.

5. Open Challenges
In addition to the deep challenges presented by the keynote addresses, sev­

eral other chapters also described various kinds of open challenges that GP
practitioners must overcome before GP will be easily and widely accepted in
various industries and business.

For example, in Chapter 16 Arthur Kordon, Flor Castillo, Guido Smits and
Mark Kotanchek of Dow Chemical discuss many challenges faced by industrial
research and development groups when applying GP technology. In addition
to technical issues, such as data quality and extrapolation of the solutions, non­
technical issues are important to the success adoption of a new technology in
corporate environment. They summarized how they address these non-technical
issues: create a team to work on GP, link GP to proper corporate initiatives,
secure management support, address skepticism and resistance and marketing

12 GENETIC PROGRAMMING THEORY AND PRACTICE III

the technology continuously. Although GP has had good track record at Dow,
the technical team still has to adapt to the fast changing environment and to
produce profits to survive. They described a set of "10 commandments" of
industrial R&D humorously to illustrate the challenges they are facing:

• Thou shalt have no other thoughts before profit.

• Thou shalt not serve consultants.

• Thou shalt not take the research money for granted.

• Remember the budget, to keep it holy.

• Honour the cuts and the spending targets.

• Thou shalt not explore.

• Thou shalt not commit curiosity.

• Thou shalt not create.

• Thou shalt not develop anything before outsourcing it.

• Thou shalt not covet thy professors, nor their students, nor their graduate
students, nor their post-docs, nor their conferences and workshops.

Open-ended problem solving has been a quintessentially human capability.
Is it possible to equip GP to become the first machine capable of open-ended
problem solving? In Chapter 17, Jason M. Daida argued that it would be very
difficult, if not impossible, based on the MPS open-ended problem solving
paradigm. In this widedly used problem solving paradigm, there are 6 stages of
problem solving: engage, define stated problem, create internal idea of prob­
lem, plan a solution, carry out the plan and evaluate (check) and look back.
Clearly, it would be very hard for GP to undertake some of the activities, e,g,
engage and define stated problems. In fact, until now, GP has been partnered
with human to carry out these problem solving activities. This is demonstrated
in typical GP application work-flow, which includes pre-GP {e.g, data prepa­
ration) and post-GP {e.g. solution interpretation) process. Nevertheless, there
are opportunities to make GP a more competent partner. One such area is
tools to transform/analyze GP solutions so that they can be explained and in­
corporated into the evaluate, check and look back process. Visualization has
been recommended as one great approach to achieve the goal. There are many
other opportunities to strengthen GP which remains open for the community to
explore.

Jianjun Hu, Ronald Rosenberg and Erik Goodman have started exploring new
application domains using their bound-graph representation GP system. Chap­
ter 18 reports their initial study on evolving mechanical vibration absorbers.

An Introduction to Volume III 13

This is an area with a history of patents and it poses a great challenge for GP
human-competitive results. To evolve single, dual and bandpass vibration ab­
sorber, they designed various domain-specific functions. They also devised
different fitness functions to direct GP search. The evolved absorber, however,
are not practically useful and extremely difficult to implement, although their
fitness are high. They concluded that exploiting domain or problem-specific
knowledge to embody physically meaningful building blocks is necessary for
GP to be successful in real-world problems. Otherwise, the evolved solutions
may not be physically realizable. How much domain knowledge to use so that
GP has room for creativity and is able to deliver human-competitive results is
an open challenge for the community.

Pushing GP toward industrial success in the analog CAD domain, Trent Mc-
Conaghy and Georges Gielen outline new GP applications and challenges in
Chapter 19. They started by distinguishing "success" in the GP research do­
main, which is demonstrated by the number of publications, and in the industrial
success, which is measured by the number of different chip designs that have
been sent to fabrication. With great research success in analog design, they
suggested using GP to pursue industrial success in three application areas: au­
tomated topological design, symbolic modeling and behavioral modeling. They
showed their recent work on these problems. The results are very encouraging
and accepted well by the CAD design community. Although there are many
obstacles to overcome, e,g, computational feasibility and earning CAD design­
ers' trust, these applications are great opportunities for GP to become industrial
success in the analog CAD field.

There was a lot of interest in discussing GP challenges throughout the work­
shop. On the last day, a list of open challenges was created by workshop
participants:

• Handling large data sets (10 millions).

• Complexity of problems (k-complexity).

• How weird can GP be and still be invited to GPTP?

• The problems associated with analysis of GP systems.

• Mapping GP to customer satisfaction.

• How do we stack GP techniques (avoid "backdrop").

• GP integration with other techniques.

• Theoretical tools for understanding large modular systems.

• How do ADFs affect the GP system?

14 GENETIC PROGRAMMING THEORY AND PRACTICE III

• Systematizing our understanding of GP: a taxonomy of GP; a GP Periodic
Table; mathematical formulation of GP; a GP "Pattern" book; a dictionary
of pathologies of GP behavior.

• Understanding Solution Classes.

• Using tools developed in other fields to enhance our understanding and
use of GP;

• How to make good use of pre- and post-processing.

• How to move beyond dumping scalars?

• Better infrastructure for visualization; probes to visualize the behavior of
GP

• More complicated fitness functions.

• Looking toward AI, aiming at "real" AI goals (but don't promise too
much).

• Exploring alternative computing paradigms, beyond the microprocessor.

• How to integrate domain knowledge?

• GP as a Reinforcement Learning system.

• Scalability and Dynamics.

• Crossing the application chasm—how to make GP attractive to industry?
What kind of marketing packages would be useful?

This list provides a starting point and possible directions for contributions
to next year's Genetic Programming Theory and Practice Workshop. We look
forward to the continued progress of theory and practice integration.

References
O'Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors (2004).

Genetic Programming Theory and Practice 11, volume 8 of Genetic Pro­
gramming, Ann Arbor, MI, USA. Springer.

Riolo, Rick L. and Worzel, Bill (2003). Genetic Programming Theory and
Practice, volume 6 of Genetic Programming. Kluwer, Boston, MA, USA.
Series Editor - John Koza.

Chapter 2

EVOLVING SWARMING AGENTS IN REAL TIME

H. Van Dyke Parunak^
Altarum Institute

Abstract An important application for population search methods (such as particle swarm
optimization and the several varieties of synthetic evolution) is the engineer­
ing problem of configuring individual agents to yield useful emergent behavior.
While the biological antecedents of population-based search operate in real time,
most engineered versions run off-line. For some applications, it is desirable to
evolve agents as they are running in the system that they support. We describe two
instances of such systems that we have developed and highlight lessons learned.

Keywords: applications, real-time, emergence, agents, population-based search, evolution

1. Introduction
Research in the Emerging Markets Group of the Altarum Institute focuses on

practical applications of swarm intelligence. Wê exploit the emergent system-
level behavior exhibited by interacting populations of fairly simple agents to
solve a wide range of real-world problems, including control of uninhabited
air vehicles (Parunak et al, 2002; Sauter et al., 2005), sensor coordination
(Parunak and Brueckner, 2003; Brueckner and Parunak, 2004), resource allo­
cation (Savit et al., 2002), information retrieval (Weinstein et al., 2004), and
prediction (Parunak et al., 2005), among others.

The central problem in engineering emergent behavior is determining the in­
dividual behaviors that will yield the required system-level behavior. The most

T̂he results described in this paper reflect the creative ideas and implementation skill of my colleagues,
including Rob Bisson, Steve Brophy, Sven Brueckner, Paul Chiusano, Jorge Goic, Bob Matthews, John
Sauter, Peter Weinstein, and Andrew Yinger.

16 GENETIC PROGRAMMING THEORY AND PRACTICE III

promising techniques that we have identified are those drawing on techniques
such as particle swarm optimization and various forms of synthetic evolution.
We describe these techniques collectively as population-based search (PBS),
since they use interactions among a population of searchers to solve a problem.
It is philosophically reinforcing to our basic approach, and perhaps not coinci­
dental, that these techniques themselves exemplify the emergent paradigm of
deriving global results from local interactions.

This paper emphasizes two aspects of this approach: the elements of the
population are individual agents rather than representations of the whole system,
and the evolution takes place in real time, while the system runs. The first
aspect has antecedents in the literature, but should be more widely explored.
The second appears to be novel.

In Section 2, we summarize some other examples of agent-centered evolu­
tion in order to provide a context for our methods. Sections 3 and 4 discuss
two examples from our work, using real-time agent-based evolution to solve
a Configuration problem and a Fitting problem, respectively. Section 5 draws
lessons from our experience and concludes.

2. Background
Evolutionary and particle swarm methods take their inspiration from natural

agents that adapt in the same temporal space in which they are bom, live, and
die. Yet applications of these techniques differ from their metaphorical roots
in two ways. First, many applications have little to do with computational
agents, and instead focus on optimization of structures or functions that cut
across individual agents, even when the domain naturally lends itself to an
agent-based model. Second, even when PBS is applied to individual agents,
most applications execute in a temporal space distinct from that occupied by the
agents. That is, the PBS is a planning or configuration process that determines
agent parameters off-line, for later deployment.

In this section we first distinguish agent-based applications from other ap­
proaches, then describe two broad uses of agent-based PBS, and consider some
previous work on real-time agent-based PBS.

Three Perspectives on PBS
It is useful to distinguish three different applications of PBS: structure op­

timization, function optimization, and agent optimization. While the three
categories can readily be mapped into one another, each suggests a particu­
lar perspective on the problem. For many engineering problems, the agent
perspective offers particular benefits.

Structure optimization includes spatial organization problems such as the
traveling salesperson problem (TSP), layout of VLSI chips, or design of me-

Evolving Swarming Agents 17

chanical mechanisms. It also includes problems of temporal organization such
as factory scheduling. Population-based search is typically applied to these
problems by constructing a population whose members are complete candidate
structures, and taking this approach encourages the practitioner to view the
structure holistically. Indeed, the value of PBS for such problems is largely in
overcoming the tendency to local sub-optimization that results from traditional
mechanisms such as greedy search. Symbolic regression may be considered an
instance of structural optimization in which the structure being manipulated is
an abstract mathematical expression.

In function optimization, each member of the population is a vector that
constitutes an argument to some mathematical function, and the objective of
the search is to find a vector that yields a desired value for the function (such
as an extreme or an inflection point). Effective application of PBS to such
problems often requires adjustments to take advantage of the ordered nature of
the domain of each allele (Come et al., 1999). Reduction of an engineering
problem to a mathematical function that needs to be optimized is the utmost in
abstraction. While such abstraction can help develop general solutions that are
applicable across multiple domains, it also makes it difficult to take advantage
of domain-specific heuristics, which may not readily be cast as closed-form
mathematical expressions.

Agent optimization is a natural way to apply PBS to domains that are effec­
tively modeled as sets of interacting autonomous agents. These domains may
be engineered or natural.

Engineered domains that lend themselves to multi-agent modeling include
processing information from networks of sensors, coordinating the movement
of multiple vehicles, retrieving information from large collections of docu­
ments, and managing extended communication networks. Agent architectures
are particularly attractive for engineering problems when the domain consists
of discrete elements that are distributed in some topology, where central control
is difficult or impossible, and whose environment is changing dynamically (so
that adaptiveness is more important than reaching a steady-state optimum).

Natural domains that lend themselves to multi-agent modeling include many
biological systems, ranging from predator-prey ecologies and insect colonies
to human communities.

In both cases, the behaviors of these systems emerge from the interactions
of their parts, and a central problem in configuring them is determining the
behavior of individuals that will yield the desired overall system behavior. In
applying PBS from this perspective, each member of the population is a candi­
date for a single agent in the system. Taking an agent-centered perspective on
PBS aligns well with the natural modularity of such system.

Recently, agent-based mechanisms such as ant colony optimization (ACO)
have been applied to structure optimization (e.g., TSP and scheduling); popu-

18 GENETIC PROGRAMMING THEORY AND PRACTICE III

lation search has been used to tune these mechanisms. It seems most natural
to search over populations of individual agents (White et aL, 1998). However,
these mechanisms include some system-wide parameters {e.g., the number of
agents), so population members are sometimes defined at the level of the system
rather than the individual agents (Botee and Bonabeau, 1998).

This latter approach violates the distinction between the individual agents
and their environment (Weyns et al., 2004), a distinction that is important from
the point of view of engineering effectiveness. On the one hand, it is usually
appropriate to consider issues such as the number of agents and the physics of
pheromone evaporation as part of the environment. Though they may emerge
from interactions among the agents, no single agent can change them. On the
other hand, deposit rates and sensitivity to different pheromones clearly pertain
to individual agents, and it makes sense to model them in the chromosomes
of each agent. If one wishes to explore the total space of both agent and
environmental variables, it would be cleaner to co-evolve the agents and the
environment as two different populations. (The whole area of engineering
environments for agents is quite new in the agent software community, and we
do not know of anyone who has explored the pros and cons of these alternative
ways of applying PBS to such systems).

Varieties of the Agent Approach
We are not by any means the first to apply PBS to individual agents in order

to improve their collective behavior. Two areas where this approach has been
widely applied are robotics and biology.

Biologists use PBS (particularly its genetic varieties) retrospectively, in at
least two distinct ways. Ethologists seek to discover possible processes by
which various animal behaviors have evolved. The actual behavior of the agent
is knownand provides the standard against which the fitness of an evolved
agent is evaluated. Examples of work in this field include the development
of communications (Quinn, 2001; Steels, 2000), the evolution of cooperation
(Riolo et al., 2001), and the development of foraging (Panait and Luke, 2004),
to name only a few. Ecologists are more concemed with the overall patterns of
interactions among multiple agents {e.g., food webs and population dynamics),
rather than the individual behaviors. These examples can be viewed as attempts
to fit a model to observed agent and system behaviors, respectively.

Roboticists have long used PBS prospectively, to find behaviors (equiva-
lently, control laws) that satisfy various functional requirements. A variety
of representations have been adopted for programming the behavior of these
agents, including GP-like higher-order operations (Brooks, 1992), tropistic ex­
ecution engines (Agah and Bekey, 1996), and neural networks (Harvey et al..

Evolving Swarming Agents 19

1992). These examples can be viewed as configuration problems, seeking to
configure the agent's behavioral engine to achieve desired outcomes.

Most of these instances run "off-line." That is, the timeline within which the
PBS operates is disjoint from the timeline within which the system being studied
or designed operates. While ubiquitous among practitioners of PBS, off-line
search is at variance with the natural processes that inspired these mechanisms.
Our examples illustrate the potential of on-line search (conducted while the
system itself operates).

Examples of Real-Time PBS
A few examples of PBS have been published^ in which evolution takes place

as the system runs, and merit comparison with our approach.
Nordin and Banzhaf (Nordin and Banzhaf, 1997) use GP to evolve the con­

troller for a Khepera robot to improve its ability to avoid obstacles. The evolu­
tion runs as the robot operates, but the objective is to evolve a single algorithm
that can handle various inputs, not to vary the algorithm to accommodate envi­
ronmental changes. While the system is learning (40-60 minutes in one version,
1.5 in another), the robot does not successfully avoid obstacles. Dadone and
VanLandingham (Dadone and VanLandingham, 1999) take a similar approach
in evolving a controller for a chemical plant. Each member of the population
is given a chance to run the plant while its fitness is evaluated, and when every
member of the population has been evaluated, a new population is generated.
These systems deal only with a single entity (the robot or the controller), and are
not concerned with developing appropriate emergent behavior from a system
of agents.

Spector and colleagues (Spector et al., 2005) evolve the behaviors of a popu­
lation of simulated mobile entities living in 3-d space, whose behavior evolves
as they execute. They describe two systems. In one, the agents' behavior is a
version of Reynolds' flocking behavior (Reynolds, 1987), and the genotype is
a list of coefficients for the various vectors that are summed in that algorithm.
In the other, it is a program that yields a flocking algorithm. This work exhibits
emergent group behavior across the population of agents. However, that behav­
ior is achieved over the course of the run. The dynamics of the environment are
handled by the adaptive capabilities of the flocking algorithm that is evolved,
not the ongoing adaptation of that algorithm by evolution.

These examples are robotics applications. They develop control instructions
for robots, like the more common off-line applications of PBS, but do so fast
enough to be deployed on the robot as it executes. They both rely on adaptive

^We are grateful to participants in GPTP2005 and other reviewers for suggesting a number of examples, of
which these are illustrative.

20 GENETIC PROGRAMMING THEORY AND PRACTICE III

mechanisms in the evolved behavior to handle a changing environment, rather
than using evolution itself as the main adaptive mechanism.

Dynamic Flies (Boumaza and Louchet, 2001) is a vision processing algo­
rithm for obstacle avoidance. A population of points in three-space evolve to fit
their coordinates in the robot's visual field to occupy the surfaces of obstacles.
The fitness function is based on the observation that the pixels in the vicinity
of a fly on a surface will vary relatively litde from two different vantage points,
compared with the pixel neighborhoods of flies that are in free space. The flies
influence one another, in that the fitness is adjusted to penalize grouping. The
aggregate fitness of the flies in each cell of a square lattice that maps the robot's
environment generates a repulsive field to guide the robot. This application is
like ours in both dimensions. It is truly emergent, generating a system-level be­
havior (obstacle avoidance) from the evolution of individual flies. Also, it uses
evolution as its adaptive engine. However, the individual flies, consisting only
of the coordinates of a point in three-space and a fitness value, have no intrinsic
behavior, and fall below the threshold of what most researchers would consider
an agent. While the application as a whole is robotic, the actual adaptation of
the flies to the surfaces of obstacles in the environment can be considered a
retrospective or fitting application of real-time PBS, since the flies are evolving
to provide a model of an exogenous feature of the environment.

The evolving entities in classifier systems (Booker et al., 1989) and artificial
immune systems (Forrest et al., 1997), unlike Dynamic Flies, do have (very sim­
ple) behaviors associated with them, and could be considered minimal agents.
These systems exhibit real-time PBS.

Li and colleagues (Li et al., 2000a; Li et al, 2000b) evolve the strategies of
agents playing the minority game, a simple model of emergent market dynamics.
The agents' fitnesses are evaluated as the game proceeds, but the population is
updated all at once every 10,000 time steps, rather than permitting each agent
to evolve asynchronously with respect to the others, as in nature.

3. A Configuration Application
The most direct application of PBS to swarming systems is finding configura­

tions of the individual agents so heir interactions yield the desired system-level
behavior. We illustrate this in the context of ADAPTIV (Adaptive control
of Distributed Agents through Pheromone Techniques and Interactive Visual­
ization), a system developed for planning flight paths for uninhabited robotic
vehicles (URV's). This system uses a digital analog of insect pheromone mech­
anisms to guide vehicles around threats and toward targets.

Our implementation of digital pheromones has four components:

1 A distributed network of place agents maintains the pheromone field and
performs aggregation, evaporation, and diffusion. Each place agent is

Evolving Swarming Agents 21

responsible for a region of the physical space. In our simulation, we
tile the physical space with hexagons, each represented by a place agent
with six neighbors, but both regular and irregular tiling schemes can be
employed. Place agents ideally are situated physically in the environment
using unattended ground sensors distributed over an area and connected
to their nearby neighbors through a wireless network. They may also be
located in a distributed network of command and control nodes.

2 Avatars represent physical entities. Red avatars represent the enemy
targets and threats, while blue represent friendly URVs. Blue avatars are
normally located on the robot vehicle. The name "Avatar" is inspired by
the incarnation of a Hindu deity, and by extension describes a temporary
manifestation (a software agent) of a persistent entity (a robot vehicle).

3 Blue avatars create Ghost agents that wander over the place agents looking
for targets, and then continually building a path from the avatar to the
target.Both of these entities deposit pheromones at their current locations.

4 Different classes of agents deposit distinct pheromone flavors. Agents
can sense pheromones in the place agent in whose sector they reside as
well as the neighboring place agents. The underlying mathematics of
the pheromone field, including critical stability theorems, is described in
(Brueckner, 2000).

Battlefield intelligence from sensors and reconnaissance activities causes the
instantiation of red avatars representing known targets and threats. These agents
deposit pheromones on the places representing their location in the battlespace.
The field they generate is dynamic since targets and threats can move, new ones
can.be identified, or old ones can disappear or be destroyed. A blue avatar
representing a URV is associated with one place agent at any given time, the
place agent within whose physical territory the URV is currently located. It
follows the pheromone path created by its ghost agents.

Ghosts initially wander through the network of place agents, attracted to
pheromones deposited by targets and repelled by threat pheromones. Once
they find a target, they return over the network of place agents to the avatar,
depositing pheromones that contribute to building the shortest, safest path to
the target. The basic pheromone flavors are RTarget (deposited by a Red target
avatar, such as the Red headquarters), RThreat (deposited by a Red threat avatar,
such as an air defense installation), GTarget (deposited by a ghost that has
encountered a target and is returning to its blue avatar, forming the path to the
target), and GNest (deposited by a ghost that has left the blue avatar and is
seeking a target).

A ghost agent chooses its next sector stochastically by spinning a roulette
wheel with six weighted segments (one for each of its six neighbors). The size of

http://can.be

22 GENETIC PROGRAMMING THEORY AND PRACTICE III

each segment is a function of the strength of the pheromones and is designed to
guide the ghost according to the algorithm above. We experimented with several
different forms of the function that generates the segment sizes. Evolution of
such a form using genetic programming would in itself be a useful exercise. In
our case, manual experimentation yielded the form (for outbound ghosts):

e ' RTargetn + 7 • GTargetn + ß
{pGNestn + ß){Distn + i^y-^ociRThreatn+l) _̂ ß

Fn is the resultant attractive force exerted by neighbor n and Dist is the
distance to the target if it is known. Table 2-1 lists the tunable parameters in
the equation and the effect that increasing each parameter has on the ghost's
behavior. Though this table provides general guidance to the practitioner, in
practice, the emergent dynamics of the interaction of ghost agents with their
environment makes it impossible to predict the behavior of the ghosts. Thus
tuning the parameters of this or any pheromone equation becomes a daunting
task. Even if a skilled practitioner were able to tune the equation by hand, the
system would still be impractical for end users who don't think of their problem
in terms of a, ß, and 7. This observation led us to investigate the possibility of
using evolutionary methods to tune the parameters of the equation.

a
5

7
P
0

Table 2-1. Tunable Parameters and their Effects on Ghosts.

Increases threat avoidance further from the target
Increases probability of ghosts moving towards a known target in the absence of
RTarget pheromone
Increases sensitivity to other ghosts
Increases ghost exploration (by avoiding GhostNest pheromone)
Increases attraction to RTarget pheromone
Avoids divison by zero

We explored several PBS algorithms on the problem of defining ghost pa­
rameters, including three varieties of evolution strategies (ES) and a genetic
algorithm (GA). Details on these approaches and the scenarios on which they
were tested are described in our original paper (Sauter et al., 2002). In all cases,
ghosts have a fixed lifetime. Within this lifetime they first execute a search,
and then breed sexually until they die. Thus ghosts that complete their search
faster have longer to breed, and generate more offspring. The GA and one ES
approach took account of threats that the ghost encountered during its search,
and the GA also rewarded the ghost for the value of the target that it discovered.
In all cases, as each ghost returns to the URV, it is evaluated and selectively
participates in generating subsequent generations of ghosts. Thus the ghosts
being emitted by the avatar are evolved in real time, as the system runs.

Evolving Swarming Agents 23

One could envision evolving the parameters for the ghosts off-line. The
success of this approach would depend on the stability of the environment.
In the test examples reported here, the environment was static, and we were
exploring the speed with which the evolutionary process converged, and the
resulting performance achieved. However, on different runs we gave the system
different scenarios, to which it developed distinct parameters. In a real-world
application, scenarios are not static, and a set of parameters evolved for one
scenario would not function well on another. By adapting the parameters in
real time, we can accommodate dynamic changes in the environment.

Figure 2-1 shows the performance of the system, measured by the strength
of the GTarget pheromone adjacent to the avatar (and thus available to guide it).
The left-hand plot shows two benchmarks. The "Hand Tuned" line shows the
behavior of a set of parameters derived by manual experimentation. The "Ran­
dom" line shows the behavior when ghosts are generated with small random
excursions around the hand tuned values.

350

300

£ 250

I 200
55
» 150

—Hand Tuned
— Random
~Queue ES
—Round Robin ES
-S t rength ES

- • - T w o Target
—™ Gauntlet
- * - G a u n t l e t Sealed
-•—Distant Target

'GA Two Target

5000 Time loooo

Figure 2-1. Performance of PBS on path planning. Left: comparison of ES's on Two Target
scenario. Right: comparison of Strength ES on various scenarios, and GA on Two Target
scenario.

The left-hand plot shows that all three versions of the ES outperformed the
hand tuned and random configuration by an order of magnitude. The Strength
ES takes into account the damage suffered by the ghost in simulated encounters
with threats, and while it takes longer to converge, it outperforms the other ES
approaches on a wider range of scenarios. The slight superiority of the random
to the hand tuned configuration is an interesting illustration of the value of
stochasticity in breaking symmetries among swarming agents and permitting
more effective exploration of the environment.

The right-hand plot compares the Strength ES on four different scenarios
with the GA on one of them.

24 GENETIC PROGRAMMING THEORY AND PRACTICE III

This system has striking similarities with the Dynamic Flies system, though
each was developed without knowledge of the other. In both cases, interacting
entities continuously evolve under the influence of the environment, and gen­
erate a field that guides the movement of a physical vehicle. Table 2-2 makes
this comparison explicit.

Table 2-2. Comparison of ADAPTIV and Dynamic Flies.

Feature
Entities
Environmental Influences
Generated Field
Physical Agent

ADAPTIV
Ghosts
Targets and Threats
GTarget pheromone
URV

Dynamic Flies
Flies
Obstacles
Aggregate Fly fitness
Robot

The systems differ in their specificity and their dynamics. Both of these
differences reflect the distinction between ADAPTIV's ghosts (which are real,
though simple agents with autonomous behaviors) and the flies (which are
simply the coordinates of points in three-space).

• Specificity.—Dynamic Flies specifically supports processing of stereo
vision for obstacle detection. The only output from the flies to the rest
of the system is their fitness, linking the evolutionary process directly
to the obstacle avoidance behavior. In ADAPTIV, evolution adjusts the
characteristics of the ghosts, whose impact on the rest of the system is
through a digital pheromone that is part of a larger pheromone vocabulary.
Thus a ghost has a richer set of inputs than a fly (including not only
pheromones from targets and obstacles but also pheromones from other
ghosts), and the system can reason about attractors as well as repellers.

• Dynamics.—The Dynamic Flies system has no memory. A fly repels
the vehicle only while it is actually at a location, and only in proportion
to its current fitness. This feature is appropriate for the specific obstacle
avoidance application for which the system is designed. The ADAPTIV
architecture supports more general geospatial reasoning, including the
need to maintain a memory of a threat or target that may not currently
be visible. Because pheromones are distinct from the agents that deposit
them, they can persist in a location after the agent has moved on, or
they can vanish almost immediately, depending on the setting of the
evaporation rate associated with a given pheromone flavor,

4 A Behavior Fitting Application
Our second example addresses the problem of predicting the future behavior

of soldiers in urban combat, based solely on their observed past behavior. We

Evolving Swarming Agents 25

assume that an individual soldier's behavior is a function of his^ individual
personality as well as his interactions with other soldiers and with the urban
environment. Prediction in this highly nonlinear system merits comparison with
prediction in nonlinear systems without the social and psychological aspects of
combat (Kantz and Schreiber, 1997). The general approach in such systems is
to extrapolate future behavior using functions fitted to the recent past. While
the nonlinear nature of the systems may lead to divergence of trajectories over
time, continuously refreshing the fit and limiting the distance of the projection
into the future can yield useful predictions (Figure 2-2).

Figure 2-2. By constantly updating a fit of the system's trajectory through state space on the
basis of the recent past (a), one can generate useful predictions a short distnce into the future (b).

Historically, this approach has been applied to systems that can be described
analytically, permitting a functional form to be fit to recent behavior. We have
extended this approach to entities, such as soldiers, whose behavior cannot
readily be fit using analytical techniques. The basic approach is to represent
the entity by a software agent whose behavioral parameters are fit using PBS.
We call this approach "Behavioral Emulation and Extrapolation," or BEE.

BEE must operate very rapidly, in order to keep pace with the ongoing
evolution of the battle. Thus we use simple agents coordinated using pheromone
mechanisms similar to those described in our configuration example.

Figure 2-3 explains BEE further. Each active entity in the battlespace has an
avatar that continuously generates a stream of ghost agents representing itself.
The ghosts' behavioral parameters are selected from distributions to explore
possible intentions of the entity they represent. Thus BEE mimics at the agent
level the nonlinear track analysis outlined in Figure 2-2.

Ghosts live on a timeline indexed by r that begins in the past at the insertion
horizon and runs into the future to the prediction horizon. The avatar inserts

^We use the masculine gender generically.

26 GENETIC PROGRAMMING THEORY AND PRACTICE III

the ghosts at the insertion horizon. The ghosts representing different entities
interact with one another and with the terrain. These interactions mean that their
fitness depends not just on their own actions, but also on the behaviors of the
rest of the population, which is also evolving. Because r advances faster than
real time, eventually r = t (actual time). At this point, the ghosts are evaluated
based on their locations compared with the entity represented by their avatar.

The fittest ghosts have two functions. First, they are bred and their offspring
are reintroduced at the insertion horizon to continue the fitting process. Second,
they are allowed to run past the avatar's present into the future. Each ghost that is
allowed to run into the future explores a different possible future of the battle,
analogous to how some people plan ahead by mentally simulating different
ways that a situation might unfold. Analysis of the behaviors of these different
possible futures yields predictions.

This entire process runs continuously, in real time, as the system monitors
the environment. Ghosts are evolving against the world as its state changes.
As in the Dynamic Flies system, the evolution of the swarming agents is what
enables them to track a dynamic environment. Unlike the Dynamic Flies,
but like ADAPTIV, the output of the ghosts in BEE is not an immediate by­
product of the evolutionary process (the fitness of the agents), but a second-order
phenomenon produced by the agents (their behavior as they run into the future).

Insertion Horizon
Measure Gtiost fitness

o

II

Prediction Horizon
Observe Gtiost prediction

Gtiost time x

Figure 2-3. Behavioral Emulation and Extrapolation. Each avatar generates a stream of ghosts
that sample the personality space of the entity it represents. They are evolved against the observed
behavior of the entity in the recent past, and the fittest ghosts then run into the future to generate
predictions.

Evolving Swarming Agents 27

The personality of each ghost includes four categories of information, all
represented as scalars (Parunak et al., 2005):

1 Desires are anticipated future state of the world toward which the agent is
positively disposed. We have defined a basic set of desires relevant to the
combat scenario. An agent's goals are considered to be stable over the
time horizon that we are considering. They may be mutually exclusive,
since they have no effect on an agent's actions until they are instantiated
as goals in the face of environmental information. A desire might be
"occupy key sites."

2 Goals are selected by the agent from among its desires based on its
current state and recent history, and it chooses its actions in an effort to
accomplish the goals. Unlike desires, the set of goals held by an agent at a
given time are believed by the agent to be consistent with one another, and
may change over the time horizon of the battle. A goal instantiated from
the "key sites" desire might be "occupy building 34 by time = 1520." The
agent continually reviews its goals to ensure their consistency with the
current state of the world. If it discovers that two goals are inconsistent
with one another, it will drop at least one of them.

3 Emotions are defined following the OCC model (Ortony et al., 1988) as
"valenced reactions to events, agents, or objects." Emotions vary based
on the events, agents, or objects that the agent experiences, and modulate
its analysis of which goals to instantiate over time. For example, an event
of being attacked will raise the level of an agent's fear emotion.

4 Dispositions reflect an agent's tendency to adapt a given emotion. For
example, an agent with a high level of the "cowardice" disposition will
experience a faster rate of increase of fear in the presence of an attack than
an agent with a low level of this disposition. Dispositions are assumed
to be constant over the time horizon in question.

Figure 2-4 shows how these four personality elements interact with one
another and with environmental stimuli to generate the agent's behavior.

This system has been tested in a series of realistic wargaming experiments
in which the actions of the red and blue fighters were directed by experienced
military commanders. While the results of these experiments have not yet been
released for publication, BEE was successful in detecting which units were
being played to exhibit specified dispositions.

5. Discussion and Conclusion
These applications are both instances of agent-centered PBS. The configura­

tion problem is directly comparable to the many applications of PBS to robotic

28 GENETIC PROGRAMMING THEORY AND PRACTICE III

Environment

^

1 state

i I

Action

, ̂

Goal

[\

—>[f

J

r

Process

Perception J |

|Bel

'
Ana

Disposition

iefs ^ Appraisal 1

' ^

ysis H

Desires |

'

i tmoiion

Figure 2-4. Desires, beliefs, dispositions, and emotions generate an agent's basic behaviors in
response to environmental stimuli.

configuration, while the fitting problem can be compared to biological studies
that seek to understand existing behavior in the natural world.

What sets these applications apart from most others is their real-time nature.
In many instances of PBS, the entire population is synchronized. Even when
the focus of search is the single agent rather than the system as a whole, it is
common to update all agents at the same time, replacing the entire population
at each generation. In our approach, breeding occurs in parallel with the eval­
uation of the ghosts. In the configuration example, only 1% of the population
is replaced in each generation. Since the evaluation of an individual can take
100 - 300 time steps (the round trip distance with room for wandering), forcing
a complete evaluation cycle before breeding would have slowed down the al­
gorithm considerably. Similarly, in the fitting example, ghosts are continually
compared with the behavior of the entities they represent as the battle unfolds,
and breeding affects only a small fraction (about 3%) of the ghosts at each time
step. By changing only a fraction of the population at each time step, we leave
the bulk of the agents to carry on the work that the system is intended to do
and avoid catastrophic shifts due to maladaptive individuals. At the same time,
we limit the ability of the system to respond rapidly to catastrophic exogenous
events, a weakness to which natural real-time evolution is not immune.

It is common in agent-centered PBS to evaluate the fitness of an individual
in isolation, or in a tournament where individuals from separate populations
compete with each other. In our examples, the ghosts are part of a mixed
population. Each of them is depositing pheromones and reacting to pheromones
in a common environment. Thus, unfit individuals are depositing pheromones
in the same environment being sensed by fit individuals, potentially causing
the fit individuals to score lower than they would otherwise. This fact initially
concerned us. We weren't sure whether PBS would even work under those

Evolving Swarming Agents 29

circumstances. However, this particular problem appears to have a number of
reasonable solutions, so the effect of having a mixed population did not prevent
the algorithms from identifying and rewarding the better individuals.

Three details of our approach make it possible to apply PBS in real time:

1 Real-time PBS is facilitated by an agent-centric approach so that some
components of the system can be modified while others carry on the
system's work.

2 This approach is realistic only with populous systems, so that the effect
of a change in a single agent do not discontinuously change the dynamics
of the whole system. We know empirically that the systems described in
this paper can function with populations on the order of 100 and more,
but we have not systematically explored the lower bound.

3 Agents should be light-weight, so that multiple copies can be executed
fast enough to keep up with the real world. We have found that the digital
pheromone model, using simple functions to combine the pheromones
sensed by the agent in its environment, is efficient enough to support tens
of thousands of agents concurrently, thus providing both the population
sizes and repeated cycles needed for effective evolution while keeping
pace with real time.

Our experiments show that it is feasible to evolve a complex system in real
time, element by element, rather than in a planning step that is temporally dis­
continuous with the system's operation. This approach opens new opportunities
for applying PBS to dynamically changing systems that do not lend themselves
to lengthy planning cycles.

References
Agah, A. and Bekey, G.A. (1996). A genetic algorithm-based controller for

decentralized multi-agent robotic systems. In The 1996 IEEE International
Conf, on Evolutionary Computation, pages 431-436, Nagoya, Japan. IEEE.

Booker, L. B., Goldberg, D. E., and Holland, J. H. (1989). Classifier systems
and genetic algorithms. Artificial Intelligence, 40:235-282.

Botee, HozefaM. and Bonabeau, Eric (1998). Evolving ant colony optimization.
Adv, Complex Systems, 1:149-159.

Boumaza, Amine M. and Louchet, Jean (2001). Dynamic flies: Using real­
time Parisian evolution in robotics. In Boers, Egbert J. W., Cagnoni, Stefano,
Gottlieb, Jens, Hart, Emma, Lanzi, Pier Luca, Raidl, Günther R., Smith,
Robert E., and Tijink, Harald, editors. Applications of Evolutionary Com­
puting, volume 2037 of LNCS, pages 288-297, Lake Como, Italy. Springer-
Verlag.

30 GENETIC PROGRAMMING THEORY AND PRACTICE III

Brooks, Rodney A. (1992). Artificial life and real robots. In Varela, Francisco J.
and Bourgine, Paul, editors, The First European Conference on Artificial Life,
pages 3-10.

Brueckner, Sven (2000). Return from the Ant: Synthetic Ecosystems for Manu­
facturing Control. Dr.rer.nat., Humboldt University Berlin.

Brueckner, Sven A. and Parunak, H. Van Dyke (2004). Swarming distributed
pattern detection and classification. In Weyns, Danny, Parunak, H. Van Dyke,
and Michel, Fabien, editors. Workshop on Environments for Multi-Agent
Systems (E4MAS 2004), volume LNAI 3374, New York, NY. Springer.

Come, D., Dorigo, M., and Glover, F., editors (1999). New Ideas in Optimisa­
tion. McGraw-Hill, New York.

Dadone, P. and VanLandingham, H.F. (1999). Adaptive online parameter tun­
ing using genetic algorithms. In Proceedings of WSC4: 4th Online World
Conference on Soft Computing in Industrial Applications.

Forrest, S., Hofmeyr, S., and Somayaji, A. (1997). Computer immunology.
Communications of the ACM, 40:88-96.

Harvey, I., Husbands, P., and Cliff, D. (1992). Issues in evolutionary robotics.
In Meyer, J-A, Roitblat, H, and Wilson, S, editors. The Second International
Conference on Simulation of Adaptive Behaviour (SAB92), pages 364-373.

Kantz, Holger and Schreiber, Thomas (1997). Nonlinear Time Series Analysis.
Cambridge Nonlinear Science Series. Cambridge University Press, Cam­
bridge, UK.

Li, Yi, Riolo, Rick, and Savit, Robert (2000a). Evolution in minority games, i.
games with a fixed strategy space. Physica A, 2000(276):234 - 264.

Li, Yi, Riolo, Rick, and Savit, Robert (2000b). Evolution in minority games ii.
games with variable strategy spaces. Physica A, 2000(276):265 - 283.

Nordin, P. and Banzhaf, W. (1997). Real time control of a khepera robot using
genetic programming. Cybernetics and Control, 26(3):533-561.

Ortony, A., Clore, G.L., and Collins, A. (1988). The cognitive structure of
emotions. Cambridge University Press, Cambridge, UK.

Panait, Liviu A. and Luke, Sean (2004). Learning ant foraging behaviours.
In Pollack, Jordan, Bedau, Mark, Husbands, Phil, Ikegami, Takashi, and
Watson, Richard A., editors, Artificial Life XINinth International Conference
on the Simulation and Synthesis of Living Systems, pages 575-580, Boston,
Massachusetts. The MIT Press.

Parunak, H. Van Dyke, Bisson, Robert, Brueckner, Sven, Matthews, Robert, and
Sauter, John (2005). Representing dispositions and emotions in simulated
combat. In Thompson, Simon, Ghanea-Hercock, Robert, Greaves, Mark,
Meyer, Andre, and Jennings, Nick, editors. Workshop on Defence Applica­
tions of Multi-Agent Systems (DAMAS05, atAAMAS05), page (forthcoming),
Utrecht, Netherlands.

Evolving Swarming Agents 31

Parunak, H. Van Dyke and Brueckner, Sven (2003). Swarming coordination
of multiple UAV's for collaborative sensing. In Second AIAA "Unmanned
Unlimited" Systems, Technologies, and Operations Conference, San Diego,
CA. AIAA.

Parunak, H. Van Dyke, Purcell, Michael, and O'Connell, Robert (2002). Dig­
ital pheromones for autonomous coordination of swarming UAV's. In First
AIAA Unmanned Aerospace Vehicles, Systems, Technologies, and Operations
Conference, Norfolk, VA. AIAA.

Quinn, M. (2001). Evolving communication without dedicated communication
channels. In Kelemen, J. and Sosik, P., editors. Advances in Artificial Life:
Sixth European Conference on Artificial Life: ECAL2001, pages 357-366,
Prague, Czech Republic. Springer.

Reynolds, Craig W. (1987). Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics, 21(4):25-34.

Riolo, Rick L, Axelrod, Robert, and Cohen, Michael D. (2001). Evolution of
cooperation without reciprocity. Nature, 414(22 Nov):441-443.

Sauter, John A., Matthews, Robert, Parunak, H. Van Dyke, and Brueckner,
Sven (2002). Evolving adaptive pheromone path planning mechanisms. In
Autonomous Agents and Multi-Agent Systems (AAMAS02), pages 434-440,
Bologna, Italy.

Sauter, John A., Matthews, Robert, Parunak, H. Van Dyke, and Brueckner,
Sven A. (2005). Performance of digital pheromones for swarming vehicle
control. In Fourth International Joint Conference on Autonomous Agents and
Multi-Agent Systems, page (forthcoming), Utrecht, Netherlands.

Savit, Robert, Brueckner, Sven A., Parunak, H.Van Dyke, and Sauter, John
(2002). Phase structure of resource allocation games. Physics Letters A,
311:359-364.

Spector, Lee, Klein, Jon, Perry, Chris, and Feinstein, Mark (2005). Emergence
of collective behavior in evolving populations of flying agents. Genetic Pro­
gramming and Evolvable Machines, 6. Pr6publication Date: 6 August 2004.

Steels, L. (2000). The puzzle of language evolution. Kognitionswissenschaft,
8(4):143-150.

Weinstein, Peter, Parunak, H. Van Dyke, Chiusano, Paul, and Brueckner, Sven
(2004). Agents swarming in semantic spaces to corroborate hypotheses. In
AAMAS 2004, pages 1488-1489, New York, NY.

Weyns, Danny, Parunak, H. Van Dyke, Michel, Fabien, Holvoet, Tom, and
Ferber, Jacques (2004). Multiagent systems, state-of-the-art and research
challenges. In Weyns, Danny, Parunak, H. Van Dyke, and Michel, Fabien,
editors. Workshop on Environments for Multi-Agent Systems (E4MAS 2004),
volume LNAI 3374, New York, NY Springer.

White, Tony, Pagurek, Bernard, and Oppacher, Franz (1998). ASGA: Improv­
ing the ant system by integration with genetic algorithms. In Koza, John R.,

32 GENETIC PROGRAMMING THEORY AND PRACTICE III

Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick, editors, Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 610-617, University of Wisconsin, Madison, Wis­
consin, USA. Morgan Kaufmann,

Chapter 3

AUTOMATED DESIGN OF A PREVIOUSLY
PATENTED ASPHERICAL OPTICAL LENS
SYSTEM BY MEANS OF GENETIC
PROGRAMMING

Lee W. Jones^, Sameer H. Al-Sakran^ and John R. Koza^
1 2
Genetic Programming Inc., Mountain View, California; Stanford University, Stanford, Cali­

fornia

Abstract This chapter describes how genetic programming was used as an invention ma­
chine to automatically synthesize a complete design for an aspherical optical
lens system (a type of lens system that is especially difficult to design and that
offers advantages in terms of cost, weight, size, and performance over traditional
spherical systems). The genetically evolved aspherical lens system duplicated
the functionality of a recently patented aspherical system. The automatic synthe­
sis was open-ended — that is, the process did not start from a pre-existing good
design and did not pre-specify the number of lenses, which lenses (if any) should
be spherical or aspherical, the topological arrangement of the lenses, the numer­
ical parameters of the lenses, or the non-numerical parameters of the lenses. The
genetically evolved design is an instance of human-competitive results produced
by genetic programming in the field of optical design.

Keywords: automated design, optical lens system, aspherical lenses, developmental pro­
cess, genetic programming, replication of previously patented invention, human-
competitive result

1. Introduction
An optical lens system is an arrangement of refractive or reflective materials

that manipulate light (Smith, 1992; Smith, 2000). Their design is more of an

34 GENETIC PROGRAMMING THEORY AND PRACTICE III

art than a science. As Warren J. Smith states in Modem Optical Engineering
(Smith, 2000):

"There is no 'direct' method of optical design for original systems; that is, there
is no sure procedure that will lead (without foreknowledge) from a set of perfor­
mance specifications to a suitable design."

Lens systems have historically been composed of lenses with spherical sur­
faces. Recently, it has been economically feasible to manufacture lenses with
aspherical surfaces. The use of aspherical lenses can potentially reduce the
total number of lenses, thereby reducing the costs of manufacturing and assem­
bling the optical system. Moreover, an aspherical lens is often thinner than the
replaced spherical lens, thereby further reducing the system's weight and cost.

A complete design for an optical lens system encompasses numerous de­
cisions, including the choice of the system's topology (that is, the number of
lenses and their topological arrangement), choices for numerical parameters,
and choices for non-numerical parameters.

The topological decisions required to define a lens system include the se­
quential arrangement of lenses between the object and the image, decisions as
to whether consecutive lenses touch or are separated by air, the nature of the
mathematical expressions defining the curvature of each lens surface (tradition­
ally spherical, but nowadays often aspherical), and the locations and sizes of
the field and aperture stops that determine the field of view and the maximum
illumination of the image, respectively.

The numerical choices include the thickness of each lens and the separation
(if any) between lens surfaces, the numerical coefficients for the mathematical
expressions defining the curvature of each surface (which, in turn, implies
whether each is concave, convex, flat, or aspheric), and the aperture (semi-
diameter) of each surface.

The non-numerical choices include the type of material {e,g. glass, polymer)
for each lens. Each type of material has various properties of interest to optical
designers, notably including the index of refraction, n (which varies by wave­
length); the Abbe number, V\ and the cost. Choices of material are typically
drawn from a standard catalog.

This paper describes how genetic programming (Koza, 1990; Koza, 1992;
Koza, 1993; Koza, 1994; Koza et al., 1999; Koza et al., 2003; Banzhaf et al.,
1998; Langdon and Poli, 2002) was used to create a complete design for an
optical lens system that satisfies the inventors' requirements specified in U.S.
Patent 5,568,319 (Kaneko and Ueno, 1996). The automatic synthesis is open-
ended-that is, the process did not start from a pre-existing good design and
did not pre-specify the number of lenses, which lenses should be spherical or
aspherical, the topological arrangement of the lenses, the numerical parameters
of the lenses,or the non-numerical parameters of the lenses.

Automated Design of a Previously Patented Aspherical Optical Lens System 35

Section 2 provides background on the design of optical lens systems. Section
3 discusses the developmental representation used to apply genetic program­
ming to optical systems. Section 4 discusses five domain-specific adjustments
to standard genetic programming that we use in problems of optical design.
Section 5 presents the results. Section 6 is the conclusion.

2. Design of Optical Lens Systems
A classical lens system is conventionally specified by a table called a pre­

scription (or, if the system is being analyzed by modem-day optical simulation
software, a lens file). In 1996, Masanobu Kaneko and Yasunori Ueno received
U.S. Patent 5,568,319 entitled "Aspherical Eyepiece." Figure 3-1 shows the
patented Kaneko-Ueno lens system. This system has three groups of lenses
containing a total of four lenses.

Ob jec t E n t r y P u p i l Image

Figure 3-L Kaneko-Ueno patent.

Table 3-1 shows a prescription for the patented Kaneko-Ueno lens system of
Figure 3-1. Because of space limitations here, the reader is referred to a general
textbook on optics (Smith, 2000; Fischer and Tadic-Galeb, 2000) for a detailed
explanation of this widely used representation. Surface 6 in the patented system
is aspherical. The value in column 6 represents the coefficient C4 of the ^4 term
in the general aspherical expression:

X =
Cy'

+ E^2iy'' 1 + V l - (fc + l)C2y2 .^^

In this expression, y is the height from the system's main axis (line b in figure
1), C is the curvature of the underlying spherical surface, the C2i are coefficients
of the even-numbered polynomial terms, and k is the conic constant. If the conic
constant k = 0, the system is spherical; if - 1 < /c < 0, the system is ellipsoid;
if k < —1, the system is hyperboloid; and if fc = 1, the system is parabaloid).
In the expression, x is the distance between the Y-axis to the three-dimensional
surface (of which we only see the projection lying on the plane of the paper).

36 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 3-1. Lens file for the Kaneko-Ueno patent.

Surface

Object
Entry pupil
1
2
3
4
5
6
7
Image

Distance

10^^
1.091668
0.333334
0.016667
0.500001
0.166667

0.125
0.125

0.317441

Radius

Flat
Flat

40.07506
-1.01667
1.083335
-1.08334
11.66668

Flat
Flat
Flat

Material

Air
Air

SK55
Air
SK5
SFL6
Air
KIO
Air

Aperture

0.125
0.634053
0.727958
0.728162
0.607429
0.583186
0.555395
0.536884
0.466308

CA

0.0
0.0
0.0
0.0
0.0

-0.3715184
0.0

The genetic algorithm (Holland, 1992) has been extensively used for optimiz­
ing the choices of parameters of optical systems having a pre-specified number
of lenses and a pre-specified topological arrangement, as listed in Jarmo Alan-
der's voluminous An Indexed Bibliography of Genetic Algorithms in Optics and
Image Processing (Alander, 2000).

Beaulieu, Gagne, and Parizeau (Beaulieu et al., 2002) used GP to "re-
engineer" the design of a four-lens monochromatic system (produced by a run
of the genetic algorithm) and thereby created an improvement over the best
design produced by 11 human teams in a design competition held at the 1990
International Lens Design Conference. Their approach used functions that in­
crementally adjusted (additively or multiplicatively) the distance between lens
surfaces, radius of curvature of lens surfaces, and stop location values.

It has been demonstrated that genetic programming can be used to automati­
cally synthesize a complete design for spherical optical lens systems (Al-Sakran
et al., 2005), including six previously patented systems (Koza et al., 2005).

3. Developmental Representation Used for Optical Design
Pioneering work on developmental representations for use with genetic algo­

rithms and genetic programming was done by Wilson (Wilson, 1987), Kitano
(Kitano, 1990), and Gruau (Gruau, 1992). In 1993, Koza (Koza, 1993) used ge­
netic programming to evolve developmental rewrite rules (Lindenmayer system
rules) using a turtle to create shapes such as the quadratic Koch island. In 1996,
Koza, Bennett, Andre, and Keane (Koza et al., 1996a) used developmental ge­
netic programming to automatically synthesize a variety of analog electrical
circuits, including several previously patented circuits and human-competitive
results and provided for reuse of portions of circuits (by means of subroutines
and iterations), parameterized reuse, and hierarchical reuse of substructures in
evolving circuits (Koza et al., 1996b). In 1996, Brave (Brave, 1996) used de-

Automated Design of a Previously Patented Aspherical Optical Lens System 37

velopmental genetic programming to evolve finite automata. In 1996, Spector
and Stoffel (Spector and Stoffel, 1996) extended the notion of development to
genetic programming.

The widely-used and well-established format for optical prescriptions (and
lens files for optical analysis software) suggests a developmental process suit­
able for representing optical lens systems. This developmental representation
employs a turtle similar to that used in the Lindenmayer systems (Lindenmayer,
1968), (Prusinkiewicz and Lindenmayer, 1990), in our previous work in syn­
thesizing geometric patterns (such as the Koch island) where we used develop­
mental genetic programming and a turtle (Koza, 1993). These two techniques
were also used in our other works in synthesizing antennas (Comisky et al.,
2000), (Koza et al, 2003).

The function set, F, contains two functions:

F = {AS4, PR0GN2}

The two-argument PR0GN2 function is a connective function that first exe­
cutes its first argument and then executes its second argument.

The four-argument AS4 ("aspherical surface") function causes the turtle to
do three things at its starting point (and each subsequent point to which the
turtle moves). First, it inserts an aspherical surface with a specified radius of
curvature (second argument of the AS4 function) and specified coefficient C4
(fourth argument) at the turtle's present location. Second, the AS4 function
moves the turtle to the right by a specified distance (first argument) along the
system's main axis. Third, the AS4 function fills the space to the right of the
just-added surface with a specified type of material (third argument).

Values for radius of curvature (second argument of the AS4 function), dis­
tance (first argument), and the coefficient C4 (fourth argument) are each es­
tablished by a value-setting subtree of the AS4 function consisting of a single
perturbable numerical value. The material (third argument of the AS4 func­
tion) is established by a value-setting subtree of the AS4 function consisting of
a single terminal identifying the type of material.

The following LISP S-expression represents the optical lens system of Figure
3-1 and Table 3-1:

(PR0GN2 (PR0GN2 (PR0GN2 (AS4 0.333334 40.07506 SK55 0.0)

(AS4 0.016667 -1.01667 Air 0,0))

(PR0GN2 (AS4 0.500001 1.083335 SK5 0.0)

(AS4 0.166667 -1.08334 SFL6 0.0))

(PR0GN2 (PR0GN2 (AS4 0.125 11.66668 Air 0.0)

(AS4 0.125 lElO KIO -0.3715184))

(AS4 0.317441 lElO Air 0.0)))

3 8 GENETIC PROGRAMMING THEORY AND PRACTICE III

In the previous expression, a radius of curvature of IE 10 corresponds to a
flat surface.

Figures 3-2, 3-3, 3-4, 3-5, and 3-6 show selected steps in the developmental
process for the Kaneko-Ueno lens system of Figure 3-1 and Table 3-1.

In our developmental representation, the turtle starts at point g of Figure 3-2.
For the Kaneko-Ueno lens system, point g is at a distance of 1.09 mm from
point e (where the entry pupil surface intersects the system's main axis b). This
distance comes from the row labeled "entry pupil" in Table 3-1 and defines the
eye relief of the Kaneko-Ueno system.

Figure 3-3 shows the result of the insertion of surface 1 with a radius of
curvature of 40.07506 and a coefficient C4 of 0 (as shown in the row labeled
"1" in Table 3-1). A coefficient C4 of 0 indicates that this surface is spherical.
After inserting this (nearly flat) surface, the turtle moves 0.333334 mm from its
starting point g to point h along axis line b. Glass of type "SK55" will fill the
space between g and the surface that will be subsequently inserted at h (by the
turtle's next step).

Figure 3-4 shows the result of the insertion by the turtle of surface 2 with
a radius of curvature of -1.01667 and a coefficient C4 of 0 (as shown in the
row labeled "2" in Table 3-1). After inserting this surface, the turtle moves
0.016667 mm from point h to i. Surfaces 1 and 2 together define a lens of
thickness 0.333334 of SK55 glass. Because air fills the space between h and
the surface that will be subsequently inserted at i (by the turtle's next step), this
lens is a singlet (stand-alone) lens.

Figure 3-5 shows the lens of SK5 glass resulting from the insertion of surfaces
3 and 4 corresponding to the rows labeled "3" and "4" in Table 3-1.

Figure 3-6 shows the result of the insertion by the turtle of surface 5 with
a radius of curvature of 11.66668 and a coefficient C4 of 0 (as shown in the
row labeled "5" in Table 3-1). Because SFL6 glass fills the space to the right
of surface 4, a doublet is formed by the insertion of surface 5. The doublet
consists of a lens of SK5 glass and a lens of SFL6 glass.

Finally, surfaces 6 and 7 are inserted (corresponding to the rows labeled "6"
and "7" in Table 3-1). Surfaces 6 and 7 together define a lens of thickness
0.125 of KIO glass. This final lens is shown at the right end of Figure 3-1.
Surfaces 6 and 7 both have an infinite radius of curvature. Surface 7 is totally
flat because its aspherical coefficient C4 is 0. However, surface 6 has a non-zero
aspherical adjustment (a coefficient C4 of-0.3715184). Thus, in the patented
Kaneko-Ueno lens systems, the first three lenses shape the image and the final
lens serves as an aspherical correction plate.

Automated Design of a Previously Patented Aspherical Optical Lens System 39

Object Entry Pupil ima'ge

Figure 3-2. Turtle starts at point g along main axis b.

Tr709166pK5V

Object Entry Pupil • image

Figure 3-3. Turtle inserts surface 1

"•lTa9TBmK5iriR'

Object Entry Pupil - image

Figure 3-4. Turtle inserts surface 2 thereby completing the first singlet lens.

Object Entry Pupil

rrD^-i^^-slfeHs^i

Image

Figure 3-5. Turtle inserts surfaces 3 and 4 thereby completing the second singlet lens.

Object Entry Pupil Image

Figure 3-6. Turtle inserts surfaces 5 thereby completing the doublet.

40 GENETIC PROGRAMMING THEORY AND PRACTICE III

4. Five Domain-Specific Adjustments
Five domain-specific adjustments are necessary (or advantageous) in order

to apply genetic programming to the field of optical design.

Glass Mutation Operation
In the field of optical design, the numerical parameter values for distance

and the radius of curvature of a lens can each be established using the standard
technique of perturbable numerical values. However, the choice of materials
is limited, in real-world situations, to one of a relatively small number of com­
mercially available types of materials (such as the types of glass found in the
Schott catalog). Accordingly, our mutation operation for materials changes one
type of material to another type of material in the chosen catalog (the offspring
being nearby in the multidimensional space of properties for the materials as
shown in Figure 3-7).

"

[•—:.i;

1 ^
• s o

....--
^ 3 ^M^

\j^

rw:..

'̂ ••"̂
.U^l

«4«^--

••
» * * ^ .,

«̂

— •

1 i=.

Figure 3-7. Glass map for the 199 types of glass in the Schott catalog.

Practical Limitations on Numerical Values
Practical considerations dictate certain limitations on the numeric values

that are allowed for distance and radius of curvature. The minimum radius of
curvature is -15 and the maximum is +15. The maximum thickness (for glass
or air) is 1.0. The minimum thickness for air is 0.01 and the minimum thickness
for glass is 0.1. The minimum aperture is 0.1 (where an opaque mounting is
added to cradle a lens that would otherwise be hovering in air). The aspheric
coefficient terms have a range from -10 to +10 for optical systems normalized
to a focal length of 1.

Toroidal Mutation Operation for the Radius of Curvature
However, a slight modification of the standard method for numerical param­

eter mutation is advantageous when perturbing the radius of curvature. The

Automated Design of a Previously Patented Aspherical Optical Lens System 41

reason is that a flat surface can be viewed as a spherical surface with a very
large positive or negative radius of curvature. That is, a very large positive or
negative radius represents the same thing. Accordingly, our numerical parame­
ter mutation operation for curvatures operates in a toroidal way (wrapping +15
to -15) when it is applied to a terminal representing the radius of curvature.

Lens Splitting Operation
A lens-splitting operation appears to be useful for the field of optical design.

The lens-splitting operation is performed on a single parent selected probabilis­
tically from the population based on its fitness. The lens-splitting operation
replaces one randomly picked lens with two new lenses. Figure 3-8 shows an
illustrative lens system and Figure 3-9 shows the result of applying the lens-
splitting operation.

a
b
c —^^^^

\ ^ ^ ^

-A
^„--^ ' ' '^
^

i
\
1

J
f \ ^^^ BKT

- ^

O b j e c t E n t r y P u p i l Image

Figure 3-8. Lens system before lens-splitting operation.

a
b
C ^„^"^""^

_ _ _ _ . ^

*e

]

h
1

7
BK' t BK7

ye
pKJI

ji

Object Entry Pupil Image

Figure 3-9. Lens system after lens-splitting operation.

The thickness of each of the two new lenses is half of the thickness of the
original lens. The radius of curvature of the first surface of the first new lens is
set equal to the radius of curvature of the first surface of the original lens. The
radius of curvature of the second surface of the second new lens is set equal
to the radius of curvature of the second surface of the original lens. The new
second surface of the first lens also serves as the new first surface of the second

42 GENETIC PROGRAMMING THEORY AND PRACTICE III

lens. This new common surface is flat. When the original lens is a single lens
(as is the case in Figure 3-8), the result of the lens splitting operation is a doublet
lens (as shown in Figure 3-9). The lens-splitting operation is intended to be
optically neutral {Le,, it ordinarily does not change the fitness of the lens system
involved). The only exception is that if half of the thickness of the original lens
is less than the minimum permissible lens thickness, the thickness of each new
lens is set to the minimum lens thickness (and the overall length of the lens
system is slightly increased accordingly). Note that because of the toroidal
behavior of the numerical parameter mutation operation, the newly created flat
surface has an equal probability of being perturbed to a negative or positive
radius of curvature when it is first mutated.

The motivation for the lens-splitting operation is that the insertion of ad­
ditional surfaces or lenses by means of crossover rarely yields an improved
individual. This operation creates a child that almost always has the same
(reasonably good) fitness as its parent. It thus introduces topological diversity
without changing fitness. Subsequent glass mutations or numerical mutations
of the distance or radius of curvature can then be done gradually.

Simulatability of Initial Random Generation
The run of genetic programming described in this paper starts with an initial

population that is randomly created from the available functions and terminals.
About 94.6% of the randomly created individuals are pathological in some way
and cannot be simulated. If we retained these individuals in the population
for generation 0 (say, penalizing them heavily because of their unsimulata-
bility), the genetic material generally available for crossovers would be only
about 1/20 of what it otherwise might be. Thus, in creating generation 0, we
replace unsimulatable individuals with newly created simulatable individual
until 100% of generation 0 is simulatable. Because simulatable individuals
tend to breed simulatable offspring (an observation applicable to the design of
optical lens systems as well as the design of analog electrical circuits, antenna,
and controllers), this issue is not a concern for later generations. Note that this
improvement is also applicable and advantageous to the automatic synthesis of
non-optical designs.

5, Fitness
Once a classical optical system is specified by means of its prescription (lens

file), its optical properties can be calculated by tracing the path of light rays
of various wavelengths through the system. Ray-tracing analysis by hand is
extremely time-consuming. Ray tracing is typically performed nowadays by
optical simulation software {e,g,, OSLO, Zemax, Code V, KOJAC). The ray
tracing analysis yields a set of characteristics of interest to optical designers.

Automated Design of a Previously Patented Aspherical Optical Lens System 43

including distortion, astigmatism, and chromatic aberration. In addition to ray
tracing for the ascertainment of aberrations, an optical lens systems is also
evaluated in terms of the system's image-forming quality. To do this, a 17x17
grid is overlaid on the entry pupil and a ray is shot through the comer defining
each grid position contained inside the entry pupil. A three-color spot diagram
is then formed and evaluated. Several other system metrics are derived from
this ddata, including modulation transfer functions and point spread functions.

A multiobjective fitness measure involving numerous elements is required for
optical design. The fitness measure and other preparatory steps are substantially
the same as those used in our recent work on the automatic synthesis of optical
lens systems by means of genetic programming (Al-Sakran et al., 2005; Koza
et al, 2005).

6. Results
This run of genetic programming starts with an initial population (generation

0) that is randomly created from the available functions and terminals. In gener­
ation 0, we continued to replace unsimulatable individuals with new randomly
created individuals until the entire initial population consisted of simulatable
individuals. For non-trivial problems, even the simulatable individuals in the
population at generation 0 of a run of genetic programming are invariably poor
in terms of satisfying the problem's requirements. This was the case here. The
best-of-generation individual from the initial random population (generation 0)
consisted of a lens system with one lens (Figure 3-10).

Object Entry Pupil .Image

Figure 3-10. Best of generation 0 for the Kaneko-Ueno problem

Although the best-of-generation individual from generation 0 is poor in terms
of satisfying the problem's requirements, the single lens provides a toehold that
enables the evolutionary process to proceed. Figure 3-11 shows the best-of-run
lens system from generation 746. This lens system has five lenses (arranged in
four groups).

Table 3-2 shows the prescription (lens file) for the best-of-run individual.

44 GENETIC PROGRAMMING THEORY AND PRACTICE III

Object Entry Pupil Image

Figure 3-11. Best-of-run lens system from generation 746 for the Kaneko-Ueno problem.

Table 3-2. Lens file for best-of-run lens system from generation 746.

Surface

Object
Entry pupil
1
2
3
4
5
6
7
8
9
Image

Distance

10^0
1.091668
0.352192

0.01
0.100694
0.170295

0.01
0.39326
0.125374
0.517407
0.206743

Flat

Radius

Flat
Flat

10.35241
-1.38146
6.911665
1.693854
-8.47601
1.776476
-7.75645
-7.50353
6.893007

Material

Air
Air

LAKN12
Air

SF59
LAFN28

Air
LAKIO

Air
SFL4A

Air
0.462102

Aperture

0.123873
0.632926
0.722105
0.72281
0.721309
0.725851
0.725661
0.654089
0.607231
0.515071

C4

0.0271156
0.0271156
0.0271156
0.0271156
0.0271156
0.0271156
0.0271156
-0.180589
0.0271156

Notice that both surfaces of the last lens in the best-of-run lens system from
generation 746 (/. e., surfaces 8 and 9 in Figure 3-11 and Table 3-2) are almost flat
and that the only large aspherical coefficient (namely -0.180589) is associated
with the left surface of this last lens (i.e., surface 8). Both surfaces of the last
lens of the patented system (i.e., surfaces 6 and 7 of Figure 3-1 and Table 3-1)
are flat and the only non-zero aspherical coefficient (namely -0.3715184) is
associated with the left surface of the last lens (i.e., surface 6).

Table 3-3 compares characteristics of the best-of-run individual from gener­
ation 746 with those of the patented lens system for the Kaneko-Ueno problem.
In this table, lower values are better, with the exception of the except for the
last three entries. As seen in the table, the evolved individual is superior to
the lens system in the Kaneko-Ueno patent for each characteristic in the table
(except for slight differences in two characteristics, coma and astigmatism, that
are not listed among the inventors' design goals, as stated in the patent). Note

Automated Design of a Previously Patented Aspherical Optical Lens System 45

that there is an order of magnitude reduction in distortion (the inventors' major
goal as stated in the patent).

Table 3-3. Comparison of the Kaneko-Ueno systems and the genetically evolved system

Coma
Astigmatism
Petzval
Distortion
Distortion Percentage
Max Distortion Percentage
Axial Chromatic
Lateral Chromatic
Spot RMS Axial Error
Spot RMS 70% FOV Error
Spot RMS Full Field Error
MTF Axial Tangential
MTF Axial Sagittal
MTF 70% Tangential
MTF 70% Sagittal
MTF Full Tangential
MTF Full Sagittal
Peak-Valley OPD Axial
RMS OPD Axial
Peak-Valley OPD 70%
RMS OPD 70%
Peak-Valley OPD Full
RMS OPD Full
Peak PSF Axial
Peak PSF 70% Field
Peak PSF Full Field
Spherical Aberration

Kaneko-Ueno

-0.001933
0.003879
-0.008434
-0.012582
0.82
0.82
-0.000695
-0.003290
0.0
0.308779
0.462908
0
0
0
0
0
0
0.07581
0.02322
0.484
0.09556
0.8392
0.1664
0.956
0.5975
0.29875
-0.001403

Evolved

-0.002084
0.004130
-0.007911
-0.000239
0.074
0.083
0.000067269
-0.002854
0.0
0.308562
0.456778
0
0
0
0
0
0
0.06772
0.02075
0.398
0.07959
0.5497
0.1197 0
0.9830
0.6150
0.369
-0.001268

Note that the last nine lines of Table 3-3 are measured quantities that are not
part of the fitness measure. The best-of-run individual from generation 746 for
the Kaneko-Ueno problem differs considerably from Kaneko-Ueno's patented
invention (Kaneko and Ueno, 1996) and therefore does not infringe the patent.
However, as shown in Table 3-4, the inventors' design goals, as stated in the
patent, are achieved.

Thus, the best-of-run lens individual from generation 746 has performance
superior to that of the lens system in the Kaneko-Ueno patent and accomplishes
the inventors' major design goals. Therefore, the best-of-run lens individual is
a non-infringing novel design that duplicates (and indeed improves upon) the
performance specifications for the invention-that is, the evolved lens system
can be considered as a new invention.

46 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 3-4. Design goals of the Kaneko-Ueno patent.

Kaneko-Ueno Patent Genetically evolved

Wide field of view (50 degrees) Wide field of view (50 degrees)
Reduced distortion across the field Lens system has an order of magnitude reduction

in distortion versus the patented system
Reduced lens count and size usable for Evolved solution has 5 lenses has a 22% larger
binoculars (4 lenses) footprint
Utilizes aspherical members Utilizes aspherical members

One of the eight criteria presented in (Koza et al., 2003) for saying that an
automatically created result is "human-competitive" is that:

"The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention."

Based on our results and this definition, we claim that the genetically evolved
design in this paper is an instance of a "human-competitive" result produced by
genetic programming in the field of optical design.

7. Conclusions
This chapter describes how genetic programming was used as an invention

machine to automatically synthesize a complete design for an aspherical optical
lens system (a type of lens system that is especially difficult to design and that
offers advantages in terms of cost, weight, size, and performance over traditional
spherical systems). The genetically evolved aspherical lens system duplicated
the functionality of a recently patented aspherical system. The automatic syn­
thesis was open-ended-that is, the process did not start from a pre-existing
good design and did not pre-specify the number of lenses, which lenses (if any)
should be spherical or aspherical, the topological arrangement of the lenses,
the numerical parameters of the lenses, or the non-numerical parameters of the
lenses. The genetically evolved design is an instance of human-competitive
results produced by genetic programming in the field of optical design.

References
Al-Sakran, Sameer H., Koza, John R., and Jones, Lee W. (2005). Automated re­

invention of a previously patented optical lens system using genetic program­
ming. In Keijzer, Maarten, Tettamanzi, Andrea, Collet, Pierre, van Hemert,
Jano I., and Tomassini, Marco, editors. Proceedings of the 8th European Con­
ference on Genetic Programming, volume 3447 of Lecture Notes in Computer
Science, pages 25-37, Heidelberg. Springer-Verlag, Heidelberg.

Automated Design of a Previously Patented Aspherical Optical Lens System 47

Alander, Jarmo T. (2000). An indexed bibliography of genetic algorithms in
optics and image processing. Technical Report 94-1-OPTICS, Department
of Information Technology and Production Economics, University of Vaasa;
Vaasa, Finland.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D.
(1998). Genetic Programming -An Introduction; On the Automatic Evolu­
tion of Computer Programs and its Applications. Morgan Kaufmann Pub­
lishers, Inc.

Beaulieu, Julie, Gagne, Christian, and Parizeau, Marc (2002). Lens system
design and re-engineering with evolutionary algorithms. In Langdon, W. B.,
Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K.,
Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C.,
Miller, J. F , Burke, E., and Jonoska, N., editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 155-162,
New York. Morgan Kaufmann Publishers.

Brave, Scott (1996). Evolving deterministic finite automata using cellular en­
coding.

Comisky, William, Yu, Jessen, and Koza, John R. (2000). Automatic synthesis
of a wire antenna using genetic programming. In Whitley, Darrell, editor.
Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, pages 179-186, Las Vegas, Nevada.

Fischer, Robert E. and Tadic-Galeb, Biljana (2000). Optical System Design,
McGraw-Hill, New York, NY.

Gruau, F. (1992). Cellular encoding of genetic neural networks. Technical re­
port 92-21, Laboratoire de ITnformatique du Parallilisme. Ecole Normale
Supirieure de Lyon, France.

Holland, John H. (1992). Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Complex Adaptive Systems. A Bradford book. The MIT Press,
Cambridge MA, first MIT Press edition.

Kaneko, Masanobu and Ueno, Yasunori (1996). Aspherical eyepiece. Issued
October 22, 1996.

Kitano, Hiroaki (1990). Designing neural networks using genetic algorithms
with graph generation system. Complex Systems, 4(4):461-476.

Koza, John R. (1990). Genetic programming: A paradigm for genetically breed­
ing populations of computer programs to solve problems. Technical Report
STAN-CS-90-1314, Dept. of Computer Science, Stanford University.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R. (1993). Discovery of rewrite rules in lindenmayer systems and
state transition rules in cellular automata via genetic programming. In Sym­
posium on Pattern Formation (SPF-93), Claremont, California, USA.

48 GENETIC PROGRAMMING THEORY AND PRACTICE III

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts.

Koza, John R., Al-Sakran, Sameer H., and Jones, Lee W. (2005). Automated
re-invention of six patented optical lens systems using genetic programming.
In To appear in GECCO-2005 Proceedings.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A
(1996a). Automated design of both the topology and sizing of analog elec­
trical circuits using genetic programming. In Gero, John S. and Sudweeks,
Fay, editors. Artificial Intelligence in Design '96, pages 151-170, Dordrecht.
Kluwer Academic.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A
(1996b). Reuse, parameterized reuse, and hierarchical reuse of substruc­
tures in evolving electrical circuits using genetic programming. In Higuchi,
Tetsuya, Masaya, Iwata, and Liu, Weixin, editors. Proceedings of Interna­
tional Conference on Evolvable Systems: From Biology to Hardware (ICES-
96), volume 1259 of Lecture Notes in Computer Science, Tsukuba, Japan.
Springer-Verlag.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Langdon, W. B. and Poli, Riccardo (2002). Foundations of Genetic Program­
ming. Springer-Verlag.

Lindenmayer, A. (1968). Mathematic models for cellular interactions in devel­
opment. Journal of Theoretical Biology, 18:280-315.

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of
Plants. Springer-Verlag, New York.

Smith, Warren J. (1992). Modem Lens Design: A Resource Manual. McGraw-
Hill, Boston, MA.

Smith, Warren J. (2000). Modern Optical Engineering. McGraw-Hill, New
York, third edition.

Spector, Lee and Stoffel, Kilian (1996). Ontogenetic programming. In Koza,
John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors,
Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 394-399, Stanford University, CA, USA. MIT Press.

Wilson, Stewart W. (1987). The genetic algorithm and biological development.
In Grefenstette, John J., editor. Proceedings of the 2nd International Confer­
ence on Genetic Algorithms and their Applications, pages 247-251, Cam­
bridge, MA. Lawrence Erlbaum Associates.

Chapter 4

DISCRIMINATION OF UNEXPLODED
ORDNANCE FROM CLUTTER USING LINEAR
GENETIC PROGRAMMING

Frank D. Francone^ Larry M. Deschaine , Tom Battenhouse^ and Jeffrey J.
Warren^
^RML Technologies, Inc and Chalmers University of Technology, 7606 S. Newland St.,
Littleton CO USA 80128; ^Science Applications International Corp. and Chalmers University
of Technology, 360 Bay St., Augusta GA USA 30901; ^Science Applications International
Corp., 6310 Allentown Boulevard., Harris burg, PA USA 17112.

Abstract We used Linear Genetic Programming (LGP) to study the extent to which
automated learning techniques may be used to improve Unexploded
Ordinance (UXO) discrimination from Protem-47 and Geonics EM61 non­
invasive electromagnetic sensors. We conclude that: (1) Even after
geophysicists have analyzed the EM61 signals and ranked anomalies in order
of the likelihood that each comprises UXO, our LGP tool was able to
substantially improve the discrimination of UXO from scrap—preexisting
techniques require digging 62% more holes to locate all UXO on a range than
do LGP derived models; (2) LGP can improve discrimination even though
trained on a very small number of examples of UXO; and (3) LGP can
improve UXO discrimination on data sets that contain a high-level of noise
and little preprocessing.

Keywords; genetic programming, unexploded ordnance, UXO discrimination.

1. Introduction

The Department of Defense (DoD) recently stated: "The UXO cleanup
problem is a very large-scale undertaking involving 10 million acres of land
at some 1400 sites (Report 2003)." One of the key problems is, according to
DoD, ". . . instruments that can detect the buried UXO's also detect numer­
ous scrap metal objects and other artifacts, which leads to an enormous
amount of expensive digging. Typically 100 holes may be dug before a real

50 GENETIC PROGRAMMING THEORY AND PRACTICE III

UXO is unearthed (Report 2003)!" Buried UXO poses a hazard to life-and-
limb and further prevents huge tracts of land—frequently urban—from be­
ing returned to civilian use.

Digital Geophysical Mapping

Geophysicists have recently begun gathering magnetic and electro­
magnetic data about potential UXO sites using non-invasive, above-ground
sensors. They gather UXO data by pulling various active and passive sen­
sors across a UXO site and record the sensor readings. This process is called
Digital Geophysical Mapping ('DGM'). Unfortunately, the digital signal for
UXO frequently resembles the signal from clutter (scrap metal that poses no
danger to the public) and OE fragments (pieces of UXO that have sheared-
off during impact). Figure 4-1 illustrates the difficulty of distinguishing
UXO from clutter. Currently, most UXO discrimination from DGM is made
by human experts analyzing the DGM signal.

The UXO Discrimination Process

This paper reports the successful application of a process we refer to as
UXO/MineFinder'̂ ^ service to the problem of UXO discrimination on two
data-sets acquired from DoD UXO test-beds. This is a multi-step process
that includes five high-level tasks:

1. Acquisition of DGM data by geophysicists; We studied DGM data from
the Jefferson Proving Grounds IV (Advanced 2000) and V (Cespedes
2001) test-plots (JPG-IV and JGP-V, respectively) for the two different
phases of this study. For this study, DGM data acquisition (Step 1) was
performed by third-party contractors engaged by the DoD. In particular,
we used data acquired by NAVEA on a Protem-47 from JPG-IV (Geonics
2004) and by the National Research Laboratory (NRL) on an EM61 for
JPG-V (Geonics 2004).

Discrimination of Unexploded Ordnance Using Linear GP 51

Anomaly Number 137
EM61 Upper Coil Output (millivolts)

Anomaly Number 131
EM61 Upper Coil Output (millivolts)

:3

Figure 4-1, Signature of buried UXO (top) versus clutter (bottom)

2. Anomaly Identification by geophysicists of physical locations where the
DGM indicates there may be potential UXO;

3. Extraction of relevant features pertaining to each anomaly by
geophysicists;

4. Ranking of anomalies by the likelihood that the anomalies are UXO
using the Linear Genetic Programming (Banzhaf 2003; Francone 2004)
software, Discipulus'̂ '̂ (Francone 2002), and;

5. Characterization of UXO (such as ordnance type, depth, and
orientation).

52 GENETIC PROGRAMMING THEORY AND PRACTICE III

Paper Organization

This paper focuses on Step 4 of the UXO discrimination process, and is
organized as follows.

First, Linear Genetic Programming is at the heart of our process. We
will briefly describe the LGP algorithm and software used in this study in
Section 2 below.

Second, Phase I of this study was a prove-out of the discrimination
portion of our process on the Jefferson Proving Grounds IV data from
NAVEA. Section 3 will discuss the methodology we used for this Phase I,
the results obtained, and compare those results with the results obtained by
other contractors.

Third, Phase II of this study was completed in February of 2004. Phase
II tested Steps 2-4 above—anomaly identification, feature extraction and
LGP ranking of anomalies on the Jefferson Proving Grounds V data from
the NRL. Section 4, below, discusses the methodology we used for Phase II,
our results, and compares them with the best-known results from other
contractors.

2. Linear Genetic Programming

Linear Genetic Programming ('LGP') is at the core of our process. We
used Discipulus^" ,̂ which is a Machine-Code-Based, Multi-Run, Linear GP
system. This automated learning software distinguishes our process from
other UXO discrimination techniques, which are based mostly on human
engineering expertise.

Genetic Programming

Genetic Programming (GP) is the automatic, computerized creation of
computer programs to perform a selected task using Darwinian natural
selection. GP developers give their computers examples of how they want
the computer to perform a task. Here, the 'examples' would be paired inputs
and outputs—the inputs being features of the DGM and the output
representing ground-truth: that is. Is the anomaly a UXO? From these
examples, GP software then writes a computer program that performs the
task described by the examples. Good overall treatments of Genetic
Programming may be found in (Banzhaf 1998) and (Koza 1999).

Discrimination ofUnexploded Ordnance Using Linear GP 53

LGP represents the evolving population of programs as linear ge­
nomes—that is, a linear string of executable instructions to the computer
(Nordin 1998). The LGP algorithm is surprisingly simple. A detailed
description of it is available in (Francone 2002) and (Francone 2004).

Machine-code-based, LGP is the direct evolution of binary machine code
through GP techniques (Nordi 1998; Nordin 1994). Here, an evolved LGP
program is a sequence of binary machine instructions. While LGP programs
are apparently very simple, it is actually possible to evolve functions of
great complexity using only simple arithmetic functions on a register
machine (Nordin 1998; Nordin 1995; Fukunaga 1998). The machine-code
approach to GP has been documented to be between 60 and 200 times faster
than comparable interpreting systems (Nordin 1998; Nordin 1994; Fukunaga
1998).

Multi-Run LGP is based on our observation that, if one performs many
runs with the same parameters, varying only the random seed, a histogram
of best performance found in many different runs will tend to describe a
normal-like distribution, with a long tail of good solutions (Fukunaga 1998;
Francone 1996). To know that the full extent of the distribution of runs has
been discovered, it is necessary to perform multiple LGP runs until a stable
distribution is achieved. The LGP software we used performs this process
automatically (Francone 2002).

After completing a multi-run LGP project, the LGP software decompiles
the best evolved models from machine code into Java, ANSI C, or Intel
Assembler programs (Francone 2002). The resulting decompiled code may
be linked to other code and compiled or it may be compiled into a DLL or
COM object.

Having now described the LGP software used, we will now turn to
describing, in order, the two phases of this applied LGP project.

3. Phase I: Proof-Of-Concept Study of JPG-IV,
PROTEM-47 UXO DGM Signatures

Phase I of this investigation was a proof-of-concept phase that applied
LGP to the JPG-IV test-bed data. JPG-IV is a research quality test-bed.
UXO and clutter were buried at known locations and depths. Contractors
with sensors were invited to measure the geophysical signatures at these
known locations (Advanced 2000). Altogether, sensor readings for 50 UXO
and 110 clutter items were available from the JPG-IV site.

54 GENETIC PROGRAMMING THEORY AND PRACTICE III

This technique of gathering data is significantly different than is typical
on an actual UXO site. On an actual UXO site, there is no preexisting
knowledge of where to look for UXO. Accordingly, DGM must often be
conducted for the entire site. Thus, the JPG-IV data is very high-quality data
gathered from known anomalies and using sensors in a stationary mode,
rather than being pulled across the site.

From the DGM, contractors attempted to discriminate between UXO and
clutter (Advanced 2000). The DGM acquired by the various sensors at the
JPG-IV locations were then made available to other contractors to test their
ability to discriminate between UXO and clutter and it is these data that
were used in Phase 1. Data was collected by NAEVA on the JPG-IV site
using a Protem-47 transmitter and receiver, configured with 20 time-gates
(Geonics 2004). The data from all twenty time-gates were made available
as inputs to the LGP algorithm.

The data were randomly split into training and validation sets, which
were used, respectively to train the LGP algorithm and to select the best
programs for testing on unseen data. A portion of the data was held back
from the training and validation sets. LGP was run until a stable distribution
of results was produced. At that point, the best program produced by LGP
on the training and validation data sets was selected as the best program
from the project.

Once a best-program was produced by LGP, it was tested on the held out
data. All results reported here are on the unseen, held-out data.

The LGP software produced excellent results on the NAEVA data
(Deschaine 2002). As noted above, out of ten contractors, only one
produced results that were better than random guessing (Advanced 200).
Their results are shown as small black points on Figure 4-2. Our results are
shown as a large black point in the upper right-hand-comer of Figure 4-2.
The arrow represents the amount by which our approach improved the
discrimination results obtained by NAEVA using the same data we used.
The difference between our results and those of the next best contractor,
Geophex, Ltd., were statistically significant at the 95% level.

This test established that using LGP as a classifier tool for UXO
discrimination was very promising. Accordingly, further testing was
required to prove-out our process as an integrated production service. The
next section details our findings in that regard.

Discrimination of Unexploded Ordnance Using Linear GP 55

8

^ 2 0 H

UXO/MineFinder Predictions vs. Other Vendors
Jefferson FYoving Grounds IV. Protem 47 Data from NAVEA Used

UXO/MineFmder

NAVEA Geophysics

Percent of UXO's Correctly Identified

Figure 4-2. Comparison of UXO/MineFinder UXO Discrimination Results and Other
Vendor's Discrimination Results on JPG-IV Test-Bed Data

4. Phase II: Production Prove-Out on The JPG-V,
EM61 UXO DGM Signatures

Our Phase II prove-out was performed to test our process on production-
grade data where it was necessary to integrate data-cleansing, anomaly-
identification, feature-extraction and selection and UXO-discrimination into
a single package. This section reports our methodology and results for that
prove-out.

Data Used in Production Prove-Out

We selected the NRL data from Jefferson Proving Grounds V, Area 3
(Cespedes 2001) as being most suitable to the goals of this project because:
• The JPG-V project was designed to mimic an actual impact area. The

DoD's JPG IV project failed to do so in several regards (Advanced
2000);

• The JPG-V data was from production-quality instruments and
collection techniques, rather than research-quality;

• The JPG-V data was gathered by contractors in a manner consistent
with data acquisition in the field—trailers bearing sensors were pulled
across the JPG-V site.

56 GENETIC PROGRAMMING THEORY AND PRACTICE III

• The NRL data appeared to be the cleanest data available.
From the various data feeds collected by the NRL, we chose the NRL's

single time-channel time-domain electromagnetic induction sensor data
(MTADS), collected in Area 3 of the JPG V demonstration survey. The
instrument used to collect the data was an EM61 (Geonics 2004).

Preprocessing Applied to NRL Data

While the NRL data appeared to be the highest-quality data amongst the
three contractors, no calibration data was available from the NRL to iron out
inconsistencies. On examination of the NRL data, there appeared to be
substantial calibration problems as among tracks. In addition, the
background level of geomagnetic noise varies substantially within single
tracks of data. We elected not to try to correct the calibration problems and
background noise level problems; rather, we decided to allow the LGP
classifier to model the calibration and background noise along with the
target signals.

Our preprocessing was, therefore, limited to gridding the data using
standard procedures recommended by the Geosoft Oasis-Montaj
geophysical software (an industry standard for geophysical surveying) for
target identification using the default parameters.

Anomaly Identification

Anomaly selection represents the first critical UXO screening step.
Advanced geophysical data processing attempts to balance target area
selection of UXO with weak observed signals (because background clutter
or nearby UXO create a complex signal) with the selection of a
disproportionate number of target areas containing no UXO.

We used Geosoft Oasis-Montaj to select potential targets in the JPG-V,
Area 3 field. The procedure was straightforward. We set a threshold of six
millivolts as the smallest anomaly that should be identified as a target.
Given that threshold, Geosoft located three-hundred forty-two anomalies
that we thereafter treated as our targets for classification.

Feature Extraction for the Identified Targets

The JPG-V Area 3 data from NRL was transformed into a set of ID
(point statistics) and 2D (spatial statistics) features. Only physically mean-

Discrimination ofUnexploded Ordnance Using Linear GP 57

ingful features were generated so that the physical interpretation of evolved
prediction algorithms was not prohibitively difficult.

The ID features used were the Geosoft created values for Upper and
Lower Coil readings for each identified target.

Generation of 2D features included analysis of both the gridded data and
the raw data. 2D analyses of gridded data utilized standard image
processing algorithms. Techniques, such as subsampling, morphological
processing, and 2D filtering, were used to preprocess the gridded data. An
example of extracted 2D features are the major and minor axes of an
anomaly at a point 50% of the way up the anomaly and at a point located
95% of the way toward the bottom of the anomaly from the top.

Methodology for Creating LGP Target Rankings

In UXO cleanup, the primary tool used to guide engineers is called a
'dig-list.' It identifies each anomaly and its coordinates. A dig-list is often
prioritized. That is, it includes instructions where to dig first, where to dig
next and so forth.

This project was posed to create an efficient prioritization for the JPG-V
site dig list. Efficiency is tested by how many holes must be dug (starting
with the highest ranked hole and proceeding down the list) until all UXO
have been located. The fewer holes dug before all UXO are located, the
lower the cost of the project (Francone 2004). This measure of performance
is preferred over a more classic machine learning classification confusion
matrix approach because this methodology was used by the DoD in
assessing contractor's performance on the JGP-V test bed (Cespedes 2001).

Our principal concern about the JPG-V, Area 3 data we used was that
Geosoft located only nineteen UXO and thirty-three OE fragments.̂ This is
a very small number of positive examples of UXO. Many of our decisions in
configuring LGP for this project were intended to minimize overfitting
arising from such a small data set.

There were several sub-tasks performed in deriving anomaly rankings
using LGP. They were: (1) Feature selection; (2) LGP Configuration; (3)
Creating multiple data sets; (4) Setting LGP parameters; and (6) Converting
LGP outputs into Rankings. Each of these steps is discussed below.

' Altogether, there were twenty UXOs on site. But Geosoft failed to identify one of them as a
target. So information about that UXO was never presented to the LGP algorithm.

58 GENETIC PROGRAMMING THEORY AND PRACTICE III

Feature Selection

We started with thirty-six features for each anomaly. Given the small
number of UXO and fragment signatures, we were confident that we would
not be successful with LGP using all of these features as inputs because of
overfitting problems. Thus, we went through a three-step winnowing
process to select the most promising features.

The first step of the winnowing process involved statistical analysis of
the various features to select those features with the most significant
relationship with the classification task and with the lowest cross-correlation
amongst the inputs themselves^ .̂ We used primarily correlation analysis and
ANOVA for this step.

The second step involved using the feature set in traditional modeling
tools such as logistic regression and classification trees, for two purposes:
(1) To determine which features provided the most UXO discrimination
ability, and (2) to determine whether either of these traditional tools
produced satisfactory discrimination results. There were no surprises from
this process in terms of feature selection—it merely confirmed our earlier
statistical analysis. This step also made clear that these traditional modeling
tools did not perform particularly well in discriminating UXO from clutter.
Accordingly, we determined that a more powerful modeling tool, such as
LGP, was required.

The third step involved further narrowing the number of features used by
conducting multiple LGP runs and examining the "Input Impacts" report
generated by the LGP software. That report tells which inputs to LGP were
actually used by LGP in a significant way to solve the problem"̂ . For
example, this "Input Impacts" report shows how frequently each input
appears in the thirty best programs of a Discipulus'̂ '̂ project and the effect
on fitness of those thirty best programs of replacing each input with a series
containing only the average value of that input. From this information, it is
quite simple to determine which inputs are contributing least to solving the
problem and to eliminate those inputs in subsequent projects. We iterated
thru this process three times, each time removing some inputs from the
project until removal of further inputs began to effect the quality of the
solutions.

When these three winnowing steps were concluded, we selected eight
inputs to use in LGP for the remainder of our runs.

Discrimination ofUnexploded Ordnance Using Linear GP 59

LGP Configuration

Based on an input-by-input statistical analysis, we determined that it
might be possible to use the OE Fragment data points as "quasi-positive"
examples of UXO. ANOVA for many of the extracted features revealed that
the mean of their values for OE Fragments was between the mean values for
UXO and Clutter. Furthermore, the mean value of those features for
fragments was considerably closer to the mean UXO value than the mean
clutter value. This raised the possibility that the OE Fragment anomalies
contained useful information about what UXO looked like. Because of the
small data set size, this possibility was very attractive because it increased
the amount of information available to the LGP algorithm about the
characteristics of a UXO as opposed to clutter.

Of course, to use OE Fragments in this manner required that we
configure LGP for regression and assign different, but sensible, target values
for UXO, OE Fragments and clutter.

Based on these observations, we configured LGP for regression and
assigned the following values to as the target output to be approximated: For
clutter, we assigned a regression target output value of 0. For OE Fragments,
we assigned a regression target output of 0.75. Finally for UXO, we
assigned a regression target output of 1.0. These values reflected the reahty
that OE Fragment feature values tended to fall between UXO values and
clutter feature values but were closer to the UXO feature value than to the
clutter value.

We interpreted the LGP output as a ranking. That is, higher output
values were ranked higher than lower output values. Thus, the highest
output was ranked as the most likely to be UXO.

Multiple Data Sets

Because there were a total of fifty-two UXO and OE Fragment items, we
created fifty-two separate data-sets. Each of those data-sets held out as
unseen data only one of the UXO or Fragment items together with 145
clutter points for model validation. The clutter points were chosen randomly
for each of the 52 data sets. After creating the held-out data set, the
remaining data points were used for model creation.

Thus, we performed in effect 5 5-fold cross-validation, with the stipula­
tion that each cross-validation data set contained one—and only one—
example of a UXO or fragment. Because of our scheme, the clutter points
appeared in multiple cross-validation data sets. To obtain a single prediction

60 GENETIC PROGRAMMING THEORY AND PRACTICE III

for a particular data point, we averaged the rankings across all 55 cross-
validation sets.

LGP Parameter Settings

Several runs were performed on several of the data sets to come up with
a parameterization of LGP that provided enough robustness and
generalization to solve the problem, but not so much as to overfit the data.
Based on this, we started all runs using the default parameters of
Discipulus''''^ except for the setting for run termination, which we reduced to
10 generations without improvement. This decision was made based on
preliminary runs which indicated that seldom was more time needed to
derive a good quality model from the data, and that additional time in the
run sometimes lead to overfitting.

LGP was then run separately on all 52 data sets using the base parameter
settings derived above. Each run was observed while in progress for
overfitting—sampling noise makes it unlikely that the same parameters will
be optimal for reducing overfitting for all data sets. In checking for
overfitting, we watched for situations in which the fitness of the targets for
training LGP was negatively correlated with the fitness on the held-out
targets.

Fewer than half of the runs showed signs of overfitting. For those runs,
we progressively changed the LGP parameters so as to reduce the
computational power available to the LGP algorithm until observed
overfitting was minimized. At that point, we inserted a new random seed
into the LGP algorithm and ran it at those parameters. The resulting run was
then accepted as the production run.

Converting LGP Outputs into Anomaly Rankings

We converted LGP outputs on unseen data points into anomaly rankings
as follows: for each of the fifty-two data sets, the anomalies held out as
unseen data were ranked so that the anomaly with the highest LGP output
was ranked number 1, the next highest ranked as number 2, and so forth.
Then those rankings were averaged for each anomaly over each of the data
sets in which the anomaly appeared as an unseen data point. That average
ranking was the ranking assigned to a particular anomaly for our simulated
prioritized dig hst.

Discrimination of Unexploded Ordnance Using Linear GP

Evaluation of LGP Prioritized Dig-List
61

The LGP produced rankings of the 342 anomahes in JPG-V, Area 3 were
evaluated against UXO predictions on these same data derived from best-
known conventional methods. Those best-known results are reported in the
DoD's JPG-V final report for Area 3 (Cespedes 2001). The results of the
comparison may be stated simply: The previous best UXO discrimination
results on these data were reported by the geophysicists at NRL. NRL's
rankings of anomalies required that ninety-six holes be dug before the last
UXO was located. The LGP prioritized dig list required that only sixty-four
holes be dug before the last UXO was located. Thus, the NRL ranking
required digging 62% more holes than did the LGP based ranking. Figure 4-
3 shows the results of our rankings in a pseudo-ROC format.

UXO/MineFinder vs. Best JPG-V Results
JPG-V. Area 3 with20 mn. wITioutmagnelometer

["

y
'V

Pir«tciun»nt»mT»i9M»d

/
/

_./f,c">iär

A-

'5

f^^t
.-v,V

-''«.J- • ,

- J f •"" " ' •^ ' f

Previous Best JPG-V Resjtta
.'. UXO/MlneFlnder Target» UXO
C UXO/MlrwFlnder Targets Fragment
o UXQ^MInoFinder Target» Clutter

UXOMin<i=n*r Rnal UXO
i<i*niiRM Firm UXO PrevtoueBwtReeult

\ \
30 50
Non-UXO's Dug-Up

Figure 4-3. Ranked Anomalies for JPG-V, Area 3. Comparison of LGP Based
Rankings and Rankings by Previous Best Results for JPG-V, Area 3.

Thus, if the order of digging were determined entirely by prioritization,
and digging ceased when the last UXO was uncovered, the LGP based
rankings would have required digging forty-five empty holes (that is, holes
not containing a UXO) and the NRL rankings would have dug seventy-
seven empty holes.

Digging up OE fragments is a secondary goal in UXO cleanup. Forty-
five of the top sixty-four targets identified by our process contained OE
fragments. In a field project, those fragments would be recovered in the
process of digging up the UXOs. In fact, only nineteen truly empty
anomalies were prioritized by LGP above the lowest priority UXO.

62 GENETIC PROGRAMMING THEORY AND PRACTICE III
S. Future Work

In Francone (Francone 2004), we described an information theoretic op­
timal method to apply machine learning techniques to UXO discrimination
across an entire site, even though no ground-truth is available at the start of
the site cleanup. This technique permits site-specific discrimination that
takes into account factors such as soil conditions and peculiarities of UXO
distribution, munition type and depth on a particular site. Our next step will
be to apply LGP in the site-specific manner outlined in that work.

6. Conclusion

We used Linear Genetic Programming (LGP) to study the extent to
which automated learning techniques may be used to improve Unexploded
Ordinance (UXO) discrimination from Protem-47 and Geonics EM61 non­
invasive electromagnetic sensors. We conclude that: (1) Even after geo-
physicists have analyzed the EM61 signals and ranked anomalies in order of
the likelihood that each comprises UXO, our LGP tool was able to improve
the discrimination of UXO from scrap—preexisting techniques require dig­
ging 62% more holes to locate all UXO on a range than do LGP derived
models; (2) LGP can improve discrimination even if trained on a very small
number of examples of UXO; and (3) LGP can improve UXO discrimina­
tion on data sets that contain a high-level of noise and little preprocessing.

7. Acknowledgments

The researchers would like to extend their thanks to Dr. Clinton W.
Kelly HI, manager of SAIC's Internal Research and Development division,
who supported this research with management and technical analysis, and
by providing corporate funding to get the concept off the drawing board and
into productive research.

References

Report of the Defense Science Board Task Force on Unexploded Ordnance.
Department of Defense. December (2003).

Discrimination of Unexploded Ordnance Using Linear GP 63

Francone, F. D., and Deschaine, L.M.: Extending the Boundaries of Design
Optimization by Integrating Fast Optimization Techniques with Machine-
Code-Based Linear Genetic Programming. In: Information Sciences Jour­
nal, Elsevier Press, In-press: Amsterdam, The Netherlands (2004).

Francone, F. D., Discipulus Owner's Manual. RML Technologies, Inc.
(2002). Available at www.aimleaming.com.

Advanced UXO Detection/Discrimination Technology Demonstration, U.S.
Army Jefferson Proving Ground, Madison, Indiana,. Technology Demon­
stration Plan, Washington, DC. Naval Explosive Ordnance Disposal
Technology Division (NAVEOD-TECHDIV). (2000).

Cespedes, E.: Advanced UXO Detection/Discrimination Technology Dem­
onstration—U.S. Army Jefferson Proving Ground, Madison, Indiana. US
Army Corps of Engineers, Engineer Research and Development Center,
ERDC/EL TR-01-20 (2001).

Geonics, Ltd., http://www.geonics.com/tdem.html (2004)
Geonics, Ltd., http://www.geonics.com/em61.html (2004).
J. Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming HI,

Morgan Kaufman, San Francisco, CA, (1999).
Nordin, P., Francone, F. Banzhaf, W.: Efficient Evolution of Machine Code

for CISC Architectures Using Blocks And Homologous Crossover. In:
Advances in Genetic Programming 3, MIT Press, Cambridge, MA
(1998).

Nordin, P.: A Compiling Genetic Programming System that Directly Ma­
nipulates the Machine Code. In: K. Kinnear Jr. (Ed.), Advances in Ge­
netic Programming, MIT Press, Cambridge, MA, 1994.

Nordin, P, Banzhaf, W.: Evolving Turing Complete Programs for a Register
Machine with Self Modifying Code. In: Proceedings of Sixth Interna­
tional Conference of Genetic Algorithms, Morgan Kaufmann Publishers,
Inc., 1995.

Fukunaga, A. Stechert, D. Mutz, A: A Genome Compiler for High Perform­
ance Genetic Programming. In: Proceedings of the Third Annual Genetic
Programming Conference, Jet Propulsion Laboratories, California Insti­
tute of Technology Pasadena, CA, Morgan Kaufman Publishers (1998),
pp. 86-94.

Francone, F., Nordin, P., Banzhaf, W.: Benchmarking the Generalization
Capabilities of a Compiling Genetic Programming System using Sparse
Data Sets. In: Koza et al. (Eds.), Proceedings of the First Annual Confer­
ence on Genetic Programming, Stanford, CA, (1996).

Deschaine, L. M., Hoover, R. A., Skibinski, J. N., Patel, J. J., Francone, F.
D., Nordin, P. and Ades, M. J.: Using Machine Learning to Compliment

http://www.aimleaming.com
http://www.geonics.com/tdem.html
http://www.geonics.com/em61.html

64 GENETIC PROGRAMMING THEORY AND PRACTICE III

and Extend the Accuracy of UXO Discrimination Beyond the Best Re­
ported Results of the Jefferson Proving Ground Technology Demonstra­
tion. In: Proceedings of the Society for Modeling and Simulation Interna­
tional's Advanced Technology Simulation Conference, April 2002. San
Diego, CA, USA (2002).

Hall, M.: Correlation-based Feature Selection for Machine Learning. PhD
Dissertation. The University of Waikato, Hamilton New Zealand (1999).

Francone, F. D. and Deschaine L.M: Getting It Right at the Very Start -
Building Project Models where Data is Expensive by Combining Human
Expertise, Machine Learning and Information Theory. In: Proceedings of
the Business and Industry Symposium, 2004 Advanced Simulation Tech­
nologies Conference (Arlington, Virginia, April 18-22, 2004), The Soci­
ety for Modeling and Simulation International, 162-168

Chapter 5

RAPID RE-EVOLUTION OF AN X-BAND
ANTENNA FOR NASA'S SPACE
TECHNOLOGY 5 MISSION

Jason D. Lohn^, Gregory S. Hornby^ and Derek S. Linden^
NASA Ames Research Center; QSS Group Inc.; JEM Engineering

Abstract One of the challenges in engineering design is adapting a set of created designs
to a change in requirements. Previously we presented two four-arm, symmet­
ric, evolved antennas for NASA's Space Technology 5 mission. However, the
mission's orbital vehicle was changed, putting it into a much lower earth orbit,
changing the specifications for the mission. With minimal changes to our evolu­
tionary system, mostly in the fitness function, we were able to evolve antennas
for the new mission requirements and, within one month of this change, two new
antennas were designed and prototyped. Both antennas were tested and both
had acceptable performance compared with the new specifications. This rapid
response shows that evolutionary design processes are able to accommodate new
requirements quickly and with minimal human effort.

Keywords: design, computational design, evolutionary design, antenna, spacecraft

!• Introduction
One of the challenges in engineering design is adapting a set of created

designs to a change in requirements. Previously we presented our work in
using evolutionary algorithms to automatically design an X-band antenna for
NASA's Space Technology 5 (ST5) spacecraft (Lohn et al., 2004). Since our
original evolutionary runs and the fabrication and testing of antennas ST5-3-
10 and ST5-4W-03, the launch vehicle for the ST5 spacecraft has changed
resulting in a lower orbit and different antenna requirements. With traditional
engineering design, such a change in requirements would necessitate redoing
much of the design work with a near doubling of design costs. In contrast,

66 GENETIC PROGRAMMING THEORY AND PRACTICE III

Property

Table 5-1. Key ST5 Antenna Requirements

Specification
Transmit Frequency
Receive Frequency
VSWR

Original Gain Pattern
Additional Gain Pattern Requirement
Input Impedance
Diameter
Height
Antenna Mass

8470 MHz
7209.125 MHz
< 1.2 : 1 at Transmit Freq
< 1.5 : 1 at Receive Freq
>0dBic,40° <6><80°,
>-5dBic, 0° <6> <40°,
50 n
< 15.24 cm
< 15.24 cm
< 165 g

0° < 0 < 360°
0° < 0 < 360°

with an evolutionary design system for automatically creating antennas, once
the software has been developed, modifying it to produce antennas for a similar
design problem requires only a minimal amount of human effort to implement
the change with minimal additional cost.

The ST5 mission consists of three spacecrafts which will orbit at close separa­
tions in a highly elliptical geosynchronous transfer orbit, and will communicate
with a 34 meter ground-based dish antenna.̂ Initially, the spacecrafts were to
fly approximately 35,000 km above Earth and the requirements for the commu­
nications antenna were for a gain pattern of >0 dBic from 40° - 80° from zenith,
a voltage standing wave ratio (VSWR) of under 1.2 at the transmit frequency
(8470 MHz) and under 1.5 at the receive frequency (7209.125 MHz), and fit
inside a 6" cylinder.-̂

With the change in launch vehicle and the new lower orbit, this necessitated
the addition of a new requirement on the gain pattern of >-5 dBic from 0° -
40° from zenith. The complete set of requirements for the antennas on the ST5
Mission are summarized in Table 5-1.

In the rest of this chapter we describe the two evolutionary design systems we
used for evolving the initial antennas for this mission and the changes we made
to them to address the change in mission requirements. We then present the
results of new antenna designs, both from simulation and from fabricated units.
Finally we close with an overview of the challenges we experienced in taking
our basic research in evolutionary antenna design all the way to fabricating
and testing flight units that have successfully passed flight testing and will be
launched in 2006.

'Space Technology 5 Mission: http://nmp.jpl.nasa.gov/st5/
V̂SWR is a way to quantify reflected-wave interference, and thus the amount of impedance mismatch at

the junction.

http://nmp.jpl.nasa.gov/st5/

Re-evolving an X-Band Antenna 67

2. Evolutionary Antenna Design Systems
The new mission requirements required us to change both the type of antenna

we were evolving and the fitness function. The original antennas we evolved
for the ST5 mission were constrained to a monopole wire antenna consisting
of four identical arms, with each arm rotated 90° from its neighbors. There,
the EA evolved genotypes that specified the geometry for one arm and the
phenotype consisted of four copies of the evolved arm. Because of symmetry,
the previous four-arm design has a null at zenith that is built into the design and
is unacceptable for the revised mission. To achieve an antenna that meets the
new mission requirements, designs were configured to produce a single arm.
In addition, because of the difficulties we experienced in fabricating branching
antennas to the required precision, we constrained our antenna designs to non-
branching antennas. Finally, because the satellite is spinning at about 40 RPM,
it is important that the antennas have a uniform gain pattern in azimuth. This is
difficult to meet with a single-arm antenna, because it is inherently asymmetric.

In the remainder of this section, we describe the two evolutionary algorithms
we used to evolve antennas for the ST5 mission and how we changed them to
address the new requirements. The first algorithm was used in our previous work
in evolutionary antenna design (Linden and Altshuler, 1996) and it is a standard
genetic algorithm (GA) that evolves non-branching wire forms using a vector of
real-valued parameters as its representation. The second algorithm is based on
our previous work evolving rod-structured, robot morphologies (Hornby et al.,
2003) and uses an open-ended representation which contains operations for
constructing an antenna. In addition, the two evolutionary algorithms (EAs)
use different fitness functions.

Parameterized EA
With the Parameterized EA, the design space consisted of a vector of real-

valued triplets that specify the X, Y and Z locations of segment end-points. The
fitness function for this EA used pattern quality scores at 7.2 GHz and 8.47 GHz.
Unlike the second EA, VSWR was not explicitly used in this fitness calculation,
rather it was included implicitly by how it affects the gain pattern. To quantify
the pattem quality at a single frequency, PQ/, the following formula was used:

0° < 0 < 360°
0° < 6> < 80°

where gain^^ is the gain of the antenna in dBic (right-hand polarization) at a
particular angle, T is the target gain (3 dBic was used in this case), 0 is the
azimuth, and 9 is the elevation. To compute the overall fitness of an antenna
design, the pattem quality measures at the transmit and receive frequencies

68 GENETIC PROGRAMMING THEORY AND PRACTICE III

were summed, lower values corresponding to better antennas:

F - P Q 7 . 2 + PQ8.47

Modifying this evolutionary design system to produce antennas for the new
orbit consisted of changing the fitness function to check angles 0° < Ö < 40°
as well the original range of 40° < Ö < 80°.

Open-Ended, Constructive EA
The second EA uses an open-ended representation in which the nodes of the

genotype specify how to construct the antenna. Each node in the open-ended
representation is an antenna-construction operator and an antenna is created by
executing the operators at each node in the representation, starting with the root
node. In constructing an antenna the current state (location and orientation) is
maintained and operators add wires or change the current state. The operators
are as follows:

• forward (l e n g t h , r a d i u s) - add a wire with the given length and
radius extending from the current location and then change the current
state location to the end of the new wire.

• r o t a t e-x (angle) - change the orientation by rotating it by the specified
amount (in radians) about the x-axis.

• r o t a t e~y (angle) - change the orientation by rotating it by the specified
amount (in radians) about the y-axis.

• r o t a t e-z (angle) - change the orientation by rotating it by the specified
amount (in radians) about the z-axis.

Since we constrained antennas to a single bent wire with no branching, each
node in the genotype has at most one child. This open-ended representation
for encoding antennas is an extension of our previous work in using a linear-
representation for encoding rod-based robots (Hornby et al., 2003).

Aside from restricting antennas to not having branches, the only other change
made to this evolutionary design system to address the new mission require­
ments was the fitness function. The fitness function used to evaluate antennas
is a function of the VSWR and gain values on the transmit and receive frequen­
cies. The VSWR component of the fitness function is intended to put strong
pressure to evolving antennas with receive and transmit VSWR values below
the required amounts of 1.2 and 1.5, reduced pressure at a value below these

Re-evolving an X-Band Antenna 69

requirements (1.15 and 1.25) and then no pressure to go below 1.1:

Vr = VSWR at receive frequency

(Vr + 2,0{Vr - 1.25) ifVr > 1.25
Vr =' I Vr if 1.25 > 'i;̂ > 1.1

[1.1 if'i;^ < 1.1
vt = VSWR at transmit frequency

r vt-^2.0{vt-1.15) ifvt> 1.15
v[= I Vt i f l . l5>i ; t > 1.1

[1.1 if ;̂t < 1.1

vswr = v'^v[

The gain-penalty component of the fitness function uses the gain (in dBic)
in 5° increments about the angles of interest: from 0° < Ö < 90° and
0° < 0 < 360°. For each angle, the calculated gain score from simulation
is compared against the target gain for that elevation and the outlier gain, which
is the minimum gain value beyond which lower gain values receive a greater
penalty. Gain penalty values are further adjusted based on the importance of
the elevation:

gain penalty (i,j):
gain = calculated gain at Ö = 5°i, 0 = 5° j ;
if{ gain > target[i]) {

penalty := 0.0;
} else //"((targetli] > gain) and (gain > outlier[i])) {

penalty := (target[i] - gain);
} else { /* outlier[i] > gain */

penalty := (target[i]-outlier[i]) + 3.0 * (outlier[i] - gain));
}
return penalty * weight[i];

Target gain values at a given elevation are stored in the array target [] and
are 2.0 dBic for i equal from 0 to 16 and are -3.0 dBic for i equal to 17 and 18.
Outlier gain values for each elevation are stored in the array ou t l i e r [] and
are 0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i equal to 17 and 18.
Each gain penalty is scaled by values scored in the array weight [] . For the
low band the values of weight [] are 0.1 for i equal to 0 through 7; values 1.0
for I equal to 8 through 16; and 0.05 for i equal to 17 and 18. For the high band
the values of weight [] are 0.4 for i equal to 0 through 7; values 3.0 for i equal
to 8 through 12; 3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to 15;
3.0 for i equal to 16; and 0.2 for i equal to 17 and 18. The final gain component
of the fitness score of an antenna is the sum of gain penalties for all angles.

To put evolutionary pressure on producing antennas with smooth gain pat­
terns around each elevation, the third component in scoring an antenna is based

70 GENETIC PROGRAMMING THEORY AND PRACTICE III

on the standard deviation of gain values. This score is a weighted sum of the
standard deviation of the gain values for each elevation 9, The weight value
used for a given elevation is the same as is used in calculating the gain penalty.

These three components are multiplied together to produce the overall fitness
score of an antenna design:

F •= vswr X gain x standard deviation

The objective of the EA is to produce antenna designs that minimize F .
This fitness function differs from the one we used previously (Lohn et al.,

2004) in the fidelity to which the desired gain pattern can be specified and in
explicitly rewarding for a smooth pattern. Our previous fitness function with
the constructive EA had one target gain value for all elevations and weighted all
elevations equally. With the new fitness function, different target gain values
can be set for different elevation angles and also the importance of achieving
the desired gain at a given angle is specified through setting the weight value
for a given elevation. The other difference with this fitness function is that
previously there was a separate penalty for "outlier" gain values whereas in the
new fitness function, this is included in the gain component of the fitness score
and a new component that measures pattern smoothness is also present. As
described in the following section, these changes resulted in the evolution of
antennas that had noticeably smoother pattems and acceptable gain.

3. Evolved Antennas
To re-evolve antennas for the new ST5 mission requirements, we used the

same EA setup as in our initial set of evolutionary runs. For the parameterized
EA, a population of fifty individuals was used, 50% of which are kept from
generation to generation. The mutation rate was 1 %, with the Gaussian mutation
standard deviation of 10% of the value range. The parameterized EA was
halted after one hundred generations had been completed, the EAs best score
was stagnant for forty generations, or the EA's average score was stagnant for
ten generations. For the open-ended EA, a population size of two hundred
individuals was evolved using generational evolution. Parents were selected
with remainder stochastic sampling based on rank, using exponential scaling
(Michalewicz, 1992). New individuals were created with an equal probability
of using mutation or recombination.

The Numerical Electromagnetics Code, Version 4 (NEC4) (Burke and Pog-
gio, 1981) was used to evaluate all antenna designs. Antennas were simulated
on an infinite ground plane to reduce simulation time: for these runs a single
antenna evaluation took a few seconds of wall-clock time to simulate and an
entire run took approximately six to ten hours. In contrast, evaluating a single
antenna using a wire mesh of the 6" ground plane on the spacecraft requires
two to three minutes to simulate.

Re-evolving an X-Band Antenna 71

The best antennas evolved by the two EAs were then evaluated on a second
antenna simulation package, WIPL-D, with the addition of a 6" ground plane
to determine which designs to fabricate and test on the ST5 mock-up. Based
on these simulations the best antenna design from each EA was selected for
fabrication and these are shown in Figure 5-1. A sequence of evolved antennas
that produced antenna ST5-33.142.7 is shown in Figure 5-2.

Simulated Results
Both antenna designs have excellent simulated RHCP patterns, as shown in

Figure 5-3 for the transmit frequency. The antennas also have good circular
polarization purity across a wide range of angles, as shown in Figure 5-4 for
ST5-104.33. To the best of our knowledge, this quality has never been seen
before in this form of antenna.

Measured Results
The antennas were measured on the ST5 mock-up (Figure 5-5), and the results

are shown in Figure 5-6. The evolved antennas were arrayed with a Quadrafilar
Helix Antenna (QHA) developed by New Mexico State University's Physical
Science Laboratory (the original antenna for this mission). This figure shows
plots of two QHA antennas together, a QHA, and an ST5-104.33 antenna.
Results are similar for ST5-33.142.7. Compared to using two QHAs together,
the evolved antennas have much greater gain across the angles of interest.

4. Discussion: From a Proof-of-Concept to Flight
Hardware

Perhaps, just as interesting and useful as the science that went on in producing
an evolutionary design system capable of evolving human-competitive antennas
for a NASA space mission, are the steps taken in going from a simple proof-of-
concept study to producing deployable flight hardware. Here we touch briefly
on the highlights of this process.

Our work began as a series of proof-of-concept studies, using deployed an­
tennas on NASA missions, for example, the quadrifilar UHF antenna on Mars
Odyssey (Lohn et al., 2002). The results of that study were encouraging and
lent us some credibility within the space communications community. Through
a series of meetings, we learned of the ST5 mission. Our intent was to do an­
other proof-of-concept study, mainly because we did not feel we were ready to
build prototypes and we were entering the mission development so late, or so
we thought at the time, that there was no chance to produce hardware for ST5.

We later learned that there were a series of delays in the ST5 schedule,
which gave us enough time to fabricate our designs and field test them. Around

72 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 5-1, Evolved antenna designs: (a) evolved using a vector of parameters, named ST5-
104.33; and (b) evolved using the open-ended, constructive representation, named ST5-33.142.7.

Re-evolving an X-Band Antenna 73

Figure 5-2. Sequence of evolved antennas leading up to antenna ST5-33.142.7.

this time, the conventionally designed quadrifilar antenna was going through
prototype testing. We met the quadrifilar design team and they were intrigued
with our approach and were receptive to working with us. Surprisingly, the only
two designs that we prototyped in hardware worked on the test range as well as
in simulation. Consequently, we stuck with these two designs for the baseline
antennas that we later intended to fly on the ST5 mission (Lohn et al., 2004).
When the ST5 mission managers saw the field patterns for the evolved antennas
they informed us that they met the mission requirements and encouraged us to
build space-qualified hardware.

Over the next year, we experienced a rollercoaster ride of hope and despair
as we worked through space-hardware development and qualification. As we
neared the end of this tumultuous twelve months, we were disheartened to leam
of the change in orbit of the ST5 mission. This came with the resultant change
in antenna requirements since our original pair of antennas did not meet the
new mission requirements.

This change in requirements turned out to be a blessing in disguise because
it showed the advantages of the evolutionary design process. Whereas the
quadrifilar design team would likely have needed several months to develop a
new antenna design and prototype it, we were able to re-evolve and prototype
new antennas in four weeks. As we described in this paper, this was done by
simply changing the fitness function to match the new antenna requirements
and constraining designs to non-branching antennas.

The first set of ST5 evolved antenna flight units were delivered to Goddard
Space Flight Center (GSFC) on February 25, 2005 (Figure 5-7) to undergo
environmental tests. On April 8, 2005 the last test was completed. This process
consisted of a thermal vacuum testing in which the antenna performed the above
requirements during one survival cycle (-80°C to +80°C) and through each of
eight qualification cycles (-70° C to +50° C). Having passed all tests, the current
baseline plan is to fly at least three evolved antennas when the mission launches
in 2006.

74 GENETIC PROGRAMMING THEORY AND PRACTICE III

lire-Gain [dSl 84?i5Hi

>• \ , i - /

B e l

urn
•2 3 M

•6.7 p
'"•' P
•156 P
•;ij.o n

-̂ p̂
r,M

m

Figure 5-3. Simulated 3D patterns for ST5-104.33 and ST5-33.142.7 on 6" ground plane at
8470 MHz for RHCP polarization. Simulation performed by WIPL-D. Patterns are similar for
7209 MHz.

Re-evolving an X-Band Antenna 75

120» ..•

10.00

IM
"4.00
^ZÖO"

liiillllliiM

90*

180*
mMm§

sr

CSHCR

: . ^ ^ x \ \ . % \ \
\30°

\ \ \ \ \ Vvv\ \^v^4-^4'/>v^ / / / /./ \\\\\\\AK^NN5:

270»

Figure 5-4, RHCP vs LHCP performance of ST5-104.33. Plot has 2 dB/division.

5, Conclusion
Previously, we reported our work on evolving two X-band antennas for po­

tential use on NASA's upcoming ST5 mission to study the magnetosphere.
While those antennas were mission compliant, a change in launch vehicle re­
sulted in a change in orbit for the ST5 spacecraft and a change in requirements
for their communication antennas. In response to this change in requirements,
we reconfigured our evolutionary design systems and in under four weeks, we
were able to evolve new antenna designs that were acceptable to ST5 mission
planners. One of the evolved antennas, ST5-33.142.7, has passed all of the

76 GENETIC PROGRAMMING THEORY AND PRACTICE III

• f ^

TOP n^'-:
DECK I"

BOTTOM
DECK

GROUND
PLANE

AXIS OF
ROTATION

Figure 5-5. Photograph of the ST5 mock-up with antennas mounted (only the antenna on the
top deck is visible).

no J24LJL 70
100 90 so

250 :290
2 « 270 2S0

regions
^ " 260 270 280 - ^

raj I Tiacc
Ptii 3 TlJCt

Figure 5-6. Measured patterns on ST-5 mock-up of QHA antenna and ST5-104.33 plus QHA
antenna. Phi 1 = 0 deg., Phi 2 = 90 deg.

flight tests and the current plan is to fly at least three evolved antennas when
these spacecraft are launched in 2006. Our ability to rapidly re-evolve new
antenna designs shows that the evolutionary design process lends itself to rapid

Re-evolving an X-Band Antenna 11

Figure 5-7. Three images of a flight antenna; the evolved wire configuration for the radiator sits
on top of a 6" diameter ground plane and is encased inside a radome

response to changing requirements, not only for automated antenna design but
for automated design in general.

Acknowledgements
The work described in this paper was supported by Mission and Science

Measurement Technology, NASA Headquarters, under its Computing, Infor­
mation, and Conmiunications Technology Program. The work was performed
at the Computational Sciences Division, NASA Ames Research Center, Linden
Innovation Research and JEM Engineering, and NASA Goddard Space Flight
Center. The support of Ken Perko of Microwave Systems Branch at NASA
Goddard and Bruce Blevins of the Physical Science Laboratory at New Mexico
State University is gratefully acknowledged.

Appendix: Genotype of ST5-33.142J
Listed below is the evolved genotype of antenna ST5-33.142.7. The format for this tree-

structured genotype consists of the operator followed by a number stating how many children
this operator has, followed by square brackets which start ' [' and end '] ' the list of the node's
children. For example the format for a node which is operator 1 and has two subtrees is written:
o p e r a t o r l 2 [s u b t r e e - 1 s u b t r e e - 2] . For the ST5 mission, antennas were constrained
to be non-branching so each node in this genotype has at most one child, the only exception is the
leaf node. The different operators in the antenna-constructing language are given in section 2.0.
r o t a t e - z (0 . 7 2 3 5 3 6) 1 [r o t a t e - x (2 . 6 2 8 7 8 7) 1 [r o t a t e - z (l . 1 4 5 4 1 5) 1 [
r o t a t e - x (l . 9 3 0 8 1 0) 1 [r o t a t e - z (2 . 0 6 9 4 9 7) 1 [r o t a t e - x (l . 8 2 2 5 3 7) 1 [
forward(0.007343,0.000406) 1 [r o t a t e - z (l . 9 0 1 5 0 7) 1 [

forward(0.013581,0 .000406) 1 [r o t a t e - x (l . 9 0 9 8 5 1) 1 [r o t a t e - y (2 . 3 4 5 3 1 6)
1 [r o t a t e - y (0 . 3 0 8 0 4 3) 1 [r o t a t e - y (2 . 8 9 0 2 6 5) 1 [r o t a t e - x (0 . 4 0 9 7 4 2) 1
[r o t a t e - y (2 . 3 9 7 5 0 7) 1 [forward(0.011671,0.000406) 1 [
r o t a t e - x (2 . 1 8 7 2 9 8) 1 [r o t a t e - y (2 . 4 9 7 9 7 4) 1 [r o t a t e - y (0 . 2 3 5 6 1 9) 1 [
r o t a t e - x (0 . 6 1 1 5 0 8) 1 [r o t a t e - y (2 . 7 1 3 4 4 7) 1 [r o t a t e - y (2 . 6 3 1 1 4 1) 1 [
forward(0.011597,0 .000406) 1 [r o t a t e - y (1 . 5 7 3 3 6 7) 1 [

78 GENETIC PROGRAMMING THEORY AND PRACTICE III

forwardCO.007000,0.000406) 1 [rotate-x(-0.974118) 1 [
rotate-y(2.890265) 1 [rotate-z(l.482916) 1 [forward(0.019955,0.000406)
]

References
Burke, G. J. and Poggio, A. J. (1981). Numerical electromagnetics code (nec)-

method of moments. Technical Report UCID18834, Lawrence Livermore
Lab.

Hornby, Gregory S., Lipson, Hod, and Pollack, Jordan B. (2003). Generative
representations for the automated design of modular physical robots. IEEE
transactions on Robotics and Automation, 19(4):709-713.

Linden, D. S. and Altshuler, E. E. (1996). Automating wire antenna design
using genetic algorithms. Microwave Journal, 39(3):74-86.

Lohn, J. D., Kraus, W. P., and Linden, D. S. (2002). Evolutionary optimization
of a quadrifilar helical antenna. In IEEE Antenna & Propagation Society
Mtg., volume 3, pages 814-817.

Lohn, Jason, Hornby, Gregory, and Linden, Derek (2004). Evolutionary an­
tenna design for a NASA spacecraft. In O'Reilly, Una-May, Yu, Tina, Riolo,
Rick L., and Worzel, Bill, editors. Genetic Programming Theory and Practice
II, chapter 18. Kluwer, Ann Arbor.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, New York.

Chapter 6

VARIABLE SELECTION IN INDUSTRIAL
DATASETS USING PARETO GENETIC
PROGRAMMING

Guido Smits\ Arthur Kordon ,̂ Katherine Vladislavleva\ Elsa Jordaan^ and
Mark Kotanchek^
^Dow Benelux, Terneuzen, The Netherlands; ^The Dow Chemical Company, Freeport, TX;
The Dow Chemical Company, Midland, MI

Abstract This chapter gives an overview, based on the experience from the Dow
Chemical Company, of the importance of variable selection to build robust
models from industrial datasets. A quick review of variable selection schemes
based on linear techniques is given. A relatively simple fitness inheritance
scheme is proposed to do nonlinear sensitivity analysis that is especially effec­
tive when combined with Pareto GP. The method is applied to two industrial
datasets with good results.

Key words: Genetic programming, symbolic regression, variable selection, pareto GP

1. Introduction

Many industrial applications are based on high-dimensional multivariate
data. The dominant approach for data analysis in this case is dimensionality
reduction by Principal Component Analysis (PCA) and building linear mod­
els with projections to latent structures by means of Partial Least Squares
(PLS) (Eriksonn et al, 2001). This approach, however, has two key issues:
(1) the model interpretation is difficult and (2) it is limited to linear systems.
One approach to extend this to nonlinear systems is to use neural networks.
The variable selection algorithm in this case is based on gradually reducing
the number of inputs until an optimal structure is obtained (Saltelli et al.

80 GENETIC PROGRAMMING THEORY AND PRACTICE III

2001). However, this process is coupled with the hidden layer structure se­
lection and requires high quality data sets. One of the unique features of
Genetic Programming (GP) is its built-in mechanism to select the variables
that are related to the problem during the simulated evolution and to gradu­
ally ignore variables that are not. In this way, a different type of nonlinear
variable selection can be used for dimensionality reduction that could be ap­
propriate for industrial data analysis. This idea was explored in (Gilbert et al,
1998) for variable selection from a spectral data set with 150 variables. Only
between 6 and 9 variables were selected in the GP-derived predictive rules.
Other applications can be found in (Francone et al, 2004, RML Technolo­
gies, 2002 and Johnson et al, 2000)

An approach for GP-based variable selection with emphasis on multi-
objective Pareto-front GP will be described in the chapter. The organization
is as follows. The generic issue of dealing with high-dimensional spaces is
addressed in Section 2. Section 3 gives a short overview of the linear tech­
niques for variable selection. The proposed method for variable selection
using Pareto GP is discussed and illustrated with synthesized data for re­
discovering of Newton's Law of gravity in Section 4. The method is demon­
strated with two successful industrial applications, described in Section 5.

2. The Curse of Dimensionality

In modeling projects, the assumption is implicitly made that we know the
"true" inputs to a given problem and that the reference data set feature vec­
tors are defined in the space of these "true" inputs. In practice, many times
one has to select the relevant inputs from a possibly large set of candidate
inputs: input selection is an integral part of the modeling problem. All too
often, people don't worry enough about this input selection problem. They
build models using all the available inputs thinking that, in a magical way,
the modeling system will figure out which inputs are relevant and which are
not. To build robust models it is essential to limit the number of inputs to an
absolute minimum for a number of reasons, all of which all have to do with
the so-called "curse of dimensionality".

The goal of a data-driven modeling problem is to estimate an unknown
function based on a finite number of samples. Because we only have a finite
number of samples available, there will always be an infinite number of pos­
sible functions that can be selected and that will interpolate the data equally
well. To come up with a unique solution it is necessary to impose some kind
of constraints on possible solutions. In the absence of first-principle con­
straints that can be obtained from a understanding of the physics behind the
problem, these constraints are often defined in terms of the smoothness of

Variable Selection in Industrial Datasets Using Pareto GP n

the function in a given neighborhood around a data point. The accuracy of
the function estimation obviously depends on having enough samples within
that neighborhood. If the dimensionality of the problem is increased, there
are basically two routes to obtain sufficient data points within such a local
neighborhood. First, one can try to collect sufficient samples to get this high
density, something which is very often not possible. Second, one can in­
crease the size of this "local" neighborhood, but this is at the expense of im­
posing stronger (possible incorrect) constraints on the problem solution.
This is the essence of the "curse of dimensionality."

The properties of high-dimensional spaces often appear counter-intuitive
because our experience is limited to low-dimensional spaces (Cherkassky,
1998). For example, objects like a hypercube have an increasing ratio of sur­
face area to volume with increasing dimensionality. Following are four
properties of high-dimensional spaces that contribute to the problem:
• Samples sizes with the same data density increase exponentially with

dimensionality. If p is the reference data density in one dimension p"̂ is
the equivalent density in d dimensions.

• An increasingly large radius is needed to enclose a given fraction of
data points in higher dimensional space. For example, the edge length
of a hypercube which encloses a given fraction of samples p is given by:

elä(P) = P Yä

Figure 6-1 shows the corresponding graph for up to dimensionality 20
for fractions of 5, 10 and 20 %. Notice that high edge lengths (>0.75)
are needed very quickly. An edge length of 1 would result in a hypercube
that covers the entire space.

1 1 1 1 1 1 1 1
1 1 1 1 1 \ ^ i_ a ^

J L ''' -4 L
1 * y , 1 1

J L 1 L

J L J L
1 • 1 1 1

_ Jf L J L

i^. 3 L J L
1 1 1 1

^ J L_ -J L
« 1 1 1 1

L .1 1 \ 1 .

L 1 L

L 1 L

L 1 L

L 1 L

L 1 L

L 1 L
1 i 1

. . i . i)

^ J <

dimensionality

Figure 6-1. Edge length needed for a hypercube to include 5%, 10% and 20% of the data.

In higher dimensional spaces, almost every point is closer to an edge
than to another point. Or, in other words, in higher dimensional spaces

82 GENETIC PROGRAMMING THEORY AND PRACTICE III

extrapolation is the norm rather than the exception. For a sample size n,
the expected distance between data points sampled from a uniform
distribution in the unit hypercube is given by:

D{d,n) = - \ -

• Almost every point is an outlier in its own projection on the line defined
by the prediction point and the origin. The expected location of this

prediction point is yid-1/2. The remaining points will follow a
standard normal distribution with mean zero and standard deviation one
since the other points are unrelated to the direction of the projection.
For example when d=10, the expected value of the prediction point is
3.1 standard deviations away from the center of the training data. In this
sense this point can be considered to be an outlier of the training data.

These properties of high-dimensional spaces have serious consequences for
building models based on a limited number of samples. The higher the di­
mensionality of the space the more likely it is that we will not have the data
points we need to make a local estimate. Also, the higher the dimensionality,
the more we have to resort to extrapolation instead of interpolation to make
predictions. For these reasons, it is essential to limit the number of inputs to
a data driven model to an absolute minimum. In the next sections we will
describe how this can be done using linear techniques but also how this can
be done effectively using genetic programming.

3. Variable Selection Using Linear Techniques

Before we discuss the reduction of input dimensionality using genetic
programming we will quickly review how this can be achieved for linear
models. Suppose we try to build a model of the form: Y = X.b + e where X
and Y are matrices with the inputs and the observations, b is a vector of
parameters and e is the vector of errors. The least squares solution of b that
minimizes e'. e is obtained from b = (X'X)~* X^Y irrespective of any
distribution properties of the errors. A large number of statistical procedures
are available to select the best subset of inputs to use in the linear regression
equation (Draper and Smith, 1981). Examples of these procedures are: (1)

Variable Selection in Industrial Datasets Using Pareto GP 83

all possible regressions, (2) best subset regressions, (3) backward
elimination, (4) stepwise regression, (5) ridge regression, (6) principal
components regression, (7) latent root regression, (8) stagewise regression
etc. Some of these procedures, like principal components and latent root
regression, are specific to linear methods and do not have an immediate
analogue to apply in non-linear modelling. Most of the other procedures
rely on some sort of significance test (e.g. the partial F-test) to decide which
variable to keep or to discard depending on the specific procedure. The use
of these significance tests automatically implies an assumption about the
underlying distribution of the errors. Frequently these are assumed to be
normally distributed. The preferred procedures are either or a combination
of the backward elimination and stepwise regression procedures. Although
theoretically the all possible regression procedure would be the best, in
practice this is only feasible for a limited number of possible inputs.

The backward elimination method starts from a regression equation
containing all variables. At each iteration the variable with the lowest partial
F-test value is compared to a preselected significance level and is eliminated
whenever the significance is lower than the preselected value. The
procedure stops when no more variables can be found that meet this
criterion. The stepwise regression method attempts to achieve the same
result by working in the other direction, i.e. to insert variables into the
equation as long as they meet certain significance criteria; see (Draper and
Smith, 1981) for more details on these procedures. These procedures usually
work fine within a linear framework but one has to realize that there are
many possibilities for any variable selection scheme to go wrong whenever
the data set being used is not balanced (in the sense that not all input
dimensions are properly represented), or some of the variables are related to
other unmeasured latent variables.

4. Variable Selection Using Pareto Genetic Program­
ming

Fitness Inheritance in the Total Population

As mentioned earlier, one of the potential applications of symbolic re­
gression via genetic programming is sensitivity analysis of nonlinear prob­
lems with a potentially large set of candidate input variables. These kinds of
problems are frequently encountered in the chemical processing industry.
Sensitivity analysis is also called the "problem of feature selection" in ma­
chine learning terminology. Many problems in the chemical industry are of

84 GENETIC PROGRAMMING THEORY AND PRACTICE III

this type. There usually are a large number of measurements available at a
plant, many of which are redundant or not relevant to the problem that one
tries to solve.

Engineering knowledge about the problem is usually the first step to try
and narrow down the number of inputs. Sensitivity analysis generates a rank­
ing of all the input variables in terms of how important they are in modeling
a certain unknown process. In linear problems the sensitivity of an input
variable is related to the derivative of the output with respect to that variable.
In nonlinear problems, however, the derivative becomes a local property and
has to be integrated over the entire input domain to qualify as a sensitivity.
Since this approach is not really practical in a genetic programming context,
we've opted to relate the sensitivity of a given input variable to its fitness in
the population of equations. The reasoning is that important input variables
will be used in equations that have a relatively high fitness. So the fitness of
input variables is related to the fitness of the equations they are used in.
There is, however, a question with respect to credit assignment, i.e, what
portion of the fitness goes to what variable in the equation. The easiest ap­
proach is to distribute the credit (the fitness of the equation) equally over all
variables present. A complicating factor is that probably not every variable is
equally important in a given equation. In addition, most equations in a ge­
netic programming population are not parsimonious and possess chunks of
inactive code (a good description of the problem of 'bloat' can be found in
Bmzhaf et al, 1998).

Variables that are present in these chunks of inactive code do not contrib­
ute to the final fitness of the equation but still obtain some credit for being
part of that equation. There is no direct solution for this problem on the indi­
vidual equation level but still reliable answers can be obtained provided we
evaluate a large number of equations. Again the reasoning is simple, if a
given input variable is absolutely essential to solve the problem, it must be
present in the high fitness equations. Other nonessential variables will be
present in both low-fitness and high-fitness equations so their fitness will be
closer to the average fitness over all equations. More important variables
will obtain more credit and will have a fitness that exceeds this average
value. So provided the population size is large enough, we can take the fit­
ness of each equation in the population, distribute this fitness in equal
amounts over the input variables present in that equation and sum all these
contributions for each input variable over the entire population. An im­
proved version of this, at the expense of a little bit of extra computation, is
doing the same but instead of just using the equations in the population also
include every sub-equation in each of these equations. The extra computa­
tional step will considerably improve the statistics of the input variable fit­
nesses since now the number of equations is equal to the total number of

Variable Selection in Industrial Datasets Using Pareto GP 85

nodes in every equation-tree in the population rather than the population size
itself.

A Simple Example

As a simple example we'll try to rediscover Newton's Law of gravita­
tion. This states that any two objects attract one another gravitationally. The
attractive force depends linearly on the mass of each object (doubling the
mass doubles the force) and inversely on the square of the distance between
the two objects:

r-. Wi .1712

g is the gravitational constant which is just a number to match up the re­
sults of the equation with our system of measurement. The minus sign (-)
indicates that the force is attractive. A synthetic dataset with 50 patterns was
generated where the two masses are random numbers in the range [0,1] and
the radius is a real number in the range [1,2]. An additional 50 inputs with
random numbers in the range [0,1] were added. These extra inputs are just
"noise" variables and make the task of discovering Newton's law progres­
sively harder since part of the problem now is to discover the "true" vari­
ables Xi, X2 and X3 in the total set.

From Figure 6-2, which shows the correlation coefficient from each of
the input variables to the force, the output variable that needs to be pre­
dicted, we see that the masses (variables 1 and 2) have a relatively high ab­
solute correlation to the force but the others (the distance and the random
variables) cannot be easily distinguished from each other.

Next we'll apply genetic programming to do a nonlinear sensitivity
analysis. The particular version of Genetic Programming we use is called
Pareto GP and is described in (Smits and Kotanchek, 2004). In Pareto GP an
archive is used to store equations that are at or near the Pareto border of fit­
ness versus some equation complexity measure. This archive is maintained
during a run. All the equations in the next generation are obtained either by
mutation of existing equations in the archive or by crossover between mem­
bers of the archive and the previous population. A typical run consists of a
number of different cascades. At the start of a new cascade a new population
is generated from scratch but, since the archive is maintained, good solutions
appear very quickly again in the population. A cascade usually has a fixed
number of generations. The final result is the set of the equations in the ar­
chive, which represents the Pareto front of fitness versus complexity. When
we apply genetic programming to do a nonlinear sensitivity analysis to the
augmented Newton dataset as described earlier, the picture shown in Figure

86 GENETIC PROGRAMMING THEORY AND PRACTICE III

6-3 emerges. The important variables are identified very quickly and then
stabilize in sensitivity. The unimportant variables die out relatively fast after
an initial period and final fitness values become very small.

0.6

0.4

0.2

o -0.2

-0.4

Correlation coefficient of Input variables to output

0 5 10 15 20 25 30 35 40 45 50
Input Variables

Figure 6-2. Correlation coefficients of inputs relative to the output for Newton's problem

Newton + 50 extra variables

300 60

Generations Variables

Figure 6-3. Evolution of fitness for all variables in the Newton problem. Notice that the im­
portant variables on the right-hand side are identified very quickly

Variable Selection in Industrial Datasets Using Pareto GP 87

Fitness Inheritance in the Pareto Front Only

We already mentioned that when variables accumulate fitness from the
entire population there is a chance that we get somewhat of a distorted pic­
ture because unimportant variables that happen to be part of equations with a
relatively high fitness will also pick up fitness from those. To compensate
for this we introduced a modification where variables only accumulate fit­
ness from equations that reside in the archive. Since the archive contains the
Pareto front of all of the high fitness equations relative to their complexity
this modifications is expected to make the variable selection more robust. In
the next section with two industrial applications we will show that this is
indeed the case.

5, Applications

Variable selection and dimensionality reduction are critical for develop­
ing parsimonious empirical models from industrial data sets. One of the key
application areas for symbolic regression models generated by GP is inferen­
tial sensors (Kordon at al, 2003). This type of empirical model predicts dif-
ficult-to-measure process variables (outputs), such as NOx emissions, poly­
mer properties, biomass, etc, with easy-to-measure sensors such as tempera­
tures, flows, and pressures (inputs). Usually model development begins with
the broadest possible selection of input sensors that process engineers think
may influence the output.

The proposed method for variable selection will be illustrated in two ap­
plications of inferential sensors development on (1) a data set with middle-
sized dimensionality (8 inputs and 251 data points) and on (2) a high-
dimensional data set of 23 inputs and 7000 data points.

Variable Selection on Middle-Sized Industrial Data

The inferential sensor in this application predicts emissions from process
variables. The correlation coefficients of the eight potential inputs relative to
the emissions (the output) are shown in Figure 4. For this problem it is diffi­
cult to satisfy the regulatory requirements of 7.5% error with a linear model
and so a nonlinear solution is needed.

Pareto GP was used for variable selection and nonlinear model genera­
tion. The results from the variable selection are shown in Figures 6-5 ~ 6-8.
The results are based on 5 independent runs of 10 cascades with 50 genera­
tions. The average sensitivities with their standard deviations for each input,
as defined in the previous section, for two population sizes of 100 and 1000

88 GENETIC PROGRAMMING THEORY AND PRACTICE III

are shown in each figure. The sensitivities in Figures 5 and 6 are based on all
models in the population at the last generation and the sensitivities in Figures
7 and 8 are based on the models in the archive at the last generation of the
Pareto GP evolution.

input variables

Figure 6-4. Correlation coefficients of process inputs relative to emissions

The last sensitivity analysis is a better demonstration for variable selec­
tion because it is based on the high-quality potential models which are the
breeding source for the Pareto front. In principle, the most sensitive inputs
(x2, x5, x6, and x8) have been consistently selected in all cases, but the dif­
ference is clearer with the archive selection in Figures 7 and 8. For compari­
son, a linear variable selection, based on PCA-PLS model with two principal
components, is shown in Figure 9. The inputs ranking is represented by a
Variable Importance in the Projection (VIP, described in Eriksonn et al,
2001). Variables with VIP > 1 are treated as important.

One of the differences between the linear and the GP-based variable se­
lection is that input x5 is insignificant from the linear point of view (which is
supported by the low correlation coefficient of-0.5 in Figure 4). However, it
is one of the most significant inputs, according to the nonlinear sensitivity
analysis and process experts. The experts also selected two models for the
final implementation, which included the four most influential inputs from
the GP variable selection - x2, x5, x6, and x8. The correlation coefficient of
the selected models is 0.93 and 0.94, much higher than the linear option and
within the regulatory limits. The application details are given in (Kordon at
ah 2003).

Variable Selection in Industrial Datasets Using Pareto GP 89

Table 6-1. Sensitivity analysis of models in the population at the last generation (mean and
standard deviation over five independent runs)

-r

r*n

^

rhtfl ffi

r ^ :

0.35

0.3

0,25

r ^ Ulr^

-I j -1

„ ^

1 2 3 4 5 6 7
input variables

1 2 3 4 5 B 7
input vanables

Figure 6-5. Population size 100 Figure 6-6. Population size 1000

Table 6-2. Sensitivity analysis of models in the archive at the last generation (mean and stan­
dard deviation over five independent runs)

8 0,1

0,05

^
2 3 4 5 6 7

input variables

_I±1 SA

* •

2 3 4 5 6 7
Input variables

Figure 6-7. Population size 100 Figure 6-8. Population size 1000

90 GENETIC PROGRAMMING THEORY AND PRACTICE III

1.6

1.4

1.2

1

I 0.8

0.6

0.4

0.2

0
3 4 5 6

input variables

Figure 6-9, Variable importance in the projection (VIP) of the 8 inputs based on a two princi­
pal components PCA-PLS model of the emissions soft sensor

Variable Selection on High-Dimensional Industrial Data

The inferential sensor in the high-dimensional application predicts pro­
pylene concentration. This application illustrates the scale-up performance
of the proposed method on an industrial problem with a much larger search
space. The results from the GP sensitivity analysis are shown in Figure 6-10,
6-11 and the results from the corresponding linear variable ranking are
shown in Figure 6-12.

In this case the difference between the linear and nonlinear variable se­
lection is significant. The GP-based sensitivity analysis identifies four clear
winners - inputs x4, x6, x8, and x21 (see Figures 6-10 and 6-11) - whereas
the linear variable ranking suggests 12 important variables with VIP > 1:
inputs x4, x5, x6, x8, x9, xl9, xl l , xl2, xl4, xl5, x20, and x22 (see Figure
6-12). The proposed reduction of the search space based on the linear rank­
ing is much less, and an important variable, input x21 is missing. For the
final implementation an ensemble of four models has been designed. The
selected models from the process expert included the four inputs, based on
the GP sensitivity analysis, i.e., inputs x4, x6, x8, and x21, and input xl l ,
recommended in a backup model from the experts. The application details
are given in (Jordaan et al, 2004).

Variable Selection in Industrial Datasets Using Pareto GP 91

Table 6-3. Sensitivity analysis of models in the archive at the last generation (mean and stan­
dard deviation over five independent runs)

iJiilii blTl̂ J|l.,r|î ji. h it alUt^ fill l l ^ r ^ l

15 20 15 20

Figure 6-10. Population size 100 Figure 6-11. Population size 1000

ni]

input variables

Figure 6-12. Variable importance in the projection (VIP) of the 23 inputs based on a four
principal components PCA-PLS model of the propylene soft sensor

Summary

Sensitivity analysis using Genetic Programming and more specifically
Pareto GP has been used successfully in many industrial applications to do
nonlinear variable selection. It has been observed that the results are quite

92 GENETIC PROGRAMMING THEORY AND PRACTICE III

consistent and often allow for a considerable reduction in the feature space
before final models are built. This, in general, leads to more robust models.
The variable sensitivity is accomplished through a relatively simple fitness
inheritance scheme that imposes little additional overhead in terms of com­
putational effort.

References

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic Program­
ming: An Introduction, San Francisco, CA: Morgan Kaufmann.

Cherkassky V, Mulier, F., 1998, "Leaming from data, Concepts, Theory and Meth­
ods", Wiley Interscience, ISBN 0-471-15493-8.

Draper, N. R. and Smith, H. (1981) Applied Regression Analysis, Second Edition,
New York, NY: Wiley.

Eriksson, L., Johansson, E., Wold, N., and Wold, S. (2001). Multi and Megavariate
Data Analysis: Principles and Applications, Umea, Sweden, Umetrics Academy.

Francone, F. et al (2004). Discrimination of Unexploded Ordnance from Clutter
Using Linear Genetic Programming, Genetic and Evolutionary Computation
Conference, Late Breaking Papers.

Gilbert, R.J., Goodacre, R., Shann, B., Taylor, J., Rowland, J.J. and Kell, D.B.,
Genetic Programming-Based Variable Selection for High-Dimensional Data, in
J.R.Koza et al, editors. Genetic Programming 1998: Proceedings of the Third
Annual Conference (GP-98), Madison, WI 22-25 July 1998, Morgan Kaufmann,
San Fransisco, CA.

Ohnson, H.E, Gilbert, R.J., Winson, M.K., Goodacre, R., Smith, A.R., Rowand, J.J.,
Hall, M.A. and Kell, D.B. Explanatory Analysis of he Metabolome Using Genetic
Programming of Simple, Interpretable Rules, in Genetic Programming and
Evolvable Machines, Vol 1 (2000)

Jordaan, E., Kordon, A., Smits, G., and Chiang L. (2004). Robust Inferential Sensors
based on Ensemble of predictors generated by Genetic Programming, In Pro­
ceedings ofPPSN2004, pp. 522-531, Birmingham, UK.

Kordon, A., Smits, G., Kalos, A., and Jordaan, E.(2003). Robust Soft Sensor Devel­
opment Using Genetic Programming, In Nature-Inspired Methods in Chemomet-
ricsy (R. Leardi-Editor), Amsterdam: Elsevier

Kotanchek, M, Smits, G. and Kordon, A. (2003). Industrial Strength Genetic Pro­
gramming, In Genetic Programming Theory and Practice,pp 239-258, R. Riolo
and B. Worzel (Eds), Boston, MA:Kluwer.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection, Cambridge, MA: MIT Press.

RML Technologies, Inc. (2002) Discipulus Owner's Manual.
SaltelH A., Chan K., and Scott E. (2001). Sensitivity Analysis, Baffins Lane, Chich­

ester, UK: Wiley.
Smits, G. and Kotanchek. (2004), Pareto -Front Exploitation in Symbolic Regres­

sion, Genetic Programming Theory and Practice, pp 283-300, R. Riolo and B.
Worzel (Eds), Boston, MA:Kluwer.

Chapter 7

A HIGHER-ORDER FUNCTION APPROACH TO
EVOLVE RECURSIVE PROGRAMS

Tina Yû
Chevron Information Technology Company

Abstract We demonstrate a functional style recursion implementation to evolve recursive
programs. This approach re-expresses a recursive program using a non-recursive
application of a higher-order function. It divides a program recursion pattern into
two parts: the recursion code and the application of the code. With the higher-
order functions handling recursion code application, GP effort becomes focused
on the generation of recursion code. We employed this method to evolve two
recursive programs: a STRSTR C library function, and programs that produce
the Fibonacci sequence. In both cases, the program space defined by higher-
order functions are much easier for GP to search and to find a solution. We have
learned about higher-order function selection and fitness assignment through this
study. The next step will be to test the approach on applications with open-ended
solutions, such as evolutionary design.

Keywords: recursion, Fibonacci sequence, strstr, PolyGP, type systems, higher-order func­
tions, recursion patterns, filter, foldr, scanr, A abstraction, functional program­
ming languages, Haskell

!• Introduction
In August of 2000, I met Inman Harvey at the Seventh International Con­

ference on Artificial Life in Portland, Oregon. "I just finished my Ph.D in
genetic programming last year," I told Inman at the dinner table. "Great, I have
a challenge for you. Can you evolve (faster than random search) the STRSTR
program?"

94 GENETIC PROGRAMMING THEORY AND PRACTICE III

He was referring to the C library function which scans the first appearance
of one character string in another character string. If the first string does not
exist in the second string, STRSTR returns an empty string. For example ^

strstr (''example'\ ''test example'') = ''example''
strstr (''example'',''example test'') = ''example test''
strstr ("example" ,"test") ^ <' <'

This program clearly needs recursion or iteration, a subject which I spent half
of my Ph.D to investigate. Although I was eager to undertake the challenge,
many other projects had higher priorities at that time. It was not until early this
year when I got the chance to work on this problem.

In this chapter, I present my results of using a higher-order function ap­
proach to evolve the STRSTR program. Additionally, I will show that programs
generating the Fibonacci sequence can be evolved using higher-order functions.

This chapter is organized as follows: Section 2 explains higher-order func­
tions and reviews previous work on using higher-order functions to evolve
computer programs. In Section 3, the PolyGP system is described. Section
4 presents Genetic Programming (GP) (Koza, 1992) experiments to evolve
STRSTR. The experiments to generate programs producing the Fibonacci se­
quence are given in Section 5. In Section 6, we discuss our results and review
other approaches to evolve recursive programs. Finally, section 7 concludes
the chapter.

2, Higher-Order Functions and Program Evolution
Higher-order functions are functions which take other functions as inputs or

return functions as outputs. This ability to pass functions around as inputs and
outputs can be used to express patterns of recursion. A recursion pattern has
two components: operations (recursion code) and application of the operations.
By extracting the operations into a function and passing it to a higher-order
function, the operations can be carried out by the higher-order function.

For example, if the pattern of recursion is performing a series of operations
on every element of a list, the operation can be extracted as a function/ which
is then passed as an argument to the higher-order function map, which applies
it to every element of the list:

map f [] = []
map f list = cons (f (head list)) (map f (tail list))

map (+1) [1,2,3,4,5] = [2,3,4,5,6]

'in this study, STRSTR returns a character string itself instead of the pointer to the character string.

Evolving Recursive Programs Using Higher-Order Functions 95

Consequently, a recursive function can be re-expressed using a non-recursive
application of a higher-order function (Field and Harrison, 1988).

In a previous work, we have adapted this programming style to evolve recur­
sive EVEN-PARITY programs (Yu, 1999). Semantically, EVEN-PARITY takes
a list of Boolean inputs and returns True if an even number of inputs are True
and Fa l se otherwise. Experienced circuit design engineers might be able to
identify one or two familiar methods to obtain recursion. One example is ap­
plying XOR to each pair of the Boolean inputs and then negating the result as
the final output.

When combined with the higher-order function foldr (with polymorphic
types), the PolyGP system (described in Section 3) discovered 8 different recur­
sion patterns; each of which operates differently by applying different Boolean
function (xOR, NOR, NAND) to the Boolean input pairs (Yu,1999, Chapter 6).
This work not only shows that higher-order functions provide a feasible way to
evolve recursive programs, but also demonstrates the power of GP for discov­
ering solutions that are beyond human capability.

Higher-order functions are not restricted to express recursion patterns for list
data structures. Other data types, such as tree and integer, can have higher-order
functions defined over them to carry out the recursive operations. In Section 5,
we will show such an example. In that case, a higher-order function is defined
over an integer value. A set of operations are performed repeatedly until the
integer value reaches zero. We have applied this higher-order function to evolve
programs generating the Fibonacci sequence successfully.

Higher-order functions are not expressly limited to programs with recursion
patterns. Non-recursive programs can also incorporate higher-order functions
to create modular programs. As an argument to a higher-order function, a
function becomes a self-contained module (a A abstraction) in a program. This
module has its own identity and can only exchange materials with the same
kind of modules in another program during evolution. Consequently, higher-
order functions provide the ability to explore the regularity in a given problem
during GP evolution. This module mechanism has been incorporated with GP
to evolve financial technical trading rules based on S&P500 index (Yu et al.,
2004). Those results demonstrated that modular GP rules give higher returns
than the returns of non-modular GP rules.

96 GENETIC PROGRAMMING THEORY AND PRACTICE III

3. The PolyGP System
PolyGP (Yu, 1999) is a GP system which is able to evolve programs con­

taining higher-order functions. The programs have the following syntax:

exp :: c constant

I X identifier

I / built-in function

I expl exp2 application of one expression to another

I Xx,exp lambda abstraction

Constants and identifiers are given in the terminal set while built-in functions
are provided in the function set. Application of expressions and A abstractions
are constructed by the system.

Each program expression has an associated type. The types of constants and
identifiers are specified with known types or type variables. For example, the
input variable strl has type [char] and constant True has Boolean type.

s t r l : : [c h a r]
True: :Bool

Each function in the function set is also specified with its argument and
return types. For example, the function and takes two Boolean type inputs,
and returns a Boolean type output.

and::Bool-^Bool-^Bool

Higher-order functions have brackets around their function arguments. For
example,^ter takes two arguments: one is a function and the other is a [char]
type value. The function argument has type (c h a r ^ B o o l) , which indicates
that it is a function which takes one input of char type and return a Boolean
value. The output of filter is a [char] value.

f i l t e r : : (char-^Bool)—>[char]—>[char]

Using the specified type information, a type system selects type-matching
functions and terminals to construct type-correct program trees. A program
tree is grown from the top node downwards. There is a required type for the top
node of the tree. The type system selects a function whose return type matches
the required type. The selected function will require arguments to be created
at the next (lower) level in the tree; there will be type requirements for each
of those arguments. If the argument has a function type, a A abstraction tree
will be created. Otherwise, the type system will randomly select a function (or
a terminal) whose return type matches the new required type to construct the
argument node. This process is repeated many times until the permitted tree
depth is reached.

Evolving Recursive Programs Using Higher-Order Functions 97

Lambda Abstraction and Higher-order Functions
A abstractions are local function definitions, similar to function definitions in

a conventional language such as C. The following is an example A abstraction
together with an equivalent C function:

(Ax (+ X 1)) (A abstraction)
Inc (int x){return (x+1)} (C function)

However, A abstractions are anonymous and can not be invoked by name.
The application of A abstractions is done by passing them as arguments to a
higher-order function. The following shows the above defined A abstraction is
applied by the higher-order function twice:

twice f X = f (f x)
twice (Ax (+ X 1)) 2
= (A X (+ X 1))((A X (+ X D) 2)
= + ((A X (+ X D) 2) 1
= + (+ 2 1) 1
= + 3 1
= 4

The procedure to create A abstraction trees is similar to that used to create
the main program tree. The only difference is that their terminal set consists
not only of the terminal set used to create the main program, but also the input
variables to the A abstraction. Input variable naming in A abstractions follows a
simple rule: each input variable is uniquely named with a hash symbol followed
by an unique integer, e.g. #1, #2. This consistent naming style allows cross­
over to be easily performed between A abstraction trees with the same number
and the same type of inputs and outputs. Figure 7-1 gives the program tree with
higher-order function twice and A abstraction described in the above example.

Figure 7-1. The program tree with higher-order function twice and A abstraction.

98 GENETIC PROGRAMMING THEORY AND PRACTICE III

4. Evolving STRSTR Programs

To evolve STRSTR program, the first step is to select higher-order functions
that facilitate the evolution of recursion patterns. Functional programming
languages, such as Haskell , have a rich set of higher-order functions in their
libraries. From the Haskell library (Jones, 2002), we selected two higher-order
functions: filter and scanr.

The function filter applies a predicate to a list and returns the list of those
elements that satisfy the predicate.

f i l t e r : : (a—>Bool)--^[a]—>[a]
f i l t e r (/= ^pO [' a ' , ' p ' , ' p \ ' l ' , ' e ^] = [^ a ' , ' l \ ' e ']

The function scanr first applies its function argument if) to the last item
of the list argument and the second argument {qO). Next, it applies/ to the
penultimate item from the end of the list argument and the result from the
previous application. This operation continues until all elements in the list
argument is processed. It then retums the list of all intermediate and final
results.

scanr: : (a—>b—>b) —^b-^ [a] -^ [b]
scanr f qO [] = [qO]
scanr f qO (x:xs) = f x q:qs

where qs@(q_)= scanr f qO xs

scanr cons [] [̂ 'apple''] =
Capple''/'pple'\''ple'\''le'S''e''] .

In addition, the library function isPrefixOf is handy for implementing
STRSTR. It checks if the first argument is a prefix of the second argument.

i sP re f ixOf : : [a] - ^ [a]->Bool
isPrefixOf C a p p "] C a p p l e ' '] = True

With the 3 library functions, STRSTR function is defined as:

s t r s t r s t r l s t r 2 =
head (f i l t e r (isPref ixOf s t r l) (scanr cons [] s t r 2))

Here, scanr produces all sub-strings of the input str2. The function filter
checks each of the sub-strings and retums the list of the sub-strings where strl
is the prefix. The function head then retums the first sub-string in the list. This
STRSTR implementation works fine as long as strl occurs in str2. When this is
not the case, filter would retum an empty list, which will cause head retum a
mn-time error. To avoid such an error, a function headORnil is defined:

headORnil [] = []
headORnil list = head list

Evolving Recursive Programs Using Higher-Order Functions 99

The recursive STRSTR defined using higher-order functions is therefore:

strstr strl str2=

headORnil (filter (isPrefixOf strl) (scanr cons [] str2)

Figure 7-2a is the defined STRSTR program tree. As explained, the role of
higher-order functions in a recursive program is to apply the recursion code to
data inputs. The recursion code, however, is defined by programmers. In the
case where GP is the programmer, we have to provide terminals and functions
for GP to evolve the code. Figure 7-2b shows the areas of the code which are
generated by GP. In particular, the triangle with a A root is the recursion code for
filter to apply. The recursion code for scanr is inside the other triangle which
is also evolved by GP.

Figure 7-2a. The defined recursive Figure 7-2b. The STRSTR program tree
STRSTR program tree. structure; the code inside the two triangles

will be evolved by GR

Experimental Setup
Table 7-1 gives the function set for GP to evolve STRSTR. Among them,

three are higher-order functions: filter and scanr are selected from the Haskell
library while fold2lists is defined for GP to evolve a function operating like
isPrefixOf. foldllists is an extension of foldr. Instead of applying recursion
code on single list, foldllists applies recursion code over two lists. When an
empty list is encountered, foldllists returns different default value, depending
on which one of the two lists is empty.

fold21ists f defaultl default2 [] list2 = defaultl

fold21ists f defaultl default2 listl [] = default2

fold21ists f defaultl default2 (frontl:restl)(front2:rest2) =

f frontl front2 (fold21ists f defaultl default2 restl rest2)

The second column of Table 7-1 specifies the type of each function. We
used special types such as input and output to constrain the functions on

100 GENETIC PROGRAMMING THEORY AND PRACTICE III

certain tree nodes, so that the top two layers of the program trees have the same
structure as that shown in Figure 7-2b.

For example, we specify the return type of STRSTR to be [output]. The only
function which returns this type is headORniU which will always be selected as
the program tree root. The single argument of headORnil has type [[output]]
and the only function that returns this type \^filter, which will always be selected
as the argument node below headORnil, Although there are other ways to
constrain tree structures, typing is convenient since the PolyGP system has a
powerful type system to perform type checking for the program trees.

Table 7-1. Function Set

function type

headORnil \output\ —> [output]
filter {[char] -^ Bool) —̂ |c/iar] —> {output}
scanr {char -^ [char] -^ [char]) —> [output] -^ [output] —> [c/iar|
cons char -^ [char] —> [char]
fold21ists {char -^ char —> Bool —> Bool) —> Bool —> Bool —>

[input] —̂ [c/iar] —> Bool
and Bool -^ Bool —> Bool

Table 7-2 gives the terminal set. The variable strl will always be selected as
the fourth argument to fold2lists. Similarly, str2 and [] will always be selected
as either the second or the third argument to scanr. At a first look, it seems that
the program trees are so constrained that the generation of STRSTR programs
would be very easy. However, after careful examination, you will find that all
that have been specified are the skeleton of STRSTR program: the higher-order
functions and the inputs list which the recursion code will apply. The core of a
recursive program, the recursion code must be discovered by GP.

terminal

strl
true
[]

Table 7-2.

type

[input]
Bool
[output]

Terminal Set

terminal

str2
false

type

[output]
Bool

The GP parameters are given in Table 7-3 while the three test cases used to
evaluate GP programs are listed in Table 7-4. For this problem, three test cases
are sufficient as they include all possible scenarios: the first string appears at
the beginning of the second string; the first string appears in the middle of the
second string and the first string does not exist in the second string.

Evolving Recursive Programs Using Higher-Order Functions 101

population size
maximum tree depth
mutation rate
selection method

Table 7-3. GP Parameters

500 max generation
5 crossover rate
40% copy rate
tournament of size 2 number of runs

100
50%
10%
100

The fitness function is defined as follows:

/-p»w.^«+{r:Är^:r"^ length(i?^) > length(E^
length(Ä^)), otherwise

R is the output returned by a GP program and E is the expected output; diff
computes the number of different characters between the two outputs. If the
two outputs have different length, diff stops computing when the shorter output
ends. The length difference then becomes a penalty in the fitness calculation.
Note that a program which returns an output shorter than the expected length
is given a penalty five times higher than a program which returns an output
longer than the expected length. This is based on my observation that the most
frequently produced shorter output is an empty list. Such programs obtain
a reasonably good fitness by satisfying the easiest test case: case number 3.
However, they are very poor in handling the other two test cases. Once the
population converges toward that kind of program, some important terminal
nodes (e,g. False) become distinct and crossover or mutation are not able to
correct them. To avoid such premature convergence, programs which generate
shorter outputs than the expected outputs are penalized severely. A program
which satisfies all 3 test cases successfully has fitness 0.

case no.

1
2
3

Table 7-4.

strl

"sample"
"sample"
"sample"

Three Test Cases

str2

"sample test"
"test sample"
"test"

expected output

"sample test"
"sample"

Results
The program space turns out to be very easy for GP to search: all 100 runs

find a solution before generation 31. The "computation effort" required to find

102 GENETIC PROGRAMMING THEORY AND PRACTICE III

a solution is given in Figure 7-3a. The minimum number of programs GP has
to process in order to find a solution is 20,000.

The computational effort was calculated using the method described in (Koza,
1992). First, the cumulative probability of success by generation / using a
population size M (F(MJ)) is computes. This is the total number of of runs
that succeeded on or before the ith generation, divided by the total number runs
conducted. Next, the number of individuals that must be processed to produce a
solution by generation / with probability greater than z (by convention, z=99%)
is computed using the following equation:

The hardware CPU time used on a Pentium 4 machine to complete the 100
runs is 40 minutes, which is longer than our other GP experimental runs. This
is because each program has 3 recursions. In particular, fold2lists is inside of
filter. This nested recursion takes machines a long time to evaluate.

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Figure 7-3a. Computation effort required
to generate a STRSTR programs.

Figure 7-3b. The average population fit­
ness during program evolution.

After editing, all evolved STRSTR programs look the same (see Figure 7-4).
The scanr function generates a list of sub-strings from input str2. The filter
function then removes the sub-strings whose initial characters do not match the
input strl. The headORnil function then retums the first item in the resulting
list. If the resulting list is empty, headORnil retums an empty list.

To investigate if a random search can do as well a job as GP does for this
problem, we made 100 random search runs, each of which generated 20,000
programs randomly. None of them found a solution. We also evaluated the
average population fitness of the 100 GP runs (see Figure 7-3b). They show
the average population fitness improves as the evolution progress (the data after
generation 18 are insignificant as they are based on a very small number of

Evolving Recursive Programs Using Higher-Order Functions 103

Figure 7-4, The shortest STRSTR program generated by GP.

runs); the improvement is particularly evident during the first 8 generations. In
other words, GP search leads the population converge toward fitter solutions
and finds an optimal at the end. All the evidences indicate that fitness and
selection have positive impact on the search. GP is a better search algorithm
than random search to find STRSTR programs in this program search space.

5. Fibonacci Sequence
Fibonacci sequence is defined as the following:

«. X _ f 1 ,if n=Oorn=l
•̂ ^ ^ ~ I Ui-i + ni-2 > otherwise

To generate the first n values of the sequence, a program has to compute the
two previous sequence values recursively for n time. The recursion, recursion
pattem in this case is therefore applying some operations over an integer value.
A higher-order function/oWn is designed for this pattem of recursion:

foldn: : ([int]—^ [int])^int—>input—» [output]—^ [output]

foldn f default 0 list = cons default list

foldn f default 1 list = cons default (foldn f default 0 list)

foldn f default n list = f (foldn f default n-1 list)

Here, list is an accumulator to store the sequence values generated so far. The
recursion code (/) is applied on the accumulator to compute the next sequence
value. As mentioned previously, the role of higher-order functions in a recursive
program is to apply the recursion code, which are generated by GP. In Figure 7-5,
the left triangle is the recursion code area. The right triangle is the default value.
Both of them are generated by GP . Similar to the previous experiment, we use

104 GENETIC PROGRAMMING THEORY AND PRACTICE III

special types input and output to constrain the functions and terminals on
certain tree nodes so that the evolved program trees have the specified structure.

Figure 7-5. The program tree structure; the area inside the two triangles are generated by GP.

Experimental Setup
The function and terminal sets are given in Table 7-5 and Table 7-6 respec­

tively. We specify [output] as the program return type, hence enforce/oWn,
the only function that returns this type, to be the program tree root . This
function has four arguments; the third one will always be the variable n and the
fourth one will always be the variable list. Initially, accumulator list is an empty
list. It grows as the sequence values are generated. Randomint is a random
number generator which returns a random integer value in the range of 0 and
3. The GP parameters are listed in Table 7-3.

Table 7-5. Function Set

function type

foldn
plus
minus
head
tail
cons

{[int] -^ [int]) —> int
int —> int —> int
int —> int -^ int
[int] -^ int
[int] —> int
int —> [int] —> [int]

input -^ [output] —> [output]

Table 7-6. Terminal Set

terminal type terminal type terminal type

input list [output] randomint int

Each evolved GP program is tested on n value of 8. The expected return list
is therefore [34,21,13,8,5,3,2,1,1] . The fitness function is basically the
same as the one in the previous experiments. One exception is that there is a

Evolving Recursive Programs Using Higher-Order Functions 105

run-time error penalty of 10 for programs applying head or tail to an empty
list. The fitness function is therefore:

/ -:: diff(R,E)+10*rtError+
length(R)-length(E)
5*(length(E)-length(R))

,length(R)> length(E)
»otherwise

where R is the return list while E is the expected list. The run-time error flag
rtError is 1 if a run time error is encountered during program fitness evaluation.
Otherwise, it is 0.

Results
This program space is slightly harder than the STRSTR program space for

GP. Among 100 runs, 97 found a solution; all of them are general solutions
work for any value of n. The computation effort required to find a solution is
given in Figure 7-6a. The minimum number of programs evaluated by GP to
find a solution is 33,000. The hardware CPU time on a Pentium 4 machine to
complete the 100 runs is 7 minutes. After editing, all programs become the
same as that shown in Figure 7-7.

The left most branch in the program tree is the recursion code that the higher-
order function foldn applies to a list. It is a function, specified by A, with
one argument (#1). The argument is an accumulator containing the Fibonacci
sequence values generated so far. The function adds the first two elements of the
list together and then concatenates the result to the accumulator. This operation
is repeated until the input n becomes 0, when the default value 1 is returned. It
is a general solution that produces the first n values of the Fibonacci sequence.

generation

Figure 7-6a. Computation effort required
to evolve a program generating Fibonacci
sequence.

Figure 7-6b. The average population fit­
ness during program evolution.

We also made 100 random search runs, each generates 33,000 programs
randomly. Similar to the results of the STRSTR experiments, none of them
found a program capable of producing the Fibonacci sequence. The average

106 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 7-7. The shortest program generated by GP.

population fitness of the 100 GP runs in Figure 7-6b indicates that GP search
guided by fitness and selection has led the population converging toward fitter
programs and found an optimal at the end. This supports the case that GP is a
better search algorithm for this program space.

6. Discussion
Recursion is a powerful programming technique that not only reduces pro­

gram size through reuse but also improves program scalability. Evolving recur­
sive programs, however, has not been easy due to issues such as non-termination
and fitness assignment (Yu, 1999, Chapter 3). By re-expressing recursive pro­
grams using non-recursive application of a higher-order function, the produced
recursive programs always terminate. It is therefore a promising approach to
evolve recursive programs.

In a previous work, we have shown that when using higher-order function
foldr (with monomorphic types) to define recursive EVEN-PARITY, the problem
difficulty is greatly reduced. In fact, random search is sufficient to find a solution
in this program space (Yu, 1999, Chapter 7). In this chapter, we study two other
recursive programs using a similar approach. Both program spaces defined by
higher-order functions are not difficult for GP to find a solution. Random
search, however, could not find a solution. Further analysis of population
average fitness confirms that GP search is indeed superior than random search
in these two problem spaces.

One important characteristic of this approach is that GP effort is mostly
on evolving the recursion code (A abstractions). The application of the code
is handled by higher-order functions. It is important to note that GP has no
knowledge about how the recursion code is applied. The relationship between
the code and its application is leamed through the iterative process of programs

Evolving Recursive Programs Using Higher-Order Functions 107

evaluation, correction and selection. Our experimental results indicate that GP
is able to acquire such knowledge to evolve recursion code that work with the
higher-order function to produce correct outputs.

Although incorporating designed/selected higher-order functions is an effec­
tive way to evolve recursive programs, it has its shortcoming: domain knowl­
edge are not always available to design/select the appropriate higher-order func­
tions. A more general approach would be to let GP evolve the higher-order func­
tions suitable for a given problem. In this way, problems with poorly-defined
scope can also benefit this technique.

Koza and his colleagues proposed Automatic Defined Recursion (ADR) as
a way for GP to evolve recursive programs (Koza et al., 1999). An ADR tree
has 4 branches: condition, body, update and ground. Since an ADR can call
itself inside its body and the update branch may be ill-defined during program
evolution, an ADR may never terminate. It is therefore necessary to set an
ADR execution limit when evolving recursive programs. They have employed
ADR with architecture-alternating operations to successfully evolve programs
generating the Fibonacci sequence. However, the solution is not general and
does not work for input n beyond 12.

Through incremental program transformation, Olsson showed that recursive
programs can be developed by his ADATE system (Olsson, 1995). Instead of
relying on fitness-based selection and genetic operation, his system applies four
transformation operations to induce recursive programs. He gave some example
programs, such as a sorting algorithm, which were successfully generated using
this approach.

7. Conclusions
Functional implementation of recursive programs is not well understood nor

utilized in the GP community. The implementation does not make explicit re­
cursive calls. Instead, recursion is carried out by non-recursive application of
a higher-order function. This chapter explains this style of recursion imple­
mentation and demonstrates one way to incorporate it in a GP system to evolve
recursive programs.

In this GP system, higher-order functions are included in the function set.
Recursion occurs when a higher-order function appears in a program tree node.
We applied this GP system to evolve two recursive programs. In the first case,
a challenge by Inman Harvey, multiple recursions are involved. We selected
two Haskell library functions and designed one higher-order function for these
recursion patterns. In the second case, a higher-order function operating over
an integer value is designed. In both cases, the GP system is able to evolve
the recursive programs successfully by evaluating a small number of programs.
Random search, however, is not able to find a solution.

108 GENETIC PROGRAMMING THEORY AND PRACTICE III

These results clearly endorse GP ability to evolve recursive programs that
random search can not. Yet, the success is linked to the problem-specific higher-
order functions. When domain knowledge is available, like the two problems
we studied, identify such higher-order functions is not hard. However, when
this is not the case, it becomes unclear if GP is able to compose the recursive
code to work with a general purpose higher-order function. An altemative
approach is to have GP evolve the problem-specific higher-order functions. In
this way, the GP system is more general and can be applied to problems that do
not have a well-defined scope. This is the area of our future research.

Are we ready to tackle real-world problems using this approach? Maybe.
We have learned quite a deal about higher-order functions selection and fit­
ness assignment. However, both problems we studied have known solutions,
which help the selection of higher-order functions. Most real-world problems
are open-ended in the sense that there is no known optimum. However, this
does not preclude the possibility of applying the method. In particular, in the
area of evolutionary design where creativity is essential to problem solving, an
imperfect higher-order function might still be able to deliver good solutions.

8. Acknowledgements
I thank Lee Spector and Inman Harvey for their comments and suggestions.

References
Field, Anthony J. and Harrison, Peter G. (1988). Functional Programming.

Addison-Wesley Publishing Company.
Jones, Simon Peyton (2002). Haskell 98 language and libraries, the revised

report. Technical report, Haskell Org.
Koza, John R. (1992). Genetic Programming: On the Programming of Com­

puters by Means of Natural Selection, MIT Press, Cambridge, MA, USA.
Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).

Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Olsson, Roland (1995). Inductive functional programming using incremental
program transformation. Artificial Intelligence, 74(1):55-81.

Yu, Gwoing Tina (1999). An Analysis of the Impact of Functional Program­
ming Techniques on Genetic Programming. PhD thesis. University College,
London, Gower Street, London, WCIE 6BT.

Yu, Tina, Chen, Shu-Heng, and Kuo, Tzu-Wen (2004). Discovering financial
technical trading rules using genetic programming with lambda abstraction.
In U-M O'Reilly, T. Yu, R. Riolo and Worzel, B., editors. Genetic Program­
ming Theory and Practice 11, pages 11-30.

Chapter 8

TRIVIAL GEOGRAPHY
IN GENETIC PROGRAMMING

Lee Specter^ and Jon Klein '̂̂
1 2
Cognitive Science, Hampshire College, Amherst, MA, 01002-3359 USA; Physical Resource

Theory, Chalmers University of Technology & Göteborg University, Göteborg, Sweden.

Abstract Geographical distribution is widely held to be a major determinant of evolution­
ary dynamics. Correspondingly, genetic programming theorists and practitioners
have long developed, used, and studied systems in which populations are struc­
tured in quasi-geographical ways. Here we show that a remarkably simple version
of this idea produces surprisingly dramatic improvements in problem-solving
performance on a suite of test problems. The scheme is trivial to implement, in
some cases involving little more than the addition of a modulus operation in the
population access function, and yet it provides significant benefits on all of our
test problems (ten symbolic regression problems and a quantum computing prob­
lem). We recommend the broader adoption of this form of "trivial geography" in
genetic programming systems.

Keywords: geography, locality, demes, symbolic regression, quantum computing

1. Geography
All biological populations are distributed in space, with the result that some

organisms are close neighbors while others live at great distances from one
another. It has long been recognized that such geographical distribution, even
in uniform environments, can influence evolutionary dynamics in significant and
complex ways (Mayr, 1942; Wright, 1945; Avise, 2000;Liebermanetal., 2005).
In particular, positive influences of geographical distribution on the evolution of
individuals with certain desirable features {e,g, altruistic behavior) have been
demonstrated in both analytical models and simulations (Eshel, 1972; Nowak
and May, 1992; Axelrod et al., 2004; Spector and Klein, 2005a).

110 GENETIC PROGRAMMING THEORY AND PRACTICE III

It is therefore not surprising that many evolutionary computation systems
also model some form of geography, locating their evolving individuals within
grid-based or continuous virtual spaces. This is a particularly natural move
for systems that are designed to model aspects of natural ecosystems (Ray,
1991; Holland, 1995; Ofria and Wilke, 2004). But it is also a popular move
in problem-solving evolutionary computation systems, in the context of which
geography is often justified by the ways in which it can be used to maintain
population diversity.

Standard genetic algorithms and genetic programming techniques are non-
spatial in their most common formulations (Holland, 1992; Koza, 1992; Banzhaf
et al., 1998). However, many researchers and practitioners routinely divide their
populations in to discrete or overlapping sub-populations, often called demes,
that provide a form of geography (Collins and Jefferson, 1991). In these systems
selection and competition takes place locally but selected individuals occasion­
ally mate or migrate across demes. Because the computations taking place
in different demes are generally independent—particularly when the demes
are non-overlapping, in which case they are sometimes called "islands"—one
can often run them on independent processors and reap benefits both of paral­
lelism and of the diversity maintenance supported by geographical distribution
(Maruyama et al , 1993; Nowostawski and Poll, 1999; Andre and Koza, 1996).

Demes have been demonstrated, in certain cases, to improve problem solving
performance (see e.g. (Collins and Jefferson, 1991; Fernandez et al., 2003)). A
wide range of connectivity patterns and migration regimes has been discussed in
the literature, and there are initial results linking specific connectivity patterns
to expected performance on specific problems (Bryden et al., 2005).

In this chapter we present a form of geography that is considerably sim­
pler than those generally used in genetic programming. Our trivial geography
model is a 1-dimensional "overlapping neighborhoods" model that implements
a concept of geography similar to that used in many artificial life simulations
(Ray, 1991; Ofria and Wilke, 2004; Axelrod et al., 2004). It is also similar
in many respects to the "local selection" genetic algorithm of Collins and Jef­
ferson (1991); although their work is often cited as inspiration for the use of
isolated demes with migration, the individuals in their model were actually
distributed across 1-dimensional or 2-dimensional grids, with one individual
per grid location, and selection and mating were performed in local areas of
the grid. For example, short random walks through the grid were used to pair
mates. A more recent genetic programming model, known as "cellular" or "dif­
fusion" genetic programming, locates individuals on a 2-dimensional grid and
allows interactions only between immediate neighbors (Pettey, 1997; Folino
et al., 1999; Folino et al., 2003). Several other models involving related notions
of locality have been used in other genetic programming work, often in the con-

Trivial Geography in Genetic Programming 111

text of additional innovations (e,g, co-evolution or autoconstructive evolution)
(D'haeseleer and Bluming, 1994; Spector, 2001).

Trivial geography requires no explicit representation of demes, connectivity
patterns, or migration rates. It requires only minimal changes to a standard
genetic programming system and a single new parameter. The question we
set out to investigate was whether such a minimal form of geography could
make much of a difference with respect to problem-solving performance, and
if so what that difference might be. Our data show that trivial geography does
indeed appear to make a substantial positive difference, improving problem-
solving performance.

In the next section we describe our concept of trivial geography and its sim­
ple implementation. This is followed by two sections demonstrating the utility
of trivial geography, first on a suite of ten symbolic regression problems and
then on a difficult problem in quantum computing. We follow these demonstra­
tions with a general discussion and a recommendation that trivial geography be
incorporated into genetic programming systems more broadly.

2. Trivial Geography
In our trivial geography scheme the population is viewed as having a 1-

dimensional spatial structure—actually a circle, as we consider the first and
last locations to be adjacent. The production of an individual for location i
is permitted to involve only parents from f s local neighborhood, where the
neighborhood is defined as all individuals within distance R (the neighborhood
radius) of i. Aside from this restriction no changes are made to the genetic
programming system.

This scheme can be applied to most standard genetic programming sys­
tems with very little effort. Since most systems store their populations in 1-
dimensional data structures (arrays or lists) anyway, all that is required is that
one restrict the selection of parents relative to the index of a child.

To avoid conflation of geography and genetic operators we assume that ge­
netic operators are chosen independently of location. Presumably the opera­
tors are chosen randomly, with biases incorporated into the random choice to
achieve desired operator ratios. This is indeed a common implementation strat­
egy (used, for example, in ECJ^), although in some implementations (e,g, that
described in (Koza, 1992)) a particular genetic operator is applied to produce
the first segment of the population, another operator is applied to produce the
next segment, and so on. Under such an implementation operators would be re­
stricted to certain geographic areas and one can imagine that strange dynamics

^http: / /cs .gmu.edu/~eclab/projects /ecj /

http://cs.gmu.edu/~eclab/projects/ecj/

112 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 8-1. Symbolic regression problems used for tests of trivial geography.

1
2
3
4
5
6
7
8
9
10

Problem

y = Sx^ + 3a;2 + X
y=:7x^- 3a;2 + 17x
y = 5a;3 + 12x2 - 3x
J/ — x^ + a;̂ + X
y = x^ — 2x2 _ ^
y = 8x̂ + 3x̂ + x̂ + 6
2/ = Tx̂ - 6x^ + 3x2 _,_ 172; _ 3
y = 5x'5 - 2x5 - 5x^ + 3x^ + 5
y = x^ + x^ + x2 + X — 8
y = x'' - 2x^ + x2 - 2

would result; one would probably want to convert first to location-independent
operator selection, which is itself usually a simple modification.

While trivial geography can be used with various selection schemes it is
particularly simple to describe in terms of tournament selection. In this context
it can be implemented simply by changing the function that chooses a random
individual to participate in a tournament. Whereas the standard scheme chooses
each such individual randomly from the entire population, in trivial geography
we choose each such individual from the neighborhood of the location for
which we are creating a new individual. In particular we choose only from
individuals with indices in the range {i — R^i-\- R), where i is the index of the
location for which we are creating an individual, i? is a radius parameter, and
we "wrap around" from the bottom to the top of the range and vice versa. ̂ The
modification to restrict the range of choices is indeed often trivial, involving
only one or a few lines of code.

3, Trivial Geography Applied to Symbolic Regression
We tested trivial geography on the ten arbitrarily chosen symbolic regres­

sion problems listed in Table 8-1. We used the PushGP genetic programming
system, which evolves programs in the Push language (Spector, 2001; Spector
and Robinson, 2002; Spector et al, 2005).^ Push is a multi-type, stack-based
programming language that supports the evolution of novel control structures

În some programming languages this "wrapping around" can be accomplished with a single call to the
modulus function.
•^http: //hampshire . edu/lspector/push. html

Trivial Geography in Genetic Programming 113

Table 8-2. Parameters for symbolic regression tests of trivial geography. The instruction set is
limited to simple integer manipulation and integer stack manipulation. The INPUT instruction
pushes the current input (x) value onto the integer stack.

Problems
Input (x) values

Fitness
Runs per problem

Radius (R)
Population size
Crossover rate
Mutation rate

Duplication rate
Tournament size

Maximum generations
Initial program size limit
Child program size limit
Program evaluation limit

Ephemeral random constants
Instructions

Symbolic regression problems listed in Table 8-1.
0-9
Sum of absolute values of errors for all inputs.
115 with trivial geography,
115 without trivial geography.
10
2000
40%
40%, fair mutation
(Crawford-Marks and Spector, 2002)
20%
7
200
100
100
100
integer (-10 ,10)
INTEGER,+, INTEGER.-, INTEGER.*,
INTEGER./,INTEGER.POP, INTEGER.DUP,
INTEGER.SWAP,INTEGER.SHOVE,
INTEGER.YANK,INTEGER.YANKDUP, INPUT

through explicit code and control manipulation, but none of these novel fea­
tures were used in the present study. For the experiments reported here we used
only a minimal integer-oriented instruction set, so that PushGP was acting here
much like any standard genetic programming system."̂ We have no reason to
believe that the remaining differences between PushGP and other genetic pro­
gramming systems contributed to our results in any significant way. The full
set of parameters used for our runs is presented in Table 8-2.

We examined the results in two ways, looking both at the "computational ef­
fort" required to find a solution (Koza, 1994) and the mean best fitness across all
runs on a particular problem. Computational effort was computed as described
by Koza (pp. 99-103), first calculating P{M, z), the cumulative probability of
success by generation / using a population of size M (this is just the total num­
ber of runs that succeeded on or before the iih generation, divided by the total
number of runs conducted). /(M, i, z), the number of individuals that must be

"̂ We used the version of PushGP distributed with the Breve simulation environment (Klein, 2002). Breve is
available from h t tp : //www. spiderland. org/breve.

114 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 8-3. Successes/runs and computational efforts for the symbolic regression problems with
and without trivial geography.

1
2
3
4
5
6
7
8
9
10

Successes/runs without
trivial geography

67/115
24/115
8/114

115/115
106/115
17/115
2/114
0/113

73/113
101/113

Effort without
trivial geography

600,000
3,024,000

12,566,000
36,000

132,000
5,928,000

54,810,000
oo

848,000
280,000

Successes/runs with
trivial geography

113/115
64/115
50/115

115/115
115/115
76/113
6/114
1/113

113/113
113/113

Effort with
trivial geography

316,000
2,176,000
3,160,000

30,000
66,000

1,840,000
38,406,000

144,282,000
276,000
164,000

processed to produce a solution by generation i with probability greater than z
(by convention, z =99%) is then calculated as:

I{M,i,z) = M * (i + 1) *
log(l - z)

log(l -P(M, i))

The minimum of /(M, i, z) over all values of i is defined to be the "compu­
tational effort" required to solve the problem.

The computational efforts calculated from our 2,283 runs (115 runs for
each of the 2 conditions for each of the 10 problems, with 17 runs lost to
miscellaneous system problems) are shown in Table 8-3. Lower efforts are,
of course, better, so this data demonstrates that trivial geography provides a
considerable benefit on all of the symbolic regression problems.

Because the problems vary widely in difficulty we also show, in Figure 8-1,
a graph of these results normalized independently for each problem, with the
effort for the standard configuration (without trivial geography) set to 100; the
values for the runs with trivial geography therefore indicate the computational
effort as a percentage of that in the standard configuration. From this graph it
is clear that the benefits provided by trivial geography are indeed substantial.

The mean best fitness values from our runs are shown in Table 8-4. Lower
fitness values are better, so this data also demonstrates that trivial geography
provides a considerable benefit for all of the symbolic regression problems.
We also show, in Figure 8-2, a graph of these results normalized for each
problem, with the mean best fitness for the standard configuration (without
trivial geography) set to 100; the values for the runs with trivial geography
therefore indicate the mean best fitness as a percentage of that in the standard
configuration. For problems #5, #9 and #10 trivial geography achieved a 100%

Trivial Geography in Genetic Programming 115

120

n 100

LU

CO
c
o
3 'S
Q.

E

N

80

60

40

20

n [1 1 r
With trivial geography ^ ^ a a

Without trivial geography \ f

Figure 8-]. Computational efforts calculated for the symbolic regression problems with and
without trivial geography. This plot is normalized independently for each problem, with the
values for runs in the standard configuration (without trivi al geography) shown as 100%. Problem
#8 is anomalous because no solutions were found without trivial geography, producing an infinite
computational effort.

solution rate (best fitness = 0 for all runs). Problem #4 was exceptionally
easy, leading to 100% solution rates in both configurations; both are therefore
plotted as 100%. From the mean best fitness values it is also clear that the
benefits provided by trivial geography are indeed substantial.

For the mean best fitness values we conducted T tests to assess the statistical
significance of the differences between the configurations with and without triv­
ial geography. Aside from problem #4 (in which both configurations achieved
100% solution rates) all differences are significant with p < 0.01.

4. Trivial Geography Applied to a Quantum Computing
Problem

Quantum information technology is expected to provide revolutionary ben­
efits for computing, but quantum computers are counter-intuitive and difficult
to program. Genetic programming can be used to automatically develop quan­
tum computing algorithms, and the resulting algorithms may be useful both
for solving practical problems and for answering open questions in the the-

52.50
98.67

148.77
0

5.51
7,149.94

957.43
27,475.48

22.41
1.81

0.65
19.13
48.39

0
0

63.19
332.48

16,859.71
0
0

116 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 8-4. Mean best fitness values (for which lower values are better) for the symbolic regres­
sion problems with and without trivial geography.

Mean best fitness without Mean best fitness with
trivial geography trivial geography

1
2
3
4
5
6
7

10

ory of quantum computing. A detailed discussion of the application of genetic
programming to quantum computing problems can be found in (Spector, 2004).

The problem we set out to solve, like many quantum computation problems,
involves determining how a "black box" computational gate called an oracle
transforms the qubits to which it is applied.^ In particular, we were interested
in determining whether a given 2-input, 1-output Boolean oracle flips its output
qubit under the conditions illustrated in Figure 8-3. That is, we are asked to
determine if the cases for which the oracle flips its output qubit satisfy the
logical formula {IQO V IQI) A (/lo V / n) , where lab indicates whether or not
the output is flipped for the input (a, b).

This problem, which is called the "AND/OR" oracle problem, has been the
subject of several of our previous investigations (Spector et al., 1999; Bamum
et al., 2000; Spector, 2004). We previously used genetic programming to find
quantum algorithms that perform better than any possible classical algorithm
(that is, they have lower probability of error) when restricted to a single ora­
cle call.We have recently been investigating the two-oracle-call version of this
problem. The lowest error probability obtainable by a probabilistic classical
algorithm on the two-oracle-call version of this problem is ^ = 0.1666,.., but
in our recent work we have found, using genetic programming, quantum algo­
rithms with an error probability of less than 0.11 (Spector and Klein, 2005b).

^ A qubit is the quantum analog of a classical "bit"; see (Spector, 2004) for a detailed description of qubits
and the ways in which they are manipulated by quantum gates.

Trivial Geography in Genetic Programming 117

CO
CO
0)

CD

•o

.N

E

120

100

t 80
(O

60

40

20

1 1 1 1 1 1 \ 1 1 — I

With trivial geography ^ M
Without trivial geography (=

2 3 4 5 6 7 8
Problem

9 10

Figure 8-2. Mean best fitness values (for which lower values are better) for the symbolic re­
gression problems with and without trivial geography. This plot is normalized independently for
each problem, with the values for runs in the standard configuration (without trivial geography)
shown as 100%. For problems #5, #9 and #10 trivial geography achieved a 100% solution rate
(fitness = 0 for all runs). For problem #4 both configurations achieved a 100% solution rate.

ORACLE(0,0) ORACLE(Q,l) ORACLE(l,0) ORACLE{l,l)

Figure 8-3. An "AND/OR" tree describing the property of interest in the AND/OR oracle
problem (see text).

118 GENETIC PROGRAMMING THEORY AND PRACTICE III

Our new results on the two-oracle-call AND/OR problem used trivial ge­
ography, and our anecdotal evidence led us to believe that trivial geography
played an important role in our success. But this work also involved inten­
sive runs with expensive fitness tests and large populations distributed across
a 23-CPU computer cluster. It was not practical to replicate runs of this scale
the hundreds of times that would be necessary to fully assess the contribution
of trivial geography, so we opted instead to conduct many smaller-scale runs
which, while they would not solve the problem of beating the classical error
probability, would still produce significant improvements in fitness.

We conducted 92 runs with and 92 runs without trivial geography, using the
parameters shown in Table 8-5 and, again, the version of the PushGP genetic
programming system that is distributed with the Breve simulation environment.
Fitness was assessed using the QGAME quantum computer simulator, a version
of which is also distributed with Breve. ̂

Computational effort is meaningful and finite only in the context of a success
criterion that is reached in at least some runs. But the difficulty of this problem,
relative to the resources we employed, prevented us from finding any solutions
that beat the classical error probability. Since there is no other obvious choice
for a success criterion we reportonly a comparison of mean best fitness values.

The mean best fitness for the runs without trivial geography was 0.51, while
the mean best fitness for the runs with trivial geography was better, at 0.32. A T
test shows this difference to be statistically significant with p < 0.005. Again,
we see a substantial improvement in problem-solving performance provided by
trivial geography.

5, Discussion
We have presented a simple modification to the standard genetic program­

ming technique that appears, from the tests we have run to date, to provide
substantial benefits to problem-solving performance on both artificial and real-
world problems. The modification incorporates notions of geographical distri­
bution that have a long history in evolutionary biology and many precedents
in genetic programming and other forms of evolutionary computation. Our
modification, however, is arguably simpler to implement than any of its prede­
cessors; in many cases it can be implemented in one or a handful of lines of
code. We were surprised to find that this "trivial" form of geography nonethe­
less provides real benefits, and although we cannot make general claims about
its utility^ we recommend that trivial geography be adopted more widely in
genetic programming systems.

^QGAME documentation and code is available from h t tp : //hampshire. edu/lspector/qgame .html.
^Such claims would require analysis and discussion of the results in the context of the No Free Lunch theorem
(Wolpert and Macready, 1997; Droste et al., 1999).

Trivial Geography in Genetic Programming 119

Table 8-5. Parameters for quantum computing tests of trivial geography. For this problem a
developmental approach was used in which certain instructions add quantum gates to a developing
"embryo"; see (Spector, 2004) for details.

Problem

Embryo

Fitness cases

Fitness function

Runs
Radius (R)

Population size
Crossover rate
Mutation rate

Duplication rate
Tournament size

Maximum generations
Initial program size limit
Child program size limit
Program evaluation limit

Ephemeral random constants
Instructions

AND/OR oracle problem (Spector, 2004), with two calls
to the oracle permitted.
Three-qubit quantum circuit with a final
measurement on one qubit (index 2 of (0-2)).
All possible two-input, one-output Boolean
oracles, specifically (looloihohi - answer):
0000:0, 0001:0, 0010:0, 0011:0,
0100:0,0101:1,0110:1,0111:1,
1000:0,1001:1, 1010:1, 1011:1,
1100:0, 1101:1, 1110:1, 1111:1
Misses + MaxError where Misses is the number
of cases for which the probability of error is greater
than 0.48 and MaxError is the maximum probability
of error of any case.
92 with trivial geography, 92 without trivial geography.
15
2500
40%
40%, fair mutation (Crawford-Marks and Spector, 2002)
20%
7
500
100
250
250
integer (-10,10), float (-10.0,10.0)
FLOAT.%, FLOAT.*, FLOAT.+, FLOAT.-, FLOAT./,
FLOAT.DUP, FLOAT.POP, FLOAT.SWAP,
FLOAT.FROMINTEGER, LIMITED-ORACLE, HADAMARD,
U-THETA, MEASURE, SRN, CNOT, U2, CPHASE, SWAP,
END

For researchers and practitioners using genetic programming systems that al­
ready involve geographical distribution (e.g, in isolated demes with migration)
an obvious practical question, not addressed here, is that of how trivial geogra­
phy compares to their presumably more complex techniques. One might also be
interested in the effects of combining several forms of geography, for example
by using an island model in which trivial geography is used within each island.
Although comparisons of these techniques are simple to make in principle, one
would have to conduct large numbers of tests using each of many geographical
schemes to make definitive recommendations. Our contention here is not that
trivial geography necessarily outperforms other forms of geography, but only

120 GENETIC PROGRAMMING THEORY AND PRACTICE III

that it appears to provide benefits over non-geographical models in many cases
for nearly no cost.

The mechanism by which trivial geography improves problem-solving per­
formance is presumably a form of diversity maintenance. An obvious follow-
up study would apply diversity measures to runs like those conducted here
and investigate the relations between problems, performance, and diversity.
Many diversity measures for genetic programming have been developed, as
have methodologies for correlating various diversity measures and aspects of
system performance (Burke et al., 2004).

The values of R, the neighborhood radius, that we used in the experiments
reported here (10 and 15) were chosen somewhat arbitrarily. We conducted
preliminary runs with several values of R and many appeared to perform well;
we chose the values that we did because they appeared to give good results, but
did not investigate other values of R systematically.

6. Summary
An extremely simple modification to the genetic programming algorithm,

incorporating "trivial geography," appears to improve problem-solving perfor­
mance for nearly no cost. This modification has many precedents in genetic
programming and evolutionary computation, but it is surprising that so simple
a form of the idea can have such substantial effects. We recommend that trivial
geography be adopted more broadly in genetic programming.

Acknowledgements
This material is based upon work supported by the National Science Founda­

tion under Grant No. 0308540 and Grant No. 0216344. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the National Science
Foundation. We thank Nie McPhee, Ellery Crane, Christian Jacob, and the
other participants in the Genetic Programming Theory and Practice Workshop
for many helpful comments that led to substantial improvements in this chapter.

References
Andre, David and Koza, John R. (1996). A parallel implementation of genetic

programming that achieves super-linear performance. In Arabnia, Hamid R.,
editor. Proceedings of the International Conference on Parallel and Dis­
tributed Processing Techniques and Applications, volume III, pages 1163-
1174, Sunnyvale. CSREA.

Avise, J. C. (2000). Phylogeography: The History and Formation of Species.
Harvard University Press.

Trivial Geography in Genetic Programming 121

Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Altruism via kin-selection
strategies that rely on arbitrary tags with which they coevolve. Evolution,
58(8):1833-1838.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D.
(1998). Genetic Programming -An Introduction; On the Automatic Evolu­
tion of Computer Programs and its Applications. Morgan Kaufmann.

Bamum, Howard, Bernstein, Herbert J, and Spector, Lee (2000). Quantum cir­
cuits for OR and AND of ORs. Journal of Physics A: Mathematical and
General, 33(45):8047-8057.

Bryden, Kenneth M., Ashlock, Daniel A., Corns, Steven, and Willson, Stephen J.
(2005). Graph based evolutionary algorithms. IEEE Transactions on Evolu­
tionary Computation, forthcoming.

Burke, Edmund K., Gustafson, Steven, and Kendall, Graham (2004). Diver­
sity in genetic programming: An analysis of measures and correlation with
fitness. IEEE Transactions on Evolutionary Computation, 8(l):47-62.

Collins, Robert J. and Jefferson, David R. (1991). Selection in massively parallel
genetic algorithms. In Belew, Rick and Booker, Lashon, editors, Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 249-
256, San Mateo, CA. Morgan Kaufman.

Crawford-Marks, Raphael and Spector, Lee (2002). Size control via size fair
genetic operators in the PushGP genetic programming system. In Langdon,
W. B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan,
K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz,
A. C, Miller, J. F, Burke, E., and Jonoska, N., editors, GECCO 2002: Pro­
ceedings of the Genetic and Evolutionary Computation Conference, pages
733-739, New York. Morgan Kaufmann Publishers.

D'haeseleer, Patrik and Bluming, Jason (1994). Effects of locaHty in individual
and population evolution. In Kinnear, Jr., Kenneth E., editor. Advances in
Genetic Programming, chapter 8, pages 177-198. MIT Press.

Droste, Stefan, Jansen, Thomas, and Wegener, Ingo (1999). Perhaps not a free
lunch but at least a free appetizer. In Banzhaf, Wolfgang, Daida, Jason, Eiben,
Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and Smith,
Robert E., editors. Proceedings of the Genetic and Evolutionary Computa­
tion Conference, volume 1, pages 833-839, Orlando, Florida, USA. Morgan
Kaufmann.

Eshel, I. (1972). On the neighbor effect and the evolution of altruistic traits.
Theoretical Population Biology, y.lS^-lll.

Fernandez, Francisco, Tomassini, Marco, and Vanneschi, Leonardo (2003). An
empirical study of multipopulation genetic programming. Genetic Program­
ming and Evolvable Machines, 4(1):21-51.

Folino, G., Pizzuti, C, Spezzano, G., Vanneschi, L., and Tomassini, M. (2003).
Diversity analysis in cellular and multipopulation genetic programming. In

122 GENETIC PROGRAMMING THEORY AND PRACTICE III

Sarker, Ruhul, Reynolds, Robert, Abbass, Hussein, Tan, Kay Chen, McKay,
Bob, Essam, Daryl, and Gedeon, Tom, editors. Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, pages 305-311, Can­
berra. IEEE Press.

Folino, Gianluigi, Pizzuti, Clara, and Spezzano, Giandomenico (1999). A cel­
lular genetic programming approach to classification. In Banzhaf, Wolfgang,
Daida, Jason, Eiben, Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela,
Mark, and Smith, Robert E., editors. Proceedings of the Genetic and Evo­
lutionary Computation Conference, volume 2, pages 1015-1020, Orlando,
Florida, USA. Morgan Kaufmann.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press.
Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity.

Perseus Books.
Klein, Jon (2002). BREVE: a 3d environment for the simulation of decentral­

ized systems and artificial life. In Standish, R. K., Bedau, M. A., and Abbass,
H. A., editors. Proceedings of Artificial Life VIII, the 8th International Con­
ference on the Simulation and Synthesis of Living Systems, pages 329-334.
The MIT Press.
http://www.spiderland.org/breve/breve-klein-alife2002.pdf.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts.

Lieberman, E., Hauert, C , and Nowak, M. A. (2005). Evolutionary dynamics
on graphs. Nature, 433:312-316.

Maruyama, Tsutomu, Hirose, Tetsuya, and Konagaya, Akihiko (1993). A fine­
grained parallel genetic algorithm for distributed parallel systems. In Forrest,
Stephanie, editor, Proc. of the Fifth Int. Conf. on Genetic Algorithms, pages
184-190, San Mateo, CA. Morgan Kaufmann.

Mayr, Ernst (1942). Systematics and the origin of species from the viewpoint of
a zoologist. Columbia University Press.

Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos.
Nature, 359:826-829.

Nowostawski, M. and Poll, R. (1999). Parallel genetic algorithm taxonomy.
Ofria, Charles and Wilke, Claus O. (2004). Avida: A software platform for

research in computational evolutionary biology. Artificial Life, 10(2): 191-
229.

Pettey, Chrisila C. (1997). Diffusion (cellular) models. In Back, Thomas, Fogel,
David B., and Michalewicz, Zbigniew, editors. Handbook of Evolutionary
Computation, pages C6.4:l-6. Institute of Physics Publishing and Oxford
University Press, Bristol, New York.

http://www.spiderland.org/breve/breve-klein-alife2002.pdf

Trivial Geography in Genetic Programming 123

Ray, Thomas S. (1991). Is it alive or is it GA. In Belew, Richard K. and Booker,
Lashon B., editors, Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 527-534, University of California - San Diego,
La Jolla, CA, USA. Morgan Kaufmann.

Spector, Lee (2001). Autoconstructive evolution: Push, pushGP, and pushpop.
In Spector, Lee, Goodman, Erik D., Wu, Annie, Langdon, W. B., Voigt,
Hans-Michael, Gen, Mitsuo, Sen, Sandip, Dorigo, Marco, Fezeshk, Shahram,
Garzon, Max H., and Burke, Edmund, editors. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), pages 137-146,
San Francisco, California, USA. Morgan Kaufmann.

Spector, Lee (2004). Automatic Quantum Computer Programming: A Genetic
Programming Approach, volume 7 of Genetic Programming. Kluwer Aca­
demic Publishers, Boston/Dordrecht/New York/London, in press.

Spector, Lee, Bamum, Howard, Bernstein, Herbert J., and Swamy, Nikhil (1999).
Finding a better-than-classical quantum AND/OR algorithm using genetic
programming. In Angeline, Peter J., Michalewicz, Zbyszek, Schoenauer,
Marc, Yao, Xin, and Zalzala, Ali, editors. Proceedings of the Congress on
Evolutionary Computation, volume 3, pages 2239-2246, Mayflower Hotel,
Washington D.C., USA. IEEE Press.

Spector, Lee and Klein, Jon (2005a). Genetic stability and territorial structure
facilitate the evolution of tag-mediated altruism. Artificial Life. Forthcoming.

Spector, Lee and Klein, Jon (2005b). Machine invention of quantum computing
circuits by means of genetic programming. In preparation.

Spector, Lee, Klein, Jon, and Keijzer, Maarten (2005). The push3 execution
stack and the evolution of control. In Proc. of the Genetic and Evolutionary
Computation Conference. Springer-Verlag.

Spector, Lee and Robinson, Alan (2002). Genetic programming and autocon­
structive evolution with the push programming language. Genetic Program­
ming and Evolvable Machines, 3(l):7-40.

Wolpert, David H. and Macready, William G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, l(l):67-82.

Wright, Sewall (1945). Tempo and mode in evolution: a critical review. Ecology,
26:415-419.

Chapter 9

RUNNING GENETIC PROGRAMMING
BACKWARDS

Riccardo Poli^ and William B. Langdon^
Department of Computer Science, University of Essex, UK

Abstract Backward chaining evolutionary algorithms (BC-EA) offer the prospect of run­
time efficiency savings by reducing the number of fitness evaluations without
significantly changing the course of genetic algorithm or genetic programming
runs. "Tournament selection, iterated coupon-collection problem, and backward-
chaining evolutionary algorithm," Poli, FOGA, 2005 describes how BC-EA does
this by avoiding the generation and evaluation of individuals which never ap­
pear in selection tournaments. It suggests the largest savings occur in very large
populations, short runs, small tournament sizes and shows actual savings in fixed-
length binary GAs. Here, we provide a generational GP implementation, includ­
ing mutation and two offspring crossover of BC-EA and empirically investigate
its efficiency in terms of both fitness evaluations and effectiveness.

Keywords: Backward-Chaining, genetic programming, tournament selection, efficient algo­
rithms

1. Introduction
Due to its simplicity and efficiency, particularly for large populations, tour­

nament selection is currently the most popular form of fitness selection in Ge­
netic Programming (GP). The average number of toumaments per generation
depends upon whether crossover generates one or two children. With non-
overlapping populations of size M and if crossover produces one child from
two parents the expected number of toumaments needed to form a new genera­
tion is M(l +Pc) (Pc is the crossover probability). However, if each crossover
produces two offspring then only (and exactly) M toumaments are needed.

126 GENETIC PROGRAMMING THEORY AND PRACTICE III

Here we focus on genetic programming with two-offspring crossover. ̂ So, if
n is the tournament size, creating a new generation requires drawing exactly nM
individuals uniformly at random (with resampling) from the current population.
As we highlighted in (Poli, 2005), an interesting side effect of this process is
that not all individuals in a particular generation are necessarily sampled. This
is particularly true where tournament groups are small. For example, n = 2.

Except in special cases (such as elitism), the individuals that do not get
sampled by the selection process have no influence whatsoever on future gener­
ations. However, these individuals use up resources, especially CPU time. So
one might wonder whether it is possible to avoid generating such individuals
and what sort of saving one could obtain.

In (Poli, 2005) we provided a theoretical analysis based on Markov chains of
the sampling behaviour of tournament selection that started to show the savings.
In addition it described a general scheme, Backward-Chaining, Evolutionary
Algorithms (BC-EA), which exploits the sampling deficiencies of tournament
selection to reduce (or make better use of) the fitness evaluations in an EA.
(Poli, 2005) suggests the greatest benefits of backward chaining EAs come
with very large populations, short runs and relatively small tournament sizes.
These are the settings used frequently in genetic programming, particularly
when attacking large real-world problems, so a backward-chaining GP system
would appear to have a great potential.

The next section provides a review of previous relevant work, including the
main findings of (Poli, 2005). The third section describes the implementation
and time and space complexity of our backward chaining GP system. Section 4
experimentally compares its performance and behaviour with standard GP. We
conclude with Section 5.

2. Background
One of the main lines of research on selection in EAs has been into loss

of diversity, i.e. the proportion of individuals of a population that are not se­
lected. In (Blickle and Thiele, 1997; Motoki, 2002) different selection methods,
including tournament selection, were analysed in depth mathematically.

It is important to understand the difference between not selecting and not
sampling an individual in a particular generation. Not selecting refers to an
individual that did not win any tournaments. This is exactly what research on
the loss of diversity has concentrated on. Not sampling, instead, refers to an
individual that did not participate in any tournament at all, simply because it
was not sampled during the creation of the required tournament sets. (Poli,
2005) and this paper focus on individuals that are not sampled.

'We have considered the one-offspring case in (Poli, 2005; Poli and Langdon, 2005).

Backward-chaining GP 127

(Sastry and Goldberg, 2001) show cases where the performance of a GA
using a particular version of tournament selection (which guarantees that all
individuals in a run are sampled) is better than a GA with standard tournament
selection. Similar results have been recently reported in (Sokolov and Whitley,
2005), which proposes a different tournament strategy that also guarantees that
all individuals are sampled. While these two lines of work concentrate on
modifying tournament selection, we focus on understanding and exploiting the
sampling behaviour of standard tournament selection.

Tournament Selection and the Coupon Collector
In (Poli, 2005), a connection between tournament selection and the coupon

collection problem was proposed and analysed. In the coupon collection prob­
lem (Feller, 1971), every time a collector buys a certain product, a coupon is
given to him. The coupon is equally likely to be any one of N types. In order
to win a prize, the collector must have at least one coupon of each type.

How is the process of tournament selection related to the coupon collection
problem? We can imagine that the individuals in the current population are
distinct coupons and that toumament selection will draw (with replacement)
nM times from this pool of coupons. Results on the coupon collector problem
tell us that if n < log M, there may be a substantial number of individuals
that selection did not sample. That is, for small toumament sizes or large
populations, many individuals will not be sampled.

In (Poli, 2005), we found that the expected number of distinct individuals
sampled by toumament selection in one generation is approximately M(l - e""").
So for n = 2, we should expect about 13.5% of the population not to be sam­
pled. For n = 3 this drops to 5%, and becomes quickly negligible for larger
toumament sizes. This suggests that saving computational resources by avoid­
ing the creation and evaluation of individuals that will not be sampled by the
toumament selection process may be possible only for small toumament sizes.
However, low selection pressures are quite common in GP practice, particularly
when attacking hard, multi-modal problems which require extensive exploration
of the search space before zooming in on any particular region. Also, much
greater savings in computation are possible if we exploit the transient behaviour
of toumament selection over multiple generations.

To understand what happens over multiple generations, let us imagine we
are interested in knowing the genetic makeup and fitness of mo individuals in
a particular generation, G. Clearly, in order to create such individuals, we will
need to know who their parent(s) were. On average, this will require mnning mo
tournaments to select such parents. In each toumament we pick n individuals
randomly from generation G—1. After nmo such trials, we will be in a position
to determine which individuals in generation G—1 will have an influence on

128 GENETIC PROGRAMMING THEORY AND PRACTICE III

generation G? Let rui be the number of individuals sampled. We can now
perform nrui trials to determine which individuals in generation G — 2 (the
new coupon set) will have an influence on future generations. Let m2 be their
number. The process continues until we reach the initial random generation.

The quantities m^ for t = 0 ,1 , . . . are stochastic variables. Their probabil­
ity distributions are necessary in order to evaluate the sampling behaviour of
tournament selection over multiple generations. In (Poli, 2005) we analysed
this process by defining and studying a new and more complex form of coupon
collection problem: the iterated coupon collection problem. We modelled the
iterated effects of tournament selection as a Markov chain and we showed
that under very mild conditions the transition matrix for the chain is ergodic.
Therefore, the probability distributions of rut converge (roughly exponentially)
towards a limit distribution that is independent from the initial conditions and
so, the expected value of rut converges to a constant value.

In other words, for long runs (Le. large G) the number of individuals required
in the final generation, mo, makes almost no difference to the total number
of individuals sampled by tournament selection. However for short runs, the
transient of the Markov chain is what one needs to focus on. Both are given by
the Markov chain theory, but one needs to be able to numerically compute the
eigenvalues and eigenvectors of the transition matrix.

Efficient Tournament Selection and Backward Chaining EAs
From a practical perspective, the question is: how can we modify an EA to

achieve a computational saving from not evaluating and creating individuals
not sampled by selection? The idea proposed in (Poli, 2005) is to reorder the
different phases of an EA. These are: a) the choice of genetic operator to use
to create a new individual, b) the formation of a random pool of individuals for
the application of tournament selection, c) the identification of the winner of
the toumament (parent) based on fitness, d) the execution of the chosen genetic
operator, and e) the evaluation of the fitness of the resulting offspring.-^

The genetic makeup of the individuals is required only in phases (c), (d) and
(e), but not (a) and (b). So, it is possible to change the order in which we perform
these phases without affecting the behaviour of our algorithm. For example,
we can first iterate phases (a) and (b) as many times as needed to create a full
new generation (of course, memorising all the decisions taken), and then iterate
phases (c)-(e).^

^The other individuals in generation G - 1 have not been sampled and so cannot contribute. Of course only
the winners of tournaments pass their genetic material to generation G.
^Phases (b) and (c) are repeated once for mutation and twice for crossover. That is as many times as the
arity of the genetic operator chosen in phase (a).
"̂ (Teller and Andre, 1997) used a similar idea to speed up (but not reduce!) GP fitness evaluations.

Backward-chaining GP 129

Generation
1 2

1

2

>

5

6

Figure 9-1. Example of graph structure induced by tournament selection in a population of
M = 6 individuals, run for G — 3 generations, using binary tournaments (n = 2) and crossover
ratepc — 1/3. Nodes with four incoming links were created by crossover. The remaining nodes
were created by either mutation or reproduction. Shaded nodes are the potential "ancestors"
involved in the creation of the first individual in last generation.

In fact, one can even go further. If we fix in advance the maximum number of
generations G we are prepared to run our EA, then phases (a) and (b) (random
choices of genetic operations and who will be in which tournament) can be
done, not just for one generation, but for a whole run. Then we iterate phases
(c)-(e) as required.

We can view the selection of genetic operations and tournament members
(phases (a) and (b)) during the whole run, as producing a graph structure con­
taining (G + 1)M nodes. The nodes represent the individuals to be created
during the run and the edges connect each individual to the individuals that
were involved in the tournaments necessary to select its parents (see Figure 9-
1). Nodes without outgoing nodes are not sampled by tournament selection.

If we are interested in calculating and evaluating mo individuals in the pop­
ulation at generation G, maximum efficiency can be achieved by considering
(flagging for evaluation) only the individuals that are directly or indirectly con­
nected with those mo individuals. For example, if in Figure 9-1 we were
interested only in the first individual in the last generation, we would need to
create and evaluate only that individual and its potential ancestors (shown with
shaded nodes). The possible ancestors of our mo individuals can be found with
a trivial connected-component graph algorithm. Once the relevant sub-graph
is known, we evaluate the individuals in it from generation 0 to generation G.

The graph induced by tournament selection can be created without the need
to know either what each individual (node) represents or its fitness. So one
might ask whether the construction and the evaluation of the individuals in the

130 GENETIC PROGRAMMING THEORY AND PRACTICE III

sub-graph should simply be performed in the usual (forward) way, or whether
it may be possible and useful to instantiate the nodes in some different order.
In (Poli, 2005), it was proposed to recursively proceed backwards.

Here is the basic idea. Let us suppose we are interested in knowing the
makeup of individual i in the population at generation G. In order to generate
z, we only need to know what operator to apply to produce it and which parents
to use. In turn, in order to know which parents to use, we need to perform
tournaments to select them. In each such tournaments we will need to know the
relative fitness of n individuals from the previous generation (which of course,
at this stage we may still not know). Let S = {^i, 52 , . . . } be the set of the
individuals that we need to know in generation G - 1 in order to determine i.
If we don't know the makeup of these individuals, we can recursively consider
each of them as a subgoal. So, we determine which operator should be used
to compute 5i, we determine which set of individuals at generation G — 2 is
needed to do so, and we continue with the recursion. When we emerge from
it, we repeat the process for 52, etc. The recursion can terminate in one of
two ways: a) we reach generation 0, in which case we can directly instantiate
the individual in question by invoking the initialisation procedure, or b) the
individual for which we need to know the genetic makeup has already been
evaluated before. Once we have finished with z, we repeat the same process for
any other individuals of interest at generation G, one by one.

This algorithm is effectively a recursive depth-first traversal of the graph
induced by tournament selection (c./ Figure 9-1). While we traverse the graph,
as soon as we are in a position to know the genetic makeup of a node encountered
we invoke the fitness evaluation procedure. An EA running in this mode is a
Backward-Chaining, Evolutionary Algorithms (BC-EA).

Irrespectively of the problem being solved and the parameter settings used,
because the decisions as to which operator to adopt to create a new individual
and which elements of the population to use for a tournament are random, this
version of the algorithm is almost statistically identical to a standard EA (see
(Poli, 2005)). However, there is an important difference: the order in which
individuals in the population are evaluated. For example, let us consider the
population depicted in Figure 9-1 and suppose we are interested in knowing
the first individual in the last generation, i.e. individual (3,1). In a standard
EA, we evaluate individuals column by column from the left to the right in the
following sequence: (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (1,1), (2,1), ...
until, finally, we reach node (1,3). A BC-EA would instead evaluate nodes in
a different order, for example, according to the sequence: (1,0), (3,0), (4,0),
(1,1), (2,0), (2,1), (1,2), (6,0), (4,1), (5,1), (3,2), and finally (1,3). So, the
algorithm would move back and forth evaluating nodes at different generations.

Why is this important? Typically in an EA, the average fitness of the popula­
tion and the maximum fitness in each generation grow as the generation number

Backward-chaining GP 131

grows. In the standard EA, the first 3 individuals evaluated have an expected
average fitness equal to the average fitness of the individuals at generation 0,
and the same is true for the BC-EA. However, unlike for the standard EA, the
fourth individual created and evaluated by BC-EA belongs to generation 1, so
its fitness is expected to be higher than that of the previous individuals. In­
dividual 5 has same expected fitness in the two algorithms. However, the 6th
individual drawn by BC-EA is a generation 1 individual again, while the for­
ward EA draws a generation 0 individual. So again, the BC-EA is expected to
produce a higher fitness sample than the other EA. This applies also to the 7th
individual drawn. Of course, this process cannot continue indefinitely, and at
some point the individuals evaluated by BC-EA start being on average inferior.

This behaviour is typical: a BC-EA will find fitter individuals faster than an
ordinary EA in the first part of a run and slower in the second part. So if one
restricts oneself to that first phase, the BC-EA is not just faster than an ordinary
EA because it avoids evaluating individuals neglected by tournament selection,
it is also a faster search algorithm!

3. Backward-Chaining GP
Based on these ideas, we have designed and implemented a Backward-

Chaining, Genetic Programming (BC-GP) system in Java. The objective is
to evaluate whether the BC-EA approach indeed brings significant efficiency
gains in the case of large populations and short runs, and whether a BC-GP
compares well with an equivalent standard (forward) version of GP in terms of
ability to solve problems.

Backward-Chaining GP Implementation
Figure 9-2 provides a pseudo-code description of the key components of our

system. The main thing to notice is that we use a "lazy-evaluation" approach.
We do not create the full graph structure induced by tournament selection: we
statically create the nodes in the graph (and store them using two-dimensional
arrays). However, the edges are dynamically generated only when needed and
stored in the stack as we do recursion. This is achieved by choosing genetic
operator and invoking the tournament selection procedure only when needed
in order to construct an individual, rather than at the beginning of a run and
for all individuals and generations. Also note that our implementation is rather
simplistic, in that it requires the pre-allocation of three G x M arrays:

Popula t ion is an array of pointers to the programs in the population at each
generation. Programs are stored as strings of bytes, where each byte
represents a primitive.

132 GENETIC PROGRAMMING THEORY AND PRACTICE III

Fitness is an array of single precision floating point numbers. This is used
to store the fitness of the programs in Population.

Known is an array of bits. A bit set to 1 indicates that the corresponding
individual in Population has been computed and evaluated.

Pre-allocating these arrays is wasteful since only the entries corresponding
to individuals sampled by tournament selection are actually used. By using
more efficient data structures, one could save some memory. BC-GP also uses
an expandable array sibling_pool to temporarily store the second offspring
generated in each crossover.

Space and Time Complexity of BC-GP
Let us evaluate the space complexity of BC-GP and compare it to the space

complexity of standard GP. We divide the calculation into two parts:

^ ^^ ^fixed I" ^variable5

where Cfixed represents the amount of memory (in bytes) required to store the
data structures necessary to run GP excluding the GP programs themselves,
while Cvariabie represents the memory used by the programs. This can vary as a
function of the random seed used, the generation number and other parameters
and details of a run.̂ As far as the fixed complexity is concerned, in a forward
generational GP system

CLd = 2 x M x (4 + 4) = 16M

The factor of 2 arises since, in our generational approach, we store both the
current and the new generation. This requires 2 vectors of pointers (4 byte
each) to the population members and two vectors of fitness values (floats, 4 byte
each), where the vectors are of size M. In BC-GP, instead, we need

Cl,^ = G X M X (4 + 4 + ^) « 8GM

since we need to store one array of pointers, one of floats, and one bit array, all
of size G X M,

Variable complexity is harder to compute. In a standard GP system this is

^variable ^ 2 X M X S^g^^

where ^^ax '̂ ^̂ ^ maximum value taken by the average program size during
each generation of a run. In a BC-GP

^variable ^ '^ '^avg'

^The array sibling.pool typically includes only very few individuals and so we ignore it in our calculations.

Backward-chaining GP 133

run(G,M):
begin
Create G x M tables Known, Population sind Fitness

For each individual I of interest in generation G

evolve_back(I,G)
return all I of interest

end

evolve_back(indiv,gen):
begin

if Known[indiv][gen] then
return

if gen == 0 then

Population[gen][indiv] = random program
else

myremd = rsmdom.floatO
if myrand < crossover_rate then

if myramd < crossover_rate/2 or sibling_pool[gen] = empty then
parentl = tournament(gen-1)
parent2 = tournament(gen-1)
offsprings = crossover(parentl,parent2)
Population[gen][indiv] = offspring[1]
sibling.pool[gen].add(offspring[2])

else
Population [gen] [indiv] = sibling_pool[gen] . remove_rcindom_indiv () ;

endif
else

parent = tournament(gen-1)
Population[gen][indiv] = mutation(parent)

endif
endif

Fitness[gen][indiv] = fit_func(Population[gen][indiv])
Known[gen][indiv] = true

end

tournament(gen)
begin
fbest = 0; best = -1

repeat tournament.size times
candidate = random integer l . , .M
evolve_back(gen, candidate)
if Fitness[gen][csmdidate] > fbest then

fbest = Fitness[gen][candidate]
best = candidate

endif
endrepeat
return(Population[gen][best])

end

Figure 9-2. Pseudo-code for backward-chaining GP. Note use of sibling_pool for second
child produced by crossover.

134 GENETIC PROGRAMMING THEORY AND PRACTICE III

where S'^g is the average program size during a BC-GP run {Le., it is the pro­
gram size averaged over all individuals created in a run) and £^^ is the number
of programs actually created and evaluated during the run (E^ < E^ = GM).
So, the difference in memory required by the two algorithms is

AC^C^ -C^ = M{8G - 16) + E ^ X Sf^g - 2 X M X S^^^,

which indicates that in most conditions the use of BC-GP carries a significant
memory overhead. However, this does not prevent the use of BC-GP.^

The memory overhead of BC-GP, AC, is a function of the average average-
program-size S'^g and the maximum average-program-size S!^^^. We know
that statistically BC-GP and GP behave the same, so we expect ^^^x — '̂ max
and so 5^g < S^^. An additional complicating factor is that the size of
programs often evolves. If bloat (Langdon et al , 1999) happens in a particular
problem, then programs in both GP and BC-GP will increase in size towards the
end of the run. However, since with BC-GP, in certain conditions (mo <C M),
we evaluate few individuals in the last generations of a run, where bloat is
typically most marked, S'^g can be be a lot smaller than S'^g. That is, with
bloat the programs created in a BC-GP may be on average smaller than those
created by forward GP. So, we may have S'^g <C 5'^ax-

These effects partly mitigate the memory overhead, AC, of BC-GP. Also,
because BC-GP tends to evaluates smaller programs than GP, it has an impact
on run time too. To see this we need to assess the computational complexity T
required to run GP and BC-GP. T is effectively dominated by the cost of running
the fitness function. The cost of fitness evaluation depends on various factors,
but it is typically approximately proportional to the number of primitives in the
program to be evaluated (Le., executed) and the number of fitness cases A'̂ . So
if we express T in number of primitives executed, we have

T ^ - G X M X Â X 5^g

T^ = E^ xN X 5£g
for standard GP, and

for BC-GP. So, the saving provided by BC-GP is

AT = T^ -T^ = N x{GxM xS[^^-E^ X S'f.g).

That is, for a bloating population, the parsimony of BC-GP in terms of fitness
evaluations is compounded with its parsimony in terms of program sizes. In
some cases (Poli and Langdon, 2005) this leads to considerable savings.

^For example, in the worst possible case (where all programs are constructed and evaluated) a BC-GP with
a population of 100,000 individuals run for 50 generations and with an average program size (throughout a
run) of 100 nodes would require around 540MB of memory.

Backward-chaining GP 135

4. Experimental Results

Test problems and setup
We used BC-GP in a variety of experiments on three continuous symbolic

regression problems where the objective was to induce a target function from
examples. The target functions were an univariate quartic polynomial, a four
variable quadratic polynomial and a ten variable cubic polynomial. The quar­
tic polynomial is f{x) = x^ -{- x^ -{- x^ + x. For this problem we used 20
fitness cases of the form (x, f{x)) obtained by choosing x uniformly at ran­
dom in the interval [—1,+!]. The first multivariate polynomial, Poly-4, is
/ (xi , a;2, xs, X/{) = a;iX2 4- X3X4 4- xia;4. For Poly-4, 50 fitness cases of the
form (xi, 0:2, X3, X4, / (xi , • • • , X4)) were used. They were generated by ran­
domly setting Xi G [—1,4-1], The second multivariate polynomial, Poly-10,
is / (xi , • • • , xio) == X1X2 4- X3X4 + X5X6 4- xixyxg 4" XSXQXIQ. For Poly-10
we also used 50 fitness cases of the form (xi, • • • , a;io, / (xi , • • • , xio)); again,
each of the ten variables is chosen at random from the range [—1, 4-1]. The
function set for GP included the functions 4-, —, x and the protected division
DIV (if \y\ <= 0.001 DIV(a;, y) = x else DIV(x, y) = x/y). The terminal set
included the independent variables in the problem (x for Quartic, xi, X2, xs,
X4 for Poly-4 and xi, X2,... xio for Poly-10).

Fitness was calculated as the negation of the sum of the absolute errors
between the output produced by a program and the desired output on each of
the fitness cases. A problem was considered to be solved if a program with
an error of less than 10~^ summed across all fitness cases was found. We
used binary tournaments (n = 2) for parent selection. The initial population
was created using the "grow" method with max depth of 6 levels (the root
node being at level 0). We used 80% two-offspring sub-tree crossover (with
uniform random selection of crossover points) and 20% point mutation with
a 2% chance of mutation per tree node. The population size M was 100,
1,000, 10,000 and 100,000. The maximum number of fitness evaluations was
30M (shorter runs were explored in (Poli and Langdon, 2005)). For different
experiments, depending on statistical requirements, we performed 100, 1,000
or even 5,000 independent runs of both backward and forward GP.

In symbolic regression problems, the fitness of programs in the population
even after a prolonged period of evolution, can be extremely variable. Since the
mean is a linear function, the mean population fitness can be seriously changed
by individuals with outstandingly poor fitness. So while both algorithms draw,
at each generation, individuals from the same distribution the measured means
can be different. While observed means are similar in most generations, even
averaging over many runs, the mean of means is still sometimes affected by
noise injected by poor individuals. In contrast other statistics, e,g, the median

136 GENETIC PROGRAMMING THEORY AND PRACTICE III

•f ' - f - t

Forward \
Backward '

1500 2000
Fitness evaluations

Figure 9-3. Quartic polynomial regression problem. Normal GP contrasted with chance of
success with BC-GP (population size 100, average over 1000 runs).

and best, are non-linear and much less effected by the worst in the population.
Therefore, we chose to plot the best and the proportion of successful runs.

To make a comparison between the algorithms possible, we computed statis­
tics every M fitness evaluations for BC-GP. We treated this interval as a genera­
tion even though the fitness evaluations may be spread over several generations.
In the BC-GP we computed 80% of the final generation (Le, mo = 0.8M).'̂

Effectiveness and efficiency comparison
Figures 9-3 and 9-4 compare the success probabilities of BC-GP and GP for

the quartic polynomial for population sizes 100 and 1,000. The error bars in­
dicate standard error (based on the binomial distribution). As expected BC-GP
does better and the difference is statistically significant except for the final gen­
erations. With a population of 1,000 (Figure 9-4) or bigger (data not reported),
BC-GP is also always statistically better than or equal to standard GP. Natu­
rally, with big populations both forward and backward GP almost always solve
the quartic polynomial. Nevertheless BC-GP reaches 100% faster.

The four-variate polynomial, Poly-4, is much harder than Quartic. This is
an interesting test case since it requires large populations to be solvable in
most runs. Figure 9-5 shows the fraction of successful runs with a population
of 1,000. Figure 9-6 plots similar data but for a population of 10,000. The

^(Poli and Langdon, 2005) reports experiments where we calculated only one individual in the last generation
(i.e. mo = 1).

Backward-chaining GP 137

1 ,**"it'

! /

^ / / /
/ }

1 / 1

{if
V/

1

^)l()K))(M.)K)« W)|(W< « «)K)|(« M W W. 1

J

]

J

Forward i—i—i
Backward *-—x—H

- 1 I 1 J 1
15000 20000

Fitness evaluations
25000 30000

Figure 9-4. Quartic polynomial regression problem. As Figure 9-3 but with population of 1000.

A

5000 10000 15000 20000
Fitness evaluations

25000 30000

Figure 9-5. Fraction of successful runs (out of 5,000 runs) on the Poly-4 problem for forward
GP and BC-GP (30 generations) with populations of 1,000.

difference between BC-GP and forward GP is statistically significant for all
population sizes used.

Symbolic regression of Poly-10 is very hard. We tried 1,000 runs with
populations of 100, 1,000 and 10,000, and 100 runs with 100,000 individuals.
Neither standard GP nor BC-GP found a solution in any of their runs. As
illustrated in Figure 9-7 for the case M == 10,000, BC-GP on average finds
better programs for the same number of fitness evaluations.

So far we have compared forward GP and BC-GP when both algorithms
are given the same number of fitness evaluations. In Table 9-1, we show a

138 GENETIC PROGRAMMING THEORY AND PRACTICE III

100000 150000 200000
Fitness evaluations

Figure 9-6, Fraction of successful runs (out of 1000 runs) on the Poly-4 problem for forward
GP and BC-GP with populations of 10000.

i
1.
8.

11

12

13

14

15

16

17

18

>

-

-

-

:''
X

,x'
X

/
/

X X^
X y<

/•' X^

i

•j

Forward — i —
Bacl<ward — x —

50000 100000 150000 200000 250000 300000

Fitness evaluations

Figure 9-7. Error summed over 50 test cases for Poly-10 regression problem (means of 1,000
runs, with populations of 10,000).

comparison when they are run for the same number of generations (G = 30).
Thanks to the savings obtained by avoiding to create and evaluate individuals
not sampled by selection (and any of their unnecessary ancestors), by the end
of the runs, BC-GP evolved solutions of similar fitness but took around 20%
fewer fitness evaluations. Similar savings are obtained at all population sizes.

The tests mentioned above have been performed also for the case of tourna­
ment size n = 3. In all cases BC-GP was superior, but by a smaller margin.

Backward-chaining GP 139

Table 9-1. Normal GP v. Backward chaining on
Generations 30. Means of 1 000 runs.

Problem

Quartic
Poly-4
Poly-10

Best Fit

0.00
0.12

11.12

Forward
Evals Succ Prob

300,000 100.0%
300,000 96.3%
300,000 0.0%

Quartic, Poly 4 and Poly

Best Fit

0.00
0.16
11.29

Backward
Evals

240,321
240,315
240,299

10. Population 10,000.

Succ Prob 1 Saving

100.0%
96.0%
0.0%

19.9%
19.9%
19.9%

5. Conclusions
We exploited a recent theoretical analysis (Poli, 2005) of the sampling be­

haviour of tournament selection over multiple generations to build a new, highly
efficient realisation of GP: backward chaining genetic programming (BC-GP).
Thanks to its special way of recursively computing programs and fitnesses
backward from the last generation to the first, BC-GP offers a combination of
simplicity, fast convergence, increased efficiency in terms of fitness evaluations
and primitive evaluations, statistical equivalence to a standard GP, reduced bloat
and broad applicability. This comes at the cost of an increased memory use.

The BC-GP algorithm is not hard to implement (see pseudo-code in Fig­
ure 9-2). Also, BC-GP tends to find better individuals faster irrespective of
the value of the tournament sizes n. However, if one wants use tournaments
with more than three individuals and to compute a large proportion of the final
generation, the computational saving provided by BC-GP may be too limited to
be worth the implementation effort and the memory overhead. In applications
which require computing only a small number of individuals in a given gener­
ation of interest and where a very large population is used, then BC-GP can be
fruitfully applied even for large tournament size. For example, with BC-GP,
tournament size 7 and a population of a million individuals, one could calculate
1 individual at generation 7, 7 individuals at generation 6, 49 individuals at
generation 5, /emphetc. Note that this costs less than initialising the population
in a forward GP. The information gained by BG-GP in this way could prove
very important, for example, in deciding whether to continue a run or not.

In future research we intend to test the new algorithm on other problems and
explore possible ways of further improving the allocation of trials and decision
making in BC-GP and GP

Acknowledgements
The authors would like to thank Chris Stephens, Darrell Whitley, Kumara

Sastry and Bob McKay for their useful comments.

140 GENETIC PROGRAMMING THEORY AND PRACTICE III

References
Blickle, Tobias and Thiele, Lothar (1997). A comparison of selection schemes

used in evolutionary algorithms. Evolutionary Computation, 4(4):361-394.
Feller, William (1971). An Introduction to Probability Theory and Its Applica­

tions, volume 2. John Wiley.
Langdon, William B., Soule, Terry, Poli, Riccardo, and Foster, James A. (1999).

The evolution of size and shape. In Spector, Lee, Langdon, William B.,
O'Reilly, Una-May, and Angeline, Peter J., editors. Advances in Genetic
Programming 5, chapter 8, pages 163-190. MIT Press, Cambridge, MA,
USA.

Motoki, Tatsuya (2002). Calculating the expected loss of diversity of selection
schemes. Evolutionary Computation, 10(4):397-422.

Poli, Riccardo (2005). Tournament selection, iterated coupon-collection prob­
lem, and backward-chaining evolutionary algorithms. In Proceedings of the
Foundations of Genetic Algorithms Workshop (FOGA 8).

Poli, Riccardo and Langdon, William B. (2005). Backward-chaining genetic
programming. Technical Report CSM 425, Department of Computer Sci­
ence, University of Essex.

Sastry, K. and Goldberg, D. E. (2001). Modeling tournament selection with
replacement using apparent added noise. In Proceedings of ANNIE 2001,
volume 11, pages 129-134.

Sokolov, Artem and Whitley, Darrell (2005). Unbiased tournament selection.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005). ACM.

Teller, Astro and Andre, David (1997). Automatically choosing the number
of fitness cases: The rational allocation of trials. In Koza, John R., Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi,
and Riolo, Rick L., editors. Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 321-328, Stanford University, CA, USA.
Morgan Kaufmann.

Chapter 10

AN EXAMINATION OF SIMULTANEOUS
EVOLUTION OF GRAMMARS
AND SOLUTIONS

R. Muhammad Atif Azad ^ and Conor Ryan ^
CSIS Department, University of Limerick. Limerick, Ireland.

Abstract This chapter examines the notion of co-evolving grammars with a population of
individuals. This idea has great promise because it is possible to dynamically
reshape the solution space while evolving individuals. We compare such a system
with a more standard system with fixed grammars and demonstrate that, on a
selection of benchmark problems, the standard approach appears to be better.
Several different context free grammars, including one inspired by Koza's GPPS
system are examined, and a number of surprising results appear, which indicate
that several representative GP benchmark problems are best tackled by a standard
GP approach.

Keywords: grammatical evolution, evolving grammars, grammatical ADFs, generative rep­
resentations

1. Introduction
Work such as (Whigham, 1995; Keller and Banzhaf, 1999; O'Neill and Ryan,

2004; Piaseczny et al., 2004) has demonstrated that context free grammar based
GP systems are capable of evolving both the grammar (which specifies and
constrains the solution space) and a population of individuals. Intuitively, this is
an attractive idea, especially given that something similar had to have happened
in nature; that is, the genetic code had to evolve either before or in parallel with
the species that use it.

Although the above examples all demonstrated that this is possible, it was
not clear under what circumstances one would want to use these methods. In

142 GENETIC PROGRAMMING THEORY AND PRACTICE III

particular, as each of these papers were hiproof of concept, most of them were
not focused at a comparative analysis against a system with fixed grammars.

The promise of these systems is that they would be able to tune the system
towards solving a particular problem, but the question this chapter is concerned
with is what is the cost of this tuning?

This chapter investigates a number of different ways of treating the gram­
mars or function sets made available to a system, varying from a simple, closure
obeying system like GP, up to a multiple type evolving system. We start by
introducing Grammatical Evolution (GE), the evolutionary system used to con­
duct these experiments, and describe the effects that different kinds of grammars
can have. The chapter then looks at the various ways in which these grammars
can be modified on the fly - including no modification, as in standard GP, before
applying them to five benchmark problems.

We show that, in general, the simpler the grammar, the more successful
the search is, and on occasions the results demonstrate that a GPPS inspired
grammar that provides more functionality than is necessary can be competitive.

2. Grammatical Evolution
Grammatical Evolution (Ryan et al., 1998) (O'Neill and Ryan, 2001) (O'Neill

and Ryan, 2003) is a Genetic Programming system that uses a Genetic Algo­
rithm to search the space of structures specified by a grammar such as a Context
Free Grammar or an Attribute Grammar.

The key difference between GE and GP is the use of linear chromosomes by
GE. Rather than evolving programs directly, GE employs a separation of the
search and solution spaces, by performing a mapping from the linear structure
to a program (or whatever structure is being evolved).

This mapping is made possible by the use of a grammar, which specifies
what structures are syntactically valid. The mapping involves the generation of
a derivation tree, using genes from the chromosome to resolve choices.

One of the main advantages of using a grammar in this way is that one avoids
the closure problem; that is, it is trivial to have multiple types in the grammar.
Another potential advantage is the ability to tune a grammar. The grammar
not only specifies what structures are syntactically valid, it can also be used to
bias the search, by making the system more likely to produce certain types of
structures, or structures that are more likely to have certain characteristics.

Grammars
A grammar can be described using Backus Naur Form (BNF) which consists

of a four tuple < N^T^P^S > where T is the set of terminals (symbols that
can appear in programs produced by the grammar) .Â is a set of non-terminals,
intermediate symbols used by the grammar, 5 is a start symbol from which all

An Examination of Simultaneous Evolution of Grammars and Solutions 143

programs are developed, and P is a set of production rules that map from the
start symbol to the terminals.

Consider the following grammar, which produces expressions similar to
those generated by GP for standard symbolic regression problems.

<expr>
<op>
<sop>
<var>

= (<op> <expr> <expr>) I (<sop> <expr>) I <var>
= + I - I % I *
= sin I cos I log
= X I 1.0

In this case, the start symbol is <expr>.
Grammars are useful in an evolutionary setting because, by their very nature,

they express a set of syntactic constraints. However, it is possible to have some
more explicit constraints than shown above. For example, one could force every
individual to start with (* <expr> <expr>), or to ensure that only certain
variables can appear in conditional tests.

Example
To use a grammar in a generative way, one creates a derivation tree, which

records each choice made in the derivation sequence. GE operates by evolv­
ing sequences of choices which, when interpreted with a particular grammar
produce syntactically valid structures.

Individuals in GE are binary strings, which are interpreted as a sequence of
eight bit codons, each of which is used to make a single choice in the derivation
sequence.

Consider an example individual 222,31,74,122,67,201,14,26,22, already
divided into eight bit codons and expressed in decimal for clarity. The codons
are in the range 0..255, so, when being used to make a choice, have a modulus
operation applied to them with the number of choices available.

Recall the start symbol is <expr>. There are three choices available for this,
so we have 222 mod 3 = 0, which corresponds to the first choice. The start
symbol is then replaced with (<op> <expr> <expr>).

The process continues with the left most non-terminal until there are either
no non-terminals left (the individual is completely mapped) or all of the codons
have been used. In the latter case, the individual is considered non-viable and
given a zero fitness.

In this case, all but the last two codons are consumed, resulting in:
(* X (s i n X)).

144 GENETIC PROGRAMMING THEORY AND PRACTICE III

Biasing of Grammars
All grammars contain inherent bias. In the example grammar above, if

random initialisation of the population was employed, one would expect a third
of all individuals to consist of just a single point of either X or 1.0.

An alternative approach is to use a closed grammar, which is analogous
to a GP system that has the closure property. In this case, there is just one
non-terminal, so the grammar from above would be rewritten as :

<expr> ::= (+ <expr> <expr>) I (- <expr> <expr>)
I (% <expr> <expr>) I (* <expr> <expr>)
I (sin <expr>) I (cos <expr>)
I (log <expr>) I X I 1.0

Although this grammar represents the same set of legal individuals, it con­
tains a different bias to the original one, and this can have implications for the
success or otherwise of a GE run. In this new grammar, it is now twice as
likely that a randomly generated individual will contain something of the form
{< opX expr >< expr >) as it is to contain an X or 1.0.

This shows that the hierarchical nature of grammars using BNF can contain
hidden biases, and some work (Nicolau, 2004) has looked at identifying how
much bias. The following section examines work which has tried to take advan­
tage of the fact that changing the bias of a grammar can effect the performance
of the system.

3. Simultaneously evolving Grammars and the Solutions
One of the first investigations into grammar bias was carried out by Whigham

(Whigham, 1995). He discussed that depending upon the structure of the gram­
mar, it can have a relatively higher number of paths through it to generate certain
sentences or forms of the sentences. For example, if a certain symbol appears
in most of the production rules it has a high chance of being represented in a
randomly generated set of sentences. With the use of different hand crafted
grammars he showed that if the grammar design is guided by the problem
specific knowledge it can boost the performance. He went on to propose an
inductive biasing mechanism where the grammar is modified every generation
by looking at the best individual found thus far. The terminal symbol found at
the deepest location in the derivation tree is propagated up one level to create a
new rule. For example the derivation sequence
<IF> -> i f <T> <NT1> <NT2>

-> i f aO <NT1> <NT2>

can be collapsed into a single production <IF> -> i f aO <NT1> <NT2>, so
the grammar can be modified to incorporate the new rule. The same modifica-

An Examination of Simultaneous Evolution of Grammars and Solutions 145

tion may be suggested more than once during the course of evolutionary run,
thus increasing its likelihood to be used in the generation of new individuals or
in the case of a mutation event.

Keller and Banzhaf (Keller and Banzhaf, 1999) argued that the structure of
the grammar has implications towards the problem landscape as certain areas
of the solution space can become more accessible than others. In the absence
of domain knowledge, a poorly designed grammar can hamper the progress of
the algorithm. They made a case for the evolution of the mapping from the
genotype to the phenotype Le, the structure of the grammar. However, instead
of having one global grammar, they proposed that every individual should have
its own set of rules. This paves the way for the evolution of grammar along
with the phenotypes they encode, in this case using diploid chromosomes. The
purpose of this study was to demonstrate that co-evolution of genetic code and
problem solution can work. However, no performance comparisons were made
with a normal GP system.

Working on a similar idea O'Neill and Ryan (O'Neill and Ryan, 2004) used
GE to simultaneously evolve the grammar and the problem solution. As in
the Keller-Banzhaf approach, a diploid chromosome is used to encode the two
evolving entities. Each individual uses a pre-specified grammar's grammar or a
meta grammar to produce a local grammar. The meta grammar has production
rules to specify a context free grammar. One strand of the chromosome is
used to pick rules from the meta grammar to produce a local grammar. The
second strand uses this grammar to produce a sentence or a phenotype. The
prosperity of a grammar in future generations depends upon the fitness obtained
by the corresponding phenotype. A dynamically changing symbolic regression
problem was used where the target function changed after a fixed number of
generations. The exercise agreed with Keller and Banzhaf in demonstrating
that such a co-evolutionary setup worked as the system was able to adapt to the
changing behaviour of the problem, acquiring high frequencies of the symbols
that constitute the target function every time.

Chemical Genetic Programming (Piaseczny et al., 2004) is a recent addition
to the list of granmiar evolving systems. As the setup discussed in the current
study is very similar to Chemical GP, we discuss it in relative detail in the
following subsection.

Chemical GP
As with GE, Chemical GP is based on linear strings and makes use of the con­

text free grammar. The name of the system derives its basis from the metabolic
chemical reactions going on in a cell. These reactions enable the amino acids
to produce proteins, which in turn are used to produce amino acids, thus consti­
tuting ^feedback loop. Assuming that this extra degree of freedom has helped

146 GENETIC PROGRAMMING THEORY AND PRACTICE III

nature in evolving complex entities, Chemical GP claims a coarse analogy with
this process to reformulate the structure of the grammar specified at the start of
the run. Starting with a non-terminal from the pre~specified grammar, a subtree
is generated. The subtree is then collapsed to form a single production rule or
translation such that the frontier (the set of the leaves of the subtree) becomes
the right hand side of the rule. Consider the following derivation sequence:

<expr> -> <pre-op> (<expr>) <op> <expr>
-> t anh (<expr>) <op> <expr>
-> t anh (<var>) <op> <expr>
-> tanh (X) <op> <expr>

Considering that the same can be represented by a derivation tree, collapsing
the tree can produce a translation like this:
<expr> -> tanh (x) <op> <expr>
which is a more compact way of arriving at the same result. This is similar to
the concept of ADFs in canonical GP where a piece of code can be encapsulated
into an ADF and repeatedly used through a function call. Likewise, a number
of derivation steps can be replaced by a single production rule that produces
the same effect as the derivation sequence. This effect is absent in most of the
grammar evolving approaches discussed earlier.

Chemical GP considers the production rules analogous to the amino acids
that produce proteins (the frontier of the subtree). After the subtree collapse,
these proteins themselves act as amino acids during the derivation process and
can combine with other amino acids, the production rules in this case. Part
of the grammar or the amino acid pool for a particular individual comes from
a pre-specified grammar while the rest is formed from the derived rules. The
proportion coming from the pre-specified grammar is determined by a parameter
to the system.

An individual comprises of three parts. The first part, termed DNA, is used
to pick the rules from the grammar available to the individual, and the last part
is used to encode new amino acids in the manner described before. The middle
part encodes a tRNA sequence that produces a local grammar by incorporating
the synthesized rules into the pre-specified grammar.

Every rule in the local grammar has an associated integer value that is not
necessarily unique. The DNA is any sequence of these integer values. Starting
from a start symbol, the DNA is read and the corresponding rule is applied to
continue the derivation sequence. If more than one rule has the same identi­
fier, the one that can be applied to the left most non-terminal in the derivation
sequence is chosen. If multiple rules are applicable, a random choice is made.
This can lead to difficulties in analysing the individuals. Therefore, further
work is awaited that demonstrates the motivation behind such a mapping func­
tion as against a deterministic scheme. Another consequence of the mapping

An Examination of Simultaneous Evolution of Grammars and Solutions 147

process is possibility of introns arising within the chromosome length used for
mapping. This happens if an integer value is read from the DNA that is not
associated with any applicable rule, as it is ignored, thus producing introns.
This is additional to the introns appearing towards the end of the chromosome
if mapping terminates earlier on.

In the wake of this discussion we now describe our grammar evolving setup
in conjunction with GE.

Our Approach
The first design choice is how to represent the grammar encoding and the

solution encoding parts of a GE individual. GE uses variable length one point
crossover. It is not known a priori, what length an individual will require to
map to a valid sentence of arbitrary size. Moreover, the grammar should be
clearly defined before the mapping process starts. This means that a portion
of the individual should be clearly marked to encode the grammar. For this
purpose, a variable length GA with diploid chromosomes is employed. One
chromosome is used to evolve new rules from a pre-specified grammar and the
other chromosome is used to produce a sentence of the grammar that includes
the new rules, possibly replacing some from the original grammar.

GE uses the grammar encoding chromosome to derive new rules. First, we
decode a codon to pick a non-terminal from the grammar using the modulo
operation. Then, we grow a derivation tree rooted at this non-terminal as the
normal GE mapping ensues. Once the tree growth stops, a new production is
formed that has the root of the tree as its left hand side and the frontier constitutes
the right hand side (RHS). In haploid GE, the mapping stops when either the
entire chromosome is consumed or all the non-terminals have been resolved
into terminal symbols. The objective is to have a valid solution that can be
evaluated. The mapping of grammar encoding chromosome, on the other hand,
is only meant for producing new production rules where it is allowed to have
non-terminals on the RHS. Moreover, waiting for a terminal-only frontier can
exhaust the entire grammatical chromosome, whereas we want to take a flexible
approach by letting the evolution decide whether or not it should be the case.
Even if the tree growth stops leaving a few non-terminals left in the frontier, a
production is formed as mentioned before. If some part of the chromosome is
still unread, it can be used to produce more rule(s) in a similar fashion.

To decide when to stop growing a tree, we make use of a stopCodon. After
picking a non-terminal and before starting to grow the tree, we read a codon
and save it as a stopCodon. Then, when we start the tree growth, at each step
we read a codon (let's call it newCodon) to pick a rule from the set of available
choices in the following manner:

148 GENETIC PROGRAMMING THEORY AND PRACTICE III

stopChances = stopCodonmod {\applicableRuleSet\ + 1)
chosenlndex = newCodon mod {\applicableRuleSet\ + stopChances)
If chosenlndex > |app/ica6/eü'a/eS'et|, tree growth is stopped, otherwise it is
continued with the selected rule marked by the chosenlndex. Thus, depending
upon the value of the stopCodon the chances of stopping a tree growth can be
as much as the number of rules available for selection. This is an adaptable
measure and was preferred over keeping a system parameter. The derivation
tree growth can also stop if it maps completely to terminal symbols or the end
of the chromosome is reached. Except in the latter case, another derivation tree
growth ensues to encode for a new rule.

When a rule is encoded, it can either just add to or replace a rule from the
corresponding rule set. This Boolean decision is made by reading another
codon before growing the tree. If codon mod 2 = = 1 a rule is replaced. The
index of the replaced rule is determined by decoding another codon. Thus a
rule encoding comprises of four control codons (the first picking a non-terminal
to grow) and the codon sequence that encodes the tree.

If some rules are omitted from the grammar, it makes it impossible to generate
legal sentences from the grammar. Such rules are therefore marked and are not
allowed to be removed in our setup. Consider the following example:

<expr> : := <expr> + <expr> I Sin (<expr>) I <var>
<var> : := X I y I z

In this case <expr> ~> <var> is the only link to the terminal symbols. Thus
it is marked for non-removal.

Instead of having an unconstrained one point crossover, we employ a sensible
crossover for the rule encoding chromosome. It is a two point crossover with
the restriction being that it can only swap entire rule encodings. This is hoped
to be less disruptive than the normal one point crossover.

4. Experimental Setup
In this study we compare different grammatical setups along with the afore­

mentioned grammar evolving system. As mentioned before that structure of
the grammar is a major design issue for grammar based evolutionary algo­
rithms and it is no different with GE. For the current study we use a single
non-terminal grammar, (closed grammar, as described in section 2.0) a mul­
tiple non-terminal grammar, grammar evolving setup seeded with each of the
aforementioned grammars, a domain specific hand crafted grammar and a uni­
fied grammar that has the functions used by all the problems available in it.
This gives us a diverse set of designs to test.

We are interested in seeing how the extra degree of freedom available with
evolvable grammars compares with the other setups on standard GP problems.
In particular, whether they can exploit or overcome the inherent peculiarities of

An Examination of Simultaneous Evolution of Grammars and Solutions 149

the pre-specified grammars to produce a comparable or superior performance.
It is also interesting to see how a structurally simple closed grammar fares
against the other setups. The use of grammars makes it possible for GE to
incorporate domain specific knowledge without any programming overhead.
When such information is available, it is informative to investigate if it can
lead to performance enhancements in any or all the cases. We also examine a
unified grammar, which is inspired by Koza's (Koza et al., 1999) GPPS. This is a
function rich system which makes as many functions as possible available, thus
removing the onus from the user to choose a function set. Koza estimated that
this system was two orders of magnitude slower than standard GP, but argued
that, as hardware continues to improve, this will become less of an issue. We
are interested in GPPS in this context because evolvable grammars could have a
similar use, that is, they are concerned with the identification of useful function.

We use five benchmark problems from the GP literature. These include
symbolic regression of the quartic polynomial, the discovery of a 6 bit multi­
plexer (Koza, 1992), the even 6 parity problem (Koza, 1994), the regression of
a sextic polynomial (Piaseczny et al., 2004) and a 28 dimensional regression
problem (Keller and Banzhaf, 2001). The quartic polynomial problem involves
the discovery of a target function of x^ -^ x^ -\- x'^ -{- x with 20 training points
drawn from the interval[—1,1]. The sum of squared error is normalized be­
tween 0 and 1.0 with an aim to maximize the fitness. The Sextic polynomial
was used to demonstrate the efficacy of Chemical GP and entails the target
function 2x^ + 3x^ + 3a;̂ + 100. We use the same fitness measure as used in
(Piaseczny et al., 2004). When d represents the sum of squared errors, the raw
fitness is calculated as follows:

o^-d/50000000

When d = 0 (the ideal case), the expression produces the best fitness i.e.
e^. Hence this value is used to normalize the raw fitness values. 50 uniformly
distributed points from the domain [—5,5] constitute the training cases. Keller's
problem is defined as follows: /(A, ß , a, 6, • • • , ?/, 2:) = j + a; H- d + j * o + e *
r —t —a + /i —A:*t6-f a —A: —5*o*i —/i*i; — i —i —5+/ —w*n + / + r —j*j*o*
v—j-\-i-\-f^c-\-x — v-\-n—n^v — a—q^i^h-\-d—i — t-\-s-\-Ha—j^g^v — i —
p^q^u — x+e+7n — k^r-\-k—Hu^x^d^r — a-\-t — e^x — v—p—c—o—o^u^
c*/i-|-x + e —a*n+c*/*r —x*t —n*(i-fp*x*i^*f—j*n —a —e*6H-a. Four
of the inputs A, 5 , y, z are not used in the objective function and add noise. 100
randomly selected training cases are used all coming from the domain [0,1].
Normalized sum of the squared errors represents the fitness of an individual.

For both the boolean problems, the maximum fitness value is the correct
categorization of all the 64 training cases.

The grammars used in this study are listed in the appendix. The hand tuned
grammars for the two polynomials encourage the use of the multiplication and

150 GENETIC PROGRAMMING THEORY AND PRACTICE III

addition operators. For the sextic polynomial, the pow function is also a pre­
ferred function. For this problem it is not possible to write a single non-terminal
grammar for the corresponding multiple non-terminal grammar. Therefore we
have tried to minimize the number of the non-terminals to have an approximate
effect of a closed grammar. For the multiplexer problem, the hand crafted gram­
mar forces that the condition part of an if-statement should only work on the
address bits whereas the action part should only be concerned with the data bits.
This approach has also been used elsewhere with success to improve perfor­
mance (Janikow, 2004). For the even parity problem hand tuning the grammar
was not so obvious. Therefore, no such grammar is used for this problem.

All the experiments involve 100 independent runs with a population size of
500^ The runs execute for 200 generations. Crossover probability of 0.9 and
bit mutation probability of 0.01 is used. The initialisation involves random
generation of linear strings with an average length of 20 integers and a standard
deviation of 5. Roulette wheel selection is used with steady state replacement.
At every generation 500 parents are selected that probabilistically undergo ge­
netic operators. If any of the offspring are better than the worst member of the
existing population, the former replaces the latter.

Crossover in Effective Lengths
For the solution encoding or the sentence mapping chromosomes of the

individuals a variable length one point crossover is employed. However, the
nature of the mapping process in GE is such that it may finish well before
exhausting the entire length of the chromosome. This can also lead to the
emergence of tails in the haploid GE chromosomes (O'Neill and Ryan, 2003).
The tails are helpful in mapping the individual to a valid sentence due to the
ripple effect in GE (O'Neill et al., 2003) the crossed over segment may require
to encode for a different set of non-terminals. For such a context shift large
tails can be suitable as they provide a greater chance of mapping the individuals
completely. However, if the tails grow too large comparatively, the crossover
point is more likely to be chosen from the tails. Thus, after the crossover the two
offsprings will have the mapping parts intact with the variation only being in
the tails. Such individuals with large tails can be attractive for selection because
crossover involving them is unlikely to produce invalid or incompletely mapped
individuals that are chastised by assigning the worst possible fitness in a typical
GE setup. As the individuals grow large tails, the normal one point crossover
becomes increasingly ineffective because it merely swaps the segments that
can not express themselves in the phenotype as the mapping terminates earlier

^The population size of 500 is fairly small for the even 6 parity problem in comparison with Koza's setup
where it is of the order of many thousands. However, we keep a uniform setup for all the problems.

An Examination of Simultaneous Evolution of Grammars and Solutions 151

on. This causes the loss of phenotypic diversity. Therefore, we restrict the
crossover point to be selected within the length that is effective in the mapping
process. We term such a crossover as effective crossover.

Results
Figure 10-1 shows the mean best fitness plots for the two boolean problems.

For this section we refer to the grammar evolving GE as GEGE.

Even 6 Parity - Best Fitness Comparison

36

35.5

35

34.5

34

33.5

33

32.5

32

31.5

cfg
closed

evolv_cfg
evolv_closed

unified

siJlii*'

T t ^ , i « « * • • • '•

lÜlm\

50 100

Generations

150 200

6 Multiplexer - Best Fitness Comparison

60

50

40

30

20

10

cfg
closed

handjuned
evolv_cfg

evolv_closed
unified

50 100

Generations

150 200

Figure 10-1. Depicted is the mean best fitness for the two Boolean problems. It was not obvious
to design a hand tuned grammar for the even 6 parity problem, 'evolv-cfg' and 'evolv-closed'
represent the grammar evolving setups with an initial multiple and single nonterminal grammars
respectively.

The results show that for the two Boolean problems, GEGE with an initial
multiple non-terminal grammar (CFG) is among the worst performers. GE
with a closed grammar does better than all the other setups except for the hand

152 GENETIC PROGRAMMING THEORY AND PRACTICE III

tuned grammar in the case of multiplexer problem.The ideal individual count
for the hand tuned grammar is 91% while the closed grammar yeilded a 51%
success for the multiplexer problem. These numbers are far higher than the
rest of the setups which could only achieve at best 20% success. The relatively
small population size probably hampered the progress in the case of the parity
problem where no ideal individual was found for any setup. This shows that the
grammars represent a convenient mechanism for incorporating domain specific
knowledge when available with no algorithmic modifications. However, it is
also interesting to see that the closed grammar with its simple structure and
no domain knowledge does better than the rest of the setups. GEGE with the
closed grammar also does reasonably well in both the problems but we do not
witness any instance of a superior performance.

Figure 10-2 shows the mean best fitness for the problems from the real-value
problem domain. For the quartic and sextic polynomial problems, the end of
the run results are indistinguishable. The quartic polynomial problem seems
too easy for GE with all of the setups. From the figure it is difficult to see but
numerical data reflects that closed grammar again had a faster convergence to
better fitness values. The use of hand tuned grammar did not have any clear
advantage in both the problems in terms of mean best fitness. However, it was
able to find a higher number of ideal individuals 41% for the quartic polynomial
compared to the other setups that had a maximum of 10% to show. GE shows
the best performance whether employed with a closed grammar or a CFG.

The unified grammar is the slowest to pick up in the even 6 parity, sextic
polynomial and Keller's problem. The performance is somewhere in the middle
of the multiplexer and quartic polynomial problems.

Discussion
Overall, the best performer is the set up that used closed grammar. The only

case that it was outperformed was in the multiplexer experiments, and then by
the hand-tuned grammar. However, our experiences with producing hand-tuned
grammars suggestin the case of the multiplexer) or it is very difficult.

Table 10-1. Percentage of the individuals that fail to map all the non-terminals to terminal
symbols in the final generation.

Problem

6 Parity
Multiplxr
Sextic
Quartic
Keller

cfg

13.5±0.9
30.4±1.1
15.4±1.0
8.5±0.6

3.45±0.5

closed

4.2±0.29
2.0±0.21
20.5±2.1
8.5±0.73
O.OdiO.O

evol-cfg

13.3±0.67
29.7±1.46
27.0±1.13
13.6±1.41
7.1d=1.03

evol-closed

6.9±0.5
3.71±0.4

29.6±1.23
18.5±1.46
O.OOitO.Ol

unified

22.1 ±0.41
36.47±1.1
21.7±0.72
25.6±1.64
32.0±1.2

hand-tuned

not-used
28.9±1.13
22.7±1.61
29.5±1.1
46.3±1.0

An Examination of Simultaneous Evolution of Grammars and Solutions 153

Sextic Polynomial - Best Fitness Comparison

cfg
closed

handjuned
evolv_cfg

evolv_closed
unified

Quartic Polynomial - Best Fitness Comparison

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

it'

...iillljljyiiiiiiiiiim""""

Cfg '—'—'
closed H---K---'

handjuned >••••* •
evolv_cfg ' Q <

evolv_closed ---»--^
unified ^-^-•'

50 100
Generations

150 200

Keller's Problem - Best Fitness Comparison
0.02

0.015

0.01

0.005

cfg
closed

handjuned
evolv_cfg

evolv_closed
unified

50 100
Generations

150 200

Figure 10-2. Depicted is the mean best fitness for the problems of regressing mathematical
functions, 'evolv-cfg' and 'evolv-closed' represent the grammar evolving setups with an initial
multiple and single nonterminal grammars respectively.

154 GENETIC PROGRAMMING THEORY AND PRACTICE III

Why then, does the closed grammar perform so well? We believe that it
may be partly so because it is the least disruptive of the grammars. Every rule
in the grammar is an expansion of the same non-terminal Therefore, the set
of applicable rules never changes. As a result a codon always encodes for a
fixed production rule. Therefore, in the event of a crossover, the exchanged
fragments encode for the same derivation subtrees as before. However, in a
multiple non-terminal setup it is not necessarily the case. This makes it more
likely that crossover does not produce a completely mapped offspring i.e, it
may have a few non-terminals left even when the entire chromosome has been
read. This is termed as a mapping failure. We note the percentage of mapping
failures in the offsprings produced in the final generation in Table 10-1. Space
considerations do not permit us to plot them as a function of generation. The
table shows that closed grammar depicts least mapping failures in the boolean
problems and the Keller-Banzhaf problem. The trend reverses for the other two
problems though.

Crossover with the evolving grammars can also be disruptive because the two
parents may have different grammars and thus cause a change of context for
the exchanged fragments. Table 10-1 shows that when seeded with a CFG they
were generally among the top two producers of mapping failures. Moreover,
crossover in the grammar encoding chromosome can be very disruptive when
the incoming rules displace the existing rules in the receiving grammar. Let's
assume that before crossover a grammar looks like this:
<nt> : := r u l e l I r u l e 2 I r u l eS
To choose a rule, a codon is decoded by the formula codon mod 3. Let's
suppose that after crossover, ru l eS is replaced with some new rules ruleA and
ruleB changing the composition of the grammar.
<nt> : := r u l e l I r u l e 2 | ruleA I ruleB
This changes the interpretation of the 8 bit codons as the modulus operator will
now use 4 instead of 3. Thus, the mapping of the entire individual is affected.
At present, it is not clear how to address such a situation.

These results do not contradict earlier work by (Keller and Banzhaf, 1999),
(O'Neill and Ryan, 2004) and (Piaseczny et al., 2004), each of which demon­
strated that evolutionary systems can successfully evolve solutions while co-
evolving the grammar, but they do pose the question of where might it be ap­
propriate to use these methods. Whigham (Whigham, 1995) was able to show
an increase in ideal solutions count in the multiplexer problem that we were
not able to witness in our study. Other work did not report such comparisons.
Future work can uncover the effect of the aforementioned issues towards the
difference in performance.

Researchers such as (Jacob, 1994) and (Hornby, 2003) have successfully
evolved Lindenmayer systems (L-systems). However, L-systems have deter­
ministic paths through the grammars. In the case of simultaneous evolution

An Examination of Simultaneous Evolution of Grammars and Solutions 155

of parameters and the grammar with parametric L-systems, the number of pa­
rameters can be low and pre-determined. This is not the case in the present
study where the solution mapping chromosome(that can be seen as an instance
of a parameter set to the grammar) is typically of large and unspecified size.
Therefore, while L-system based evolution is a successful instance of grammar
evolution, it is fundamentally different from the avenues tackled in this chapter.

The study also leads us to think that adding this extra degree of freedom can
increase problem difficulty due to a larger search space.

5. Summary
This chapter has confirmed that it is possible to evolve the grammars in

parallel with the solutions, but it has also shown on a selection of standard
problems that the subsequent increase in the size of the search space, not to
mention the additional code to support this co-evolution, can outweigh the
benefits. There are almost certainly problems that will benefit from co-evolving
the grammar, but these remain to be identified.

It has also been shown that, where the knowledge is available (.̂g.the Multi­
plexer problem) a tuned grammar can perform very well. However, this finding
has the caveat that it is also possible to adversely effect the search capability of
a system by using a less than ideal hand tuned grammar.

The most consistent performer was the closed grammar, but it is not always
possible to use one of these. Given the current state of research, we recommend
using a reasonable, i.e. not particularly tuned, CFG.

We also revisited Koza's idea of GPPS, and examined unified grammars,
which err on the side of caution when including functions, usually providing
more than are necessary. We discovered that these grammars gave surprisingly
good performance on occasions despite having to deal with much larger search
spaces. This is an encouraging result for any future research aiming at genetic
programming black box type problem solvers.

Appendix
Listed are the grammars used in the experiments. Except for the even parity problem which

had no hand crafted grammar, the others are ordered as follows: closed grammar, multiple
non-terminal grammar and the hand crafted grammar.

6 Multiplexer.

S : := <expr>
<expr> ::= (<expr> AND <expr>) | (<expr> OR <expr>) I NOT (<expr>)
I IF ((<expr>) (<expr>) (<expr>)) | AO I Al I DO I Dl I D2 I D3

S ::= <expr>
<expr> ::= (<expr> <op> <expr>) | <pre-operation> I <var>
<op> ::= AND I OR
<pre-operation> ::= NOT (<expr>) I IF ((<expr>) (<expr>) (<expr>))
<var> ::= AO I Al I DO I Dl I D2 I D3

156 GENETIC PROGRAMMING THEORY AND PRACTICE III

S : := <expr>
<expr> ::= IF ((<condition>) (<action>) (<action>))
<condition> ::= (<condition> <op> <condition>) | NOT (<condition>) | <addr-bits>
<action> ::= (<action> <op> <action>) I NOT (<action>) I <data-bits>
I IF (<condition> (<action>) (<action>))

<op> ::= AND I OR
<addr-bits> ::= AO I Al
<data-bits> ::= DO I Dl I D2 I D3

Even 6 Parity.
S ::= <expr>
<expr> ::= (<expr> AND <expr>) | (<expr> OR <expr>) I (<expr> NAND <expr>)
I (<expr> NOR <expr>) | DO I Dl I D2 I D3 I D4 1 D5

S ::= <expr>
<expr> ::= (<expr> <op> <expr>) | <var>
<op> ::= AND I OR I NAND | NOR
<var> ::= DO I Dl I D2 I D3 I D4 I D5

Quartic Polynomial.
S ::= <expr>
<expr> ::= (<expr> + <expr>) I (<expr> - <expr>) I (<expr> * <expr>)
I (<expr> / <expr>) I Sin (<expr>) I Cos (<expr>) I Exp (<expr>)
I Log (<expr>) I 1.0 I X

S ::= <expr>
<expr> ::= (<expr> <op> <expr>) | <pre-op> (<expr>) I <var>
<op> ::= + I - I / I *
<pre-op> ::= Sin I Cos I Exp I Log
<var> ::= 1.0 I X

S ::= <expr>
<expr> ::= (<expr> <op> <expr>) I (<expr> + <expr>) | (<expr> * <expr>)
I <pre-op> (<expr>) I <var>

<op> ::= - I /
<pre-op> ::= Sin | Cos | Exp 1 Log
<var> ::= 1.0 I X

Sextic Polynomial.
S ::= <expr>
<expr> ::= (<expr> + <expr>) | (<expr> - <expr>) I (<expr> * <expr>)
I (<expr> / <expr>) I (<expr> pow <expr>) I X I <num>

<num> ::= <Z> . <Z> | <Z>
<Z> ::= <Z> <Z>
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 1 9

S : := <expr>
<expr> ::= (<expr> <op> <expr>) | <R> | <Z>
<R> :
<Z> :
<op>
<D> :

X I <Z> I <Z> . <Z> I (<expr> pow <expr>)
= <D> I <Z> <Z>

:= + I - I • I /
= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

S ::= <expr>
<expr> ::= (<expr> + <expr>) I (<expr> • <expr>)
I (<expr> <op> <expr>) I (<expr> pow <expr>) I <R> I <Z>

<R> :
<Z> :
<op>
<D> :

= X I <Z> I <Z> . <Z>
= <D> I <Z> <Z>
:= - I /
= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

Keller's Problem. The grammar for this problem was very similar to the Quartic Polynomial Problem,
except that it had 28 inputs and did not involve transcendental functions. It is avoided to be described here for the space

An Examination of Simultaneous Evolution of Grammars and Solutions 157

reasons. The hand tuned grammar kept the unrequired inputs i.e. A, B,y, z and the division function under separate

non-terminals.

The Unified g r ^ m i l l B r . The non-terminals <B-var> and <R-var> deal with the real and the boolean
input variables. Depending upon the problem domain, the corresponding variables are specified for one of the non-terminals
leaving the other non-terminals without any rules. As a result, the individuals attempting to map by taking the wrong path
always fail to do so and are discarded.

S ::= <decide>
<decide> ::= <B-expr> I <R-expr>
<B-expr> ::= (<B-expr> AND <B-expr>) j (<B-expr> OR <B-expr>) I NOT (<B-expr>)
I (<B-expr> NAND <B-expr>) | (<B-expr> NOR <B-expr>)
I IF ((<B-expr>) (<B-expr>) (<B-expr>)) I <B-var>

<R-expr> ::= (<R-expr> + <R-expr>) | (<R-expr> - <R-expr>) I (<R-expr> * <R-expr>)
I (<R-expr> / <R-expr>) I (<R-expr> pow <R-expr>) I Sin (<R-expr>) I Cos (<R-expr>)
I Exp (<R-expr>) I <R-var>

References
Hornby, Gregory Scott (2003). Generative Representations for Evolutionary

Design Automation. PhD thesis, Brandeis University, Dept. of Computer
Science, Boston, MA, USA.

Jacob, Christian (1994). Genetic L-system programming. In Davidor, Yuval,
Schwefel, Hans-Paul, and Männer, Reinhard, editors. Parallel Problem Solv­
ing from Nature III, volume 866 of LNCS, pages 334-343, Jerusalem. Springer-
Verlag.

Janikow, Cezary Z. (2004). Adapting representation in genetic programming.
In Deb, Kalyanmoy, Poli, Riccardo, Banzhaf, Wolfgang, Beyer, Hans-Georg,
Burke, Edmund, Darwen, Paul, Dasgupta, Dipankar, Floreano, Dario, Fos­
ter, James, Harman, Mark, Holland, Owen, Lanzi, Pier Luca, Spector, Lee,
Tettamanzi, Andrea, Thierens, Dirk, and Tyrrell, Andy, editors. Genetic and
Evolutionary Computation - GECCO-2004, Part II, volume 3103 of Lecture
Notes in Computer Science, pages 507-518, Seattle, WA, USA. Springer-
Verlag.

Keller, Robert E. and Banzhaf, Wolfgang (1999). The evolution of genetic
code in genetic programming. In Banzhaf, Wolfgang, Daida, Jason, Eiben,
Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and Smith,
Robert E., editors. Proceedings of the Genetic and Evolutionary Computation
Conference, volume 2, pages 1077-1082, Orlando, Horida, USA. Morgan
Kaufmann.

Keller, Robert E. and Banzhaf, Wolfgang (2001). Evolution of genetic code
on a hard problem. In Spector, Lee, Goodman, Erik D., Wu, Annie, Lang-
don, W. B., Voigt, Hans-Michael, Gen, Mitsuo, Sen, Sandip, Dorigo, Marco,
Pezeshk, Shahram, Garzon, Max H., and Burke, Edmund, editors. Proceed­
ings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 50-56, San Francisco, California, USA. Morgan Kaufmann.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

158 GENETIC PROGRAMMING THEORY AND PRACTICE III

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Nicolau, Miguel (2004). Automatic grammar complexity reduction in gram­
matical evolution. In Poli, R., Cagnoni, S., Keijzer, M., Costa, E., Pereira,
F., Raidl, G., Upton, S. C , Goldberg, D., Lipson, H., de Jong, E., Koza, J.,
Suzuki, H., Sawai, H., Parmee, I., Pelikan, M., Sastry, K., Thierens, D., Stolz-
mann, W., Lanzi, P L., Wilson, S. W., O'Neill, M., Ryan, C , Yu, T., Miller,
J. F , Garibay, I., Holifield, G., Wu, A. S., Riopka, T., Meysenburg, M. M.,
Wright, A. W., Richter, N., Moore, J. H., Ritchie, M. D., Davis, L., Roy,
R., and Jakiela, M., editors, GECCO 2004 Workshop Proceedings, Seattle,
Washington, USA.

O'Neill, Michael and Ryan, Conor (2001). Grammatical evolution. IEEE Trans­
actions on Evolutionary Computation, 5(4):349-358.

O'Neill, Michael and Ryan, Conor (2003). Grammatical Evolution: Evolution­
ary Automatic Programming in a Arbitrary Language, volume 4 of Genetic
programming. Kluwer Academic Publishers.

O'Neill, Michael and Ryan, Conor (2004). Grammatical evolution by gram­
matical evolution: The evolution of grammar and genetic code. In Keijzer,
Maarten, O'Reilly, Una-May, Lucas, Simon M., Costa, Emesto, and Soule,
Terence, editors. Genetic Programming 7th European Conference, EuroGP
2004, Proceedings, volume 3003 of LNCS, pages 138-149, Coimbra, Portu­
gal. Springer-Verlag.

O'Neill, Michael, Ryan, Conor, Keijzer, Maarten, and CattoHco, Mike (2003).
Crossover in grammatical evolution. Genetic Programming and Evolvable
Machines, 4(\):61-93.

Piaseczny, Wojciech, Suzuki, Hideaki, and Sawai, Hidefumi (2004). Chemi­
cal genetic programming - evolution of amino acid rewriting rules used for
genotype-phenotype translation. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation, pages 1639-1646, Portland, Oregon. IEEE
Press.

Ryan, Conor, Collins, J. J., and O'Neill, Michael (1998). Grammatical evolu­
tion: Evolving programs for an arbitrary language. In Banzhaf, Wolfgang,
Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C , editors. Proceed­
ings of the First European Workshop on Genetic Programming, volume 1391
of LNCS, pages 83-95, Paris. Springer-Veriag.

Whigham, P. A. (1995). Inductive bias and genetic programming. In Zalzala,
A. M. S., editor. First International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications, GALESIA, volume 414,
pages 461-466, Sheffield, UK. lEE.

Chapter 11

THE IMPORTANCE OF LOCAL SEARCH

A Grammar Based Approach to Environmental Time
Series Modelling

Tuan Hao Hoang^, Xuan Nguyen^, RI (Bob) McKay*̂ and Daryl Essam^
Department of Information Technology, Military Technical Academy, Hanoi, Vietnam;
School of Information Technology and Electrical Engineering, University of New South Wales

at the Australian Defence Force Academy, Canberra 2600, Australia

Abstract Standard Genetic Programming operators are highly disruptive, with the con­
comitant risk that it may be difficult to converge to an optimal structure. The
Tree Adjoining Grammar (TAG) formalism provides a more flexible Genetic
Programming tree representation which supports a wide range of operators while
retaining the advantages of tree-based representation. In particular, minimal-
change point insertion and deletion operators may be defined. Previous work has
shown that point insertion and deletion, used as local search operators, can dra­
matically reduce search effort in a range of standard problems. Here, we evaluate
the effect of local search with these operators on a real-World ecological time
series modelling problem. For the same search effort, TAG-based GP with the
local search operators generates solutions with significantly lower training set
error. The results are equivocal on test set error, local search generating larger
individuals which generalise only a little better than the less accurate solutions
given by the original algorithm.

Keywords: local search, insertion, deletion, grammar guided, tree adjoining grammar, eco­
logical modelling, time series

1. Introduction
It has long been recognised (Nordin and Banzhaf, 1995; Nordin et al, 1995)

that subtree crossover and mutation in Genetic Programming (GP) (Cramer,
1985; Koza, 1992) are highly disruptive. In the standard GP tree representations,
altering a node high in the tree with subtree operators entails the likelihood of

160 GENETIC PROGRAMMING THEORY AND PRACTICE III

major disruption of the subtree below it. This is in strong contrast with the
other main forms of artificial evolutionary algorithms, which generally support
a range of operators with varying levels of disruption, and also with natural
evolutionary systems (Ridley, 1996), in which mutations are often small-scale.
In (O'Reilly, 1997), editing operators for making changes on a small scale
were defined, namely insertion, deletion, and point mutation. However, these
operators on standard GP representation (expression trees) were merely used to
compute the distance metric between two GP individuals. It is not known how
they can be implemented as genetic operators since the applications of insertion
and deletion on GP expression trees generally results in invalid expression
trees. In (Vanneschi et al., 2003), two structural mutation operators called
inflation and deflation mutations were defined. These operators were proven
to cause small changes in the structure of GP expression trees; however, since
the definition is based on incrementing and decrementing arity, these operators
become meaningless if all functions in the GP function set have the same arity.
Moreover, it is difficult to extend this arity-based definition to syntactically-
constrained domains, which are the primary focus of grammar guided genetic
programming (GGGP).

We have previously shown (Nguyen and McKay, 2004b) that the point inser­
tion and deletion operators supported by the Tree Adjoining Grammar (TAG)
representation presented in (Nguyen et al, 2003) are effective in solving a num­
ber of standard GP test problems, and in particular, can make major inroads into
Daida's (Daida et al., 2003) structural difficulty problem (Nguyen and McKay,
2004a). However these operators have not been applied to significant real-world
problems. Here, we present an example of their application to an ecological
time-series modelling problem. They are able to generate solutions which better
fit the training data, without the concomitant risk of overfitting.

The remainder of this paper is arranged as follows: Section 2 briefly intro­
duces TAGs and the TAG-guided GP system (TAG3P), and giving details on the
point insertion and deletion operators based on them. Section 3 describes the
Lake Kasumigaura modelling problem which is the focus of this application. In
section 4, we describe the experimental setup used, while presenting the results
and discussing their implications in section 5. Section 6 presents our general
conclusions and discusses future work in this area.

2. Grammars, Tree Adjunction and Genetic Programming
Grammar-Guided Genetic Programming (GGGP) has been an important

strand in GP since its near-simultaneous introduction by three separate groups
of researchers (Wong and Leung, 1995; Whigham, 1995; Geyer-Schulz, 1995)
in 1995. Since the differences between the three variants are not relevant to this
paper, we base our discussion on Whigham's version. GGGP offers a number

The Importance of Local Search 161

of advantages, providing declarative search space restriction and homologous
operators, and supporting human-guided incremental leaming. However most
subsequent work in GGGP has relied on the Chomsky grammar formalisms
from the 1950s (string-rewriting systems), which hinder the design of search
operators acting directly on their derivation trees.

Tree Adjoining Grammars
Tree Adjoining Grammars (TAGs) have become increasingly important in

Natural Language Processing (NLP) since their introduction in the 1970s by
Joshi et al (Joshi et al, 1975). The aim of TAG representation is to more di­
rectly represent the structure of natural languages than is possible in Chomsky
languages, and in particular, to represent the process by which natural language
sentences can be built up from a relatively small set of basic linguistic units by
inclusion of insertable sub-structures. Thus "The cat sat on the mat" becomes
"The big cat sat on the mat" by insertion of the element 'big.' Further insertions
throughout the sentence can give us more complex sentences such as "The big
black cat sat lazily on the comfortable mat which it had commandeered" by
insertion of the elements 'black,' iazily,' 'comfortable,' 'which it had com­
mandeered.' In context-free grammars (CFG - Chomsky's formalisms of type
2), the relationship between the first and last sentences can only be discerned by
detailed analysis of their derivation trees; in TAG representation, the derivation
tree of the latter simply extends the frontier of the former. To put it another way,
the edit distance between the derivation trees of these closely related sentences
is much smaller in TAG representation than in CFG representation. This will
be formalised in the next example.

ft-.. ^

beta tree

T

V

OP T

LI

T

OP T

Figure 11-1. Tree Adjoining Grammar for Kasumigaura Model

162 GENETIC PROGRAMMING THEORY AND PRACTICE III

In more detail, a TAG grammar is specified by providing two sets of trees, the
initial or a trees, corresponding to the basic building blocks of the language,
and the auxiliary or ß trees, corresponding to the insertable elements of the
language. Together, these trees are known as elementary trees. The trees for
the primary grammar used in this paper are shown in Figure 11-1.

As in Chomsky grammars, the nodes of the trees are labelled by terminal
and non-terminal symbols; internal nodes must be labelled by non-terminals,
while leaf nodes may be labelled by either terminals or non-terminals. Trees
whose root is labelled by a non-terminal X are known as X-type trees, ß trees
satisfy one additional constraint, namely that an X-type ß tree must have a
distinguished node on its frontier, known as the foot node, labelled by X (in
diagrams, we will mark the foot node with an asterisk '*').

Consider again the trees in Figure 11-1. LI may be any of the attributes
listed in Table 1 {e,g. p for level of ortho phosphate). Rl and R2 are random
epheremal constant in the ranges of [0 .. 1] and [-50 .. 50] respectively. OP
may be any of '+,''-,' '*' or 7.' LI, Rl and R2 may be altered by the process
of substitution as described below.

The key operations used with tree-adjoining grammars are the adjunction
and substitution of trees. Adjunction builds a new (derived) tree 7 from an
auxiliary tree ß and a tree r (which may be an initial tree, or an already-derived
tree). If tree r has an interior node labeled A, and ß is an A-type tree, the
adjunction of ß into r to produce 7 is as follows: Firstly, the sub-tree a rooted
at A is temporarily disconnected from r. Next, ß is attached to r to replace the
sub-tree. Finally, a is attached back to the foot node of r. 7 is the final derived
tree generated by this process.

In substitution, a non-terminal node X on the frontier of an elementary or
derived tree is substituted by an X-type initial tree.

The completed derived trees of TAG (/. e,, derived trees with no non-terminals
on the frontier) thus correspond directly to the derivation trees of a Chomsky
grammar, recording how a particular string (the frontier) may be derived from
the start symbol. TAG systems introduce a new type of tree, TAG derivation
trees, which record the history of adjunctions and substitutions (including their
locations) used in generating a given derived tree.

Figure 11-2 shows a series of derivation trees and their corresponding de­
rived trees. The top row shows the fourth alpha tree with its LI defined as 't,'
representing the water temperature. The frontier of every alpha tree is a valid
expression, in this case the expression is *t.'

The second row shows another beta tree with OP being '+' and LI being
'chla.' The frontier T* + chla' is not a completed expression, but may be
adjoined into a completed expression to create a new completed expression.

The third row is another beta tree, presented here for future reference.

The Importance of Local Search 163

(g)—r^iiin—I ^ I- T* + T

I
chla

T* pow 0.12

S
0 - r ~ r - i

(g)-r5;in-r^—1 — - / - | \
T + T

I I
"̂ chla 0 - r T n

I' ^
0 - l l i ^ i] - [i i i] — • I

(ß O — I 0.12 I /1\!'°'^ °'̂
T + T

I I
'f chla

Figure 11-2. Example Derivation and Derived trees

The fourth row shows the result of adjoining the tree of the second row into
the tree of the first row. The derivation tree on the left indicates that the /?2 tree
is adjoined into the first available adjuction point of the a4 tree. The derived
tree on the right shows the result of this adjunction. The derived tree is created
by first disconnecting the T-t' subtree of aA. The ß2 tree is then reconnected at
the same point where the subtree had been disconnected. Finally, that subtree
is then rejoined at the adjunction point of /?2.

The fifth row shows the result of adjoining the tree of the third row into the
tree of the fourth row. This shows that the adjunction will occur at the first
available adjunction point of ß2 - this is its top node. Starting with the derived
tree of row four, this proceeds by first disconnecting the subtree directly below
'S'. The tree ßl is then connected at that point, and the disconnected subtree is
then re-joined at the foot node of ß\.

The substitution operation can change any of the substituatable terms in the
trees shown. For example, '+' can change to '*,' '0.12' to '0.78,' or 'chla' to
'p.'

164 GENETIC PROGRAMMING THEORY AND PRACTICE III

TAG-based Genetic Programming
The valuable properties which the TAG representation introduces into NLP

are arguably also of value in GP, leading us to propose a TAG-based GP sys­
tem (Nguyen et al., 2003). Among the most important of these properties for
GP is a feasibility property: after the deletion of an arbitrary subtree from a
TAG derivation tree, the remnant tree is still a valid TAG derivation tree. An
immediate consequence is the ability to flexibly design new operators, with the
same ease as in linear evolutionary systems (such as GAs), while preserving
the benefits of tree-based representations.

TAG-based GP systems in most respects resemble other tree-based GP sys­
tems closely. We describe here the TAG3P system from (Nguyen et al., 2003).
The underlying structure is a population of trees — in this case, completed TAG
derivation trees. The grammar is specified by supplying the sets of a and ß
trees. Populations then consist of derivation trees from that grammar. Fitness
evaluation is carried out by generating the appropriate derived trees from the
TAG derivation trees, and then (as in GGGP) evaluating the expression on the
frontier of the derived tree as a GP expression. The search space is thus defined
by the grammar — the set of all GP expression trees which may be generated
by the given grammar, within the specified complexity bound. However unlike
GGGP and most other tree-based GP systems, the feasibility property means
that it is easy to control tree size so that tree size, rather than depth, is used as
the complexity bound.

As in GGGP, any reasonable selection operator may be used; current ver­
sions of TAG3P use tournament selection. As with GGGP, care must be taken
to ensure that crossover and mutation operators do not violate the closure re­
quirement. In TAG3P, sub-tree mutation generates a new sub-derivation tree
whose root is the non-terminal labelling the mutation point, while crossover is
restricted to locations bearing the same non-terminal.

TAG3P is simply a variant GGGP system, using TAG derivation trees, in
place of Context Free Grammar (CFG) derivation trees. In this form, the primary
benefits of TAG representation lie in the transformation of the distance metric
of the search space, as in the 'cat' example previous described, and in the ability
to directly apply size rather than depth as a complexity metric.

We have shown in a number of papers (Nguyen et al., 2003; Nguyen et al.,
2004) that these benefits can be important for a wide range of problems. Our
working hypothesis, for which we have some preliminary evidence, is that
the distance transformation implicit in the TAG representation, by allowing
previously long-distance dependencies to become local, may better support the
construction and preservation of appropriate building blocks for some problems.

However the representation effects are not the primary focus of this paper.
Here, rather, we focus on the TAG representation's ability to support new GP

The Importance of Local Search 165

tree operators. Because of the feasibility property, it is possible to design a wide
range of new operators, which is otherwise difficult to achieve with standard
GP representation using expression trees and in GGGP using CFG derivation
trees. Moreover, many of the new operators are biologically motivated, includ­
ing relocation and duplication (Nguyen et al., 2005), but also including point
insertion and deletion operators motivated mainly by their local effects.

Point Insertion and Deletion Operators in TAG3P
The insertion and deletion operators in TAG3P can be viewed as extremely

local mutation operators.
The deletion operator is simple to describe: it uses a uniform distribution to

select one of the leaf nodes of the derivation tree, and deletes it from the tree.
Because of the feasibility property, this always results in a valid derivation tree.

Conversely, the insertion operator selects uniformly randomly among the
open adjunction locations within the derivation tree {Le, non-terminal locations
which do not already have an adjoined subtree), choosing a location with some
label X. It then selects uniformly randomly amongst the X-type auxiliary trees,
and adjoins the selected auxiliary tree in the chosen location.

While insertion and deletion can be treated as local mutation operators, our
previous experiments have obtained significantly better results when they are
used as local search operators, with sub-tree crossover and mutation remaining
as the genetic operators. Hence in this application, the subtree operators are
used as genetic operators only, while insertion and deletion are used as local
search operators. The local search strategy used in this work is the most simple
form of local search, namely, greedy-hill climbing. In more detail, for each
generation, the system performs the initial stages of selection and then crossover
and mutation as usual. However after that step, each new individual is then
subjected to a fixed number of steps of local search.

For each step of local search, one of the two local search operators (insertion
and deletion) is chosen with equal probability, the chosen operator being applied
to the current individual to obtain a new one. The fitness of the new individual
is assessed, and if the new individual is better than the old, it replaces the old,
otherwise it is discarded.

The overall result is that the system tests a sequence of small changes in order
to fine tune the individual. Note that this is feasible only because the flexibility
of the TAG representation allows small changes throughout the derivation tree.

166 GENETIC PROGRAMMING THEORY AND PRACTICE III

3. The Lake Kasumigaura Modelling Problem

Phytoplankton in Lake Kasumigaura
Phytoplankton are microscopic photosynthesising organisms, primarily from

several groups of algae and bacteria. A number of species {e.g. Microcystis,
Oscillatoria) can occasionally exhibit periods of superabundance (blooms) with
harmful ecological and economic effects (Reynolds, 1984), so prediction of
their abundance, and especially of blooms, is of considerable importance.

Phytoplankton population dynamics are affected by a wide range of en­
dogenous variables, including physical factors such as light and temperature,
chemical factors such as pH and the levels of nitrogen and phosphorus, and
biological factors such as the level of grazing by Zooplankton. While there has
been considerable previous work on developing predictive models (for exam­
ple, see (Recknagel, 2001)), there is still room for improvement in the quality
and reliability of the models.

Lake Kasumigaura is a large shallow lake in South-Eastem Japan, about
70km NE of Tokyo. At the time of dataset collection, in the 1980s and 1990s,
there was high nutrient runoff into the lake, and hence high nutrient loadings.
Consequently, there was also a high phytoplankton abundance, with periodic
blooms. There is considerable seasonal fluctuation in temperature and light
loadings, resulting in a large seasonal component to the phytoplankton levels.
This is measured by chlorophyll A readings, which are presented in Figure 11-3,
the blooms corresponding to the peaks in the graph.

Figure 11-3. Lake Kasumigaura Chlorophyll A Readings

The Lake Kasumigaura dataset contains an extensive range of ecological
variables sampled over the ten-year period 1984-1993 (Recknagel et al , 1998).

The Impartance of Local Search 167

The data availability varies over the attributes, so in our work we have restricted
our attention to the eight variables shown in Table 11-1.

Table 11-1. Lake Kasumigaura Data Variables

Variable

Ortho Phosphate (p)
Nitrate (n)
Secchi Depth {s)
Water Temperature {t)
Light (/)
Dissolved Oxygen (o)
Copepoda {cd)
Chlorophyll-A {chla)

Mean ± Standard Deviation

15.46±32.11
517.17±525.10

84.72±47.15
16.50±7.82

1199.16±695.55
11.13±2.41

160.36d=96.73
74.35±46.60

Units

mg/l

fJ'9/l
cm

d e g C
MJ/m^

-
Individuals/I

fJ'9/l

Modelling Approach
A wide variety of error measures are available for assessing the quality of

models (and hence, to guide the computerised search for good models). For
scenario modelling, Root Mean Square Error (RMSE) is the most widely ac­
cepted, and that is what we use in this paper. There is some question whether
RMSE is the most suitable error measure for the use of time series models for
future prediction. It is, for example, time-symmetric whereas it is arguable
that error measures for time-series prediction should not be. For example, a
model which anticipates an algal bloom too early may be more valuable than
one which predicts its occurrence too late. Nevertheless, RMSE is widely used
in predictive use of time-series models, and we follow standard practice in this
area, for comparability with previous work.

In describing a model-inference system, we need to describe two compo­
nents, the class of models explored, and the algorithm used to search amongst
them. Here, we follow the lead of (Whigham and Recknagel, 2001) in using
GP to generate difference equation models.

Since our primary purpose is to investigate the performance of local search,
we compare the original TAG3P (i.e. with sub-tree crossover and mutation op­
erators only) with two versions incorporating different amounts of local search
with the insertion and deletion operators. For comparison with earlier works,
we use CFG-based GGGP in a form close to that of Whigham and Recknagel's.

Model Space. Whigham and Recknagel discuss a number of representations
in the context of equal time differences, the most general being a simple first-
order difference equation.

168 GENETIC PROGRAMMING THEORY AND PRACTICE III

yt-hi = f{^uyt) (11.1)

However for irregularly-sampled data, it is essential to incorporate the time
difference into the equation, the simplest approach being to incorporate it in
differential form, ue.\

5y/öt = f{xuyt) (11.2)

which may be re-written as

vt-hi = yt-\-it^ fixuvt)) (11.3)

The function to be learnt is / () .

4. Experimental Method

Data Preparation
Data Cleaning. We first extracted the original underlying data from the
dataset (assuming linear interpolation). It was clear that the data had been
sampled on an approximately monthly basis, but that there were additional
observations for one variable (light level) throughout the data, and additional
observations for all variables in the more recent period. We discarded these
additional observations to obtain a dataset with irregular but approximately
equal sampling (29.96 ib 3.65 days).

Data Categorisation, The dataset was divided into two equal portions, for
training and testing the models. The first portion, covering the years 1984-1988,
was used for training, while the second portion, covering the years 1989-1993,
was used to test the generalisation ability of the evolved models. As is evident
from Figure 11-3, pollution control methods over the period have reduced the
impact of algal blooms, so that the two periods are not fully comparable. Thus
the learning technique will need to over-generalise to compensate (a better
approach to evaluation would use m-fold cross-validation, but this is not well-
accepted in the ecological modelling field).

Genetic Programming Setup
In these experiments, four treatments were used, incorporating four differ­

ent learning methods: a fairly standard form of Context-Free Grammar Guided
Genetic Programming, the original TAG3P algorithm, and two variants incorpo­
rating varying degrees of local search (TAG3P20 and TAG3P50, with 20 and 50
local search steps respectively), the population size being reduced correspond­
ingly, so as to give the same overall number of evaluations. GP parameters for
the runs are given in Table 11-2.

The Importance of Local Search 169

Table 11-2. Genetic Programming Parameters for Kasumigaura Modelling

Parameter Value

General
Runs per treatment 30
Generations per run 51
Probability of crossover 0.9
Probability of mutation 0.1
Selection Tournament Size 3
Parameters for GGGP
Population size 1000
Local search steps 0
Max depth (initial generation) 6
Max depth (later generations) 10
Parameters for TAG3P/TAG3P20/TAG3P50
Population size 1000/50/20
Local search steps 0/20/50
Max size (initial generation) 6
Max size (later generations) 40

GGGP Setup. As is usual in GGGP, the acceptable form for / in our
equation 11.3 is defined by a context-free grammar, shown in Table 11-3. The
variables p, n, 5, t, /, o, co^ chla are the corresponding attributes from Table 11-
1, while ri and r2 are random ephemeral constants with ranges [0.0... 1.0]
and [—50.0... 50.0] as in (Whigham and Recknagel, 2001). In this example,
the independent variables p, n, 5, t, /, o, co form the vector Xt, while yt is the
dependent variable chla. The function set consists of the arithmetic operators
(+,—,*,/) together with the exponential function (pow, with exponents in the
range [0..1]), permitting the learning of very general forms for the models.

Table 11 -3. Context Free Grammar for Kasumigaura Model

S -^T
T -^ T.OP.T
T -> T-powjrl
T -^ p\n\s\t\l\o\co\chla\r2

O P - + 1 - 1 * 1 /

TAG3P Setup, The TAG3P runs used the TAG shown in Figure 11-1, derived
from the CFG using Schabes' transformation (Schabes and Waters, 1995)

170 GENETIC PROGRAMMING THEORY AND PRACTICE III

Filtering of Results
An important complication with the function search space used in these ex­

periments is the potential to generate invalid numeric values, either out-of-range
or undefined. Out-of-range and NaN (not a number) values can be generated by
arithmetic operations such as division by zero or exponentiation. Out-of-range
values cause little problem for evolutionary methods, since infinite values will
simply be treated as very unfit, but NaN values are more troublesome. In these
experiments, we handled NaN fitness values by resetting them to a very large
{Le, unfit) value, namely exp(700). This is potentially disruptive to the evolu­
tionary process, if too many NaN values occur. As a precaution, we recorded
the number of NaN substitutions in each run; typical values were around 5,000
(around 1%) of the total number of fitness evaluations, suggesting that NaN
substitutions did not substantially affect the evolutionary process.

In reporting results, these exp(700) values can dominate means even when
relatively rare. To avoid this phenomenon, values exceeding exp(300) were
filtered from the results before computing mean results or graphing. The number
of such filtered values are reported along with the results. For the same reason,
only best-of-generation results are reported, since population averages tended
to be dominated by these misleading values.

5. Results and Discussion

Results
Figure 11-4 shows the evolution of reduced RMSE on the training data for

each of the four treatments used. Each point in the plot represents the mean,
over all 30 runs for that treatment, of the Root Mean Square Error (RMSE) of
the best individual in each population at the given generation.

Table 11-4 shows the mean error, over all runs for a given treatment, of the
best individual in the final generation of each run. The table also shows the
p-values from Student's T-test for all pairs of treatments. The null hypothesis
is that there was no difference between means of the treatment pair, requiring
a two-tailed unequal-variance test. Table 11-5 shows the corresponding values
for the test data. In this case, a single run from the 30 for each of TAG3P20 and
TAG3P50 was filtered out; no runs were filtered from the results for GGGP or
TAG3P. Finally, Table 11-6 shows the mean sizes of these 'best' individuals.

Discussion
It is clear, both from Figure 11-4 and from Table 11-4, that local search does

improve the training accuracy on this dataset - that is, that TAG3P with local
search operators is better able to fit the data than either TAG3P alone, or a
more standard GGGP system, the probabilities of the null hypotheses in these

The Importance of Local Search 171

58

56

54

52

^ 5 0

48

46

44

42

• ^

^ \
\ ; .

-~- GGGP
• TAG3P

- TAG3P20 h
- - TAG3P50 1

-

\ -̂̂

' " ' ^ - ^ > r v

Figure 11-4, Mean of Training RMSE of Best-in-generation Individual

Table 11-4. Mean and SD of Training RMSE of Best Final-Generation Individual

T test p values
TAG3P50
TAG3P20
TAG3P

GGGP

52.85 ± 3.33

9.88E-18
2.98E-19

0.60

TAG3P

53.23 ±2.13

4.76E-21
2.83E-21

TAG3P20

41.23 ±3.43

0.89

TAG3P50

42.69 ± 3.06

Table 11-5. Mean and SD of Test of Best Final-Generation Individual

T test p values
TAG3P50
TAG3P20
TAG3P

GGGP

136.1 ±214.16

0.07
0.03
0.05

TAG3P

54.0 ±35.8

0.52
0.49

TAG3P20

48.9 ±19.5

0.17

TAG3P50

60.6 ±40.7

cases being very small. There may be a hint from the figure that TAG3P50's
more eager search results in better early behaviour but poorer later results than
TAG3P20 (Le, that 50 steps of local search may be too many), and similarly,
that GGGP is less eager than TAG3P, but given the T-test results, this requires
more confirmation before a definite conclusion can be reached.

From Table 11-6, we see that the local search runs result in far larger indi­
viduals than TAG3P on its own; there is a concomitant risk that the results of

172 GENETIC PROGRAMMING THEORY AND PRACTICE III

GGGP

100.6 ±47.5

Table 11-6. Mean Size of Best Final-Generation Individual

TAG3P TAG3P20

5.4 ±0.7 38.4 ±2.6

TAG3P50

39.0 ±1.5

local search may be overfitted to the training data, and may generalise poorly
to unseen data. Table 11-5 suggests that this has not occurred: while the differ­
ences in the table are either not, or only marginally significant, we can say that
the 20 step local search runs generalise slightly better than the original version,
while the 50 step runs generalise slightly worse, again suggesting that 50 steps
may be too many. Furthermore, there is weakly suggestive evidence that all
three TAG runs generalise better than the GGGP runs, in which a significant
proportion appear to be significantly overfitted to the data, giving rise to very
inaccurate predictions on the test data.

One further caution is required with Table 11-6. The table records the geno­
type size in each case. However GGGP genotype sizes are not strictly compa­
rable with TAG genotype sizes - one TAG elementary tree typically subsumes
a number of CFG productions (in this case, typically 2-3 as may be seen by
comparing Table 11-3 and Figure 11-1, so that a TAG genotype typically cor­
responds to a GP genotype 2-3 times larger). Thus the best we may conclude
regarding evolved GGGP sizes is that the GGGP individuals are roughly com­
parable in complexity with those from the TAG local search runs, and certainly
much larger than those from the pure TAG3P runs.

6, Conclusions and Further Work
The results presented here confirm the ability of local search in TAG3P, using

the point insertion and deletion operators, to significantly improve the search
performance of the TAG3P evolutionary system - in this case, in a real-world
ecological modelling problem. The test set error obtained from TAG3P with
local search is far lower than that obtainable either by TAG3P alone, or by a
more standard GGGP system.

However for a learning problem such as this, in which generalisation is
actually more important than test set accuracy, it is perhaps fortuitous that the
large increase in individual size generated by the local search runs (Le. search
appeared to favour insertion over deletion) did not result in overfitting and poor
generalisation. When the search method is too effective at fitting the training
set data, mechanisms are required to avoid over-fitting which may lead to poor
generalisation.

We plan to extend recent work on Minimum Measurement Length (MML)
techniques for CFG-based GP (Shan et al., 2004) to the TAG representation,

The Importance of Local Search 173

enabling us to use an MML-based metric, rather than raw accuracy, as the fitness
metric for TAG3P with local search in learning problems, and thus avoid the
potential generalisation problems.

References
Cramer, Nichael Lynn (1985). A representation for the adaptive generation of

simple sequential programs. In Grefenstette, John J., editor. Proceedings of
an International Conference on Genetic Algorithms and the Applications,
pages 183-187, Carnegie-Mellon University, Pittsburgh, PA, USA.

Daida, Jason M., Li, Hsiaolei, Tang, Ricky, and Hilss, Adam M. (2003). What
makes a problem GP-hard? validating a hypothesis of structural causes. In
Cantu-Paz, E., Foster, J. A., Deb, K., Davis, D., Roy, R., O'Reilly, U.-M.,
Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J.,
Dasgupta, D., Potter, M. A., Schultz, A. C, Dowsland, K., Jonoska, N., and
Miller, J., editors. Genetic and Evolutionary Computation - GECCO-2003,
volume 2724 of LNCS, pages 1665-1677, Chicago. Springer-Verlag.

Geyer-Schulz, Andreas (1995). Fuzzy Rule-Based Expert Systems and Genetic
Machine Learning, volume 3 of Studies in Fuzziness. Physica-Verlag, Hei­
delberg.

Joshi, A.K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.
Journal of Computer and System Sciences, 21(2):136-163.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Nguyen, Xuan, McKay, Bob, Essam, Daryl, and Abbass, Hussein (2004). To­
ward an alternative comparison between different genetic programming sys­
tems. In Keijzer, Maarten, O'Reilly, Una-May, Lucas, Simon M., Costa,
Ernesto, and Soule, Terence, editors, Genetic Programming 7th European
Conference, EuroGP 2004, Proceedings, volume 3003 of LNCS, pages 67-
77, Coimbra, Portugal. Springer-Verlag.

Nguyen, Xuan Hoai and McKay, R. I. (2004a). Softening the structural dif­
ficulty in genetic programming with TAG-based representation and inser­
tion/deletion operators. In Deb, Kalyanmoy, Poli, Riccardo, Banzhaf, Wolf­
gang, Beyer, Hans-Georg, Burke, Edmund, Darwen, Paul, Dasgupta, Di-
pankar, Horeano, Dario, Foster, James, Harman, Mark, Holland, Owen,
Lanzi, Pier Luca, Spector, Lee, Tettamanzi, Andrea, Thierens, Dirk, and
Tyrrell, Andy, editors. Genetic and Evolutionary Computation - GECCO-
2004, Part II, volume 3103 of Lecture Notes in Computer Science, pages
605-616, Seattle, WA, USA. Springer-Vertag.

Nguyen, Xuan Hoai, McKay, R. I., and Abbass, H. A. (2003). Tree adjoin­
ing grammars, language bias, and genetic programming. In Ryan, Conor,
Soule, Terence, Keijzer, Maarten, Tsang, Edward, Poli, Riccardo, and Costa,

174 GENETIC PROGRAMMING THEORY AND PRACTICE III

Ernesto, editors, Genetic Programming, Proceedings ofEuroGP'2003, vol­
ume 2610 of LNCS, pages 340-349, Essex. Springer-Verlag.

Nguyen, Xuan Hoai and McKay, R I (Bob) (2004b). An investigation on the
roles of insertion and deletion operators in tree adjoining grammar guided
genetic programming. In Proceedings of the 2004 Congress on Evolutionary
Computation CEC2004, Portland. IEEE Press.

Nguyen, Xuan Hoai, McKay, R I (Bob), and Essam, D L (2005). Genetic trans­
position in tree-adjoining grammar guided genetic programming: the dupli­
cation operator. In Proceedings of the 8th European Conference on Genetic
Programming (EuroGP2005), Lausanne, Switzerland.

Nordin, Peter and Banzhaf, Wolfgang (1995). Complexity compression and
evolution. In Eshelman, L., editor. Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 310-317, Pittsburgh, PA,
USA. Morgan Kaufmann.

Nordin, Peter, Francone, Frank, and Banzhaf, Wolfgang (1995). Explicitly de­
fined introns and destructive crossover in genetic programming. In Rosea,
Justinian P., editor. Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, pages 6-22, Tahoe City, Califomia,
USA.

O'Reilly, U.M. (1997). Using a distance metric on genetic programs to under-
tand genetic operators. In Late Breaking Papers at the 1997 Genetic Pro­
gramming Conference.

Recknagel, F. (2001). Ecological Informatics, Springer Verlag.
Recknagel, F., Fukushima, T., Hanazato, T., Takamura, N., and Wilson, H.

(1998). Modelling and prediction of phyto- and Zooplankton dynamics in lake
kasumigaura by artificial neural networks. Lakes and Reservoirs: Research
and Management, 3:123 - 133.

Reynolds, C. (1984). The Ecology of Freshwater Plankton. Cambridge Univer­
sity Press.

Ridley, M. (1996). Evolution. Blackwell Science.
Schabes, Y. and Waters, R.C. (1995). Tree insertion grammar: A cubic-time

parsable formalism that lexicalizes context-free grammar without changing
the trees produced. Computational Linguistics, 20(1):479-513.

Shan, Yin, McKay, Robert I., Baxter, Rohan, Abbass, Hussein, Essam, Daryl,
and Nguyen, Hoai (2004). Grammar model-based program evolution. In
Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pages
478-485, Portland, Oregon. IEEE Press.

Vanneschi, L., Tomassini, M., Collard, P., and Clergue, M. (2003). Fitness dis­
tance correlation in structural mutation genetic programming. In Proceedings
ofEuroGP, Essex, England.

Whigham, P. A. (1995). Grammatically-based genetic programming. In Rosea,
Justinian P., editor. Proceedings of the Workshop on Genetic Programming:

The Importance of Local Search 175

From Theory to Real-World Applications, pages 33-41, Tahoe City, Califor­
nia, USA.

Whigham, Peter A. and Recknagel, Friedrich (2001). An inductive approach to
ecological time series modelling by evolutionary computation. Ecological
Modelling, 146(1-3): 275-287.

Wong, M. L. and Leung, K. S. (1995). Genetic logic programming and ?i^^\\-
c^Mons. IEEE Expert, 10(5):68-76.

Chapter 12

CONTENT DIVERSITY IN GENETIC
PROGRAMMING AND ITS CORRELATION
WITH FITNESS

A. Almal, W. P. Worzel^ E. A. Wollesen^ and C. D. MacLean^
Genetics Squared Inc., 210 S. Fifth Ave, Suite A, Ann Arbor, MI 48104

Abstract A technique used to visualize DNA sequences is adapted to visualize large num­
bers of individuals in a genetic programming population. This is used to examine
how the content diversity of a population changes during evolution and how this
correlates with changes in fitness.

Keywords: genetic programming, diversity, chaos game, fitness correlation.

1. Introduction
Genetic Programming (GP) has borrowed theory extensively from Genetic

Algorithms (GAs). It is widely accepted that the building-block hypothesis
(Holland, 1975) holds true for GP and Poli has proven a Schema Theorem
(Holland, 1975) for GP (Poli and McPhee, 2001).

At the same time, there have been voices of dissent. Angeline (Angeline,
1997) has described crossover as "macro mutation" that is as likely to be de­
structive of existing building blocks as it is to create new building blocks. Daida
et al. (Daida et al, 2003) has suggested that GP is dominated by structural con­
siderations that significantly constrain the possible search space, thus limiting
the importance of the Schema Theorem. McPhee and Hopper (McPhee and
Hopper, 1999) and Daida et al (Daida, 2004) both showed that the genetic
material in the final generation of evolution could be traced to a very limited
subset of the initial generation. Daida et al (Daida, 2004) also suggests that
tournament selection is better than fitness proportional selection at reaching a
solution precisely because diversity is reduced quickly to a limited set of build­
ing blocks that are then shuffled to find their best combination. This is contrary
to accepted wisdom that it is desirable to maintain diversity as long as possible

178 GENETIC PROGRAMMING THEORY AND PRACTICE III

in order to search for the best building blocks available. Instead Daida et al
(Daida, 2004) argues that for reasons of computational efficiency, it is better to
allow fast convergence on a small number of building blocks that are selected
from the initial populations. Without early convergence, a GP system will be
forced to spend an inordinate amount of time evaluating inferior individuals.

This paper introduces a means for visualizing Genetic Programming content
and structure so that aspects such as diversity and structure within a population
may be examined during evolution and related to the progression of fitness.
This may be used to test some of the theories described above as well as giving
GP users some insight into the appropriateness of GP parameter settings for the
problem being solved.

2. Content Mapping

Chaos Game
Genetic programming systems, as with other evolutionary systems, are gen­

erally not in equilibrium. The dynamics of the system are usually non- linear in
behavior and genetic programming systems tend to be very sensitive to initial
conditions. Due to these properties, a genetic programming system may be
described as a chaotic dynamical system. By applying chaos theory to the dy­
namics of evolution in GP, it may be possible to better understand the emergence
of non-random patterns during the evolutionary process.

The Chaos Game is an interactive approach to teaching students about fractals
and, indirectly, about chaotic dynamical systems. From a starting point within
a simple geometric figure such as a triangle or a square, a point is plotted some
fraction of a distance toward one of the figure's vertices. This is repeated,
varying the targeted vertex until a figure emerges. For example, if a triangle is
used and a point is plotted half way from the current position to the targeted
vertex and the vertex is randomly selected, a Sierpinski triangle is created.
This may be turned into a game by providing a target for the line to reach and
requiring the student to pick the vertex toward which he or she moves (Voolich
and Devaney, 2005).

If a square is used instead of a triangle and each comer is labeled with one of
the bases in DNA {i.e.. A, T, C and G), then each sequence of DNA will create
a different graph. By plotting multiple sequences in this way, the Chaos Game
can be used for a variety of things such as identifying recurring sequences,
and identifying functional regions of DNA (Jeffrey, 1990) (V. Solovyev, 1993).
This method is now widely used for sequence analysis and in particular for the
discovery of particular sequences of interest for further analysis.

Content Diversity in Genetic Programming and its Correlation with Fitness 179

The Circle Game
By moving from a polygon to a circle, a more flexible system is created

with the values being mapped distributed evenly around the circle. This is
equivalent to a polygon inset within a circle with the vertices touching the
edge of the circle. By using this to plot individuals in genetic programming
populations, the emergence of structure and content "motifs" during evolution
may be tracked.

In this approach, to represent the content of a GP expression the tokens being
tracked (i,e., terminals and operators) are evenly spaced around a circle. By
rendering a GP derived function as a linear string, the sequence of tokens may
be plotted. As in the Chaos Game, beginning at the center of the circle, a point
is plotted from the current location to a point halfway to the location of the
point on the circle where the next token in the function lies. This is repeated
until the function has been fully graphed in the circle and then repeated for all
members of the population. (Koelle,) An alternative version plots a line from
the current location to a point half way to the appropriate vertex rather than a
single point. This has the virtue of showing ordered patterns that repeat within
the population but at the cost of creating a more tangled plot.

It can be seen that the chaos game can capture the content diversity and
show the emergence of patterns, however if we want to identify the 'motifs,' it
requires us to represent the structure of the expression as well since a x b-\- c
is quite different from a x {b -\- c) but their content plots would be identical.
In order to do this we propose a modified approach that represents both the
structure and the content.

The equation shown in Equation 12.1 can be easily mapped into a binary tree
structure as shown in Figure 12-1.

[h\\{0p3 {Op2 Tl T2) T4) (12.1)

link length = ŝ
Op3 depth = 1

_ /_ . \ . . . link length = ŝ

i2 T4 depth = 2

link length = ŝ
Tl T2 depth = 3

Figure 12-1. Binary Tree Representation of Equation 12.1

In the modified algorithm, the nodes are plotted using the rules for the circle
game. However, the length of the links for these nodes are given by s^, where
5 is a scaling factor arbitrarily chosen between 0 and 1, and d is the depth of
the node the link is leading to in the binary tree. Also the link for a node in
the plots should originate from the location of its parent. For example, the

180 GENETIC PROGRAMMING THEORY AND PRACTICE III

sequence of plotting for Equation 1, will be: plot a line from origin half the
distance {s = 0.5) towards OpS, move a quarter distance towards Op2, move
one-eighth of the distance towards T l , come back to the starting point for Op2,
move one-eighth of the distance towards T2, come back to Op3 and move a
quarter distance towards T4. The scaling parameter s can be chosen to be
any arbitrary value, keeping in mind that it controls the visual divergence in
the plot. Figure 12-2 shows an example of this for the expression shown in
Equation 12.1.

Content Diversity Visualization for Eq.1

I

^

1 1

Op2

T3

1 1

1 1

T2

;

\ / ^

Op3

1 1

1 1

Op1

T4

1 1

T1

1

^

-

Figure 12-2. Modified Circle Plot for Equation 12.1

If we add Equations 12.2 and 12.3 and plot all three equations together using
using different pens, we get the plot shown in Figure 12-3. This shows that
similar expressions can be distinguished but at the same time their structural
and content similarities can be spotted.

(Op3 (Op2 T l T3) T4) (12.2)

(Op2 (Opl T l T2) T2) (12.3)

Showing Content Diversity During Evolution. By looking at the structural
content plots for an entire population during evolution we can gain a glimpse
of the dynamic changes in structure and content. There are two different types

Content Diversity in Genetic Programming and its Correlation with Fitness 181

Content Diversity Visualization for Eq.1-3

2 h

-2 h

• 1

Op2

\-

T3

1

— 1 1

T2

" " " • • •

^
\i

Op3

1

~*-v

"7

/ / y"

1

1

K — - •

1

1

^

Op1

T4

1

1 1

-]

T1 -\

J

- 4 - 2 0 2 4

Figure 12-3. Circle Plot or Equations 12.1-12.3

of plots we use to study evolution. In one we plot the entire graph and in
the other we plot the nodes and the links are omitted. Both of these methods
have unique qualities, the former tells us about the connectivity of the nodes(an
essential feature for finding the motifs) and the latter approach gives a nice
visual representation of the diversity during evolution. Especially interesting
are the emergence of the circular fractals in these plots. These suggest that
the GP system is searching for the appropriate combination of elements in a
structure.

Figure 12-4 shows a population of individuals at generation 0 of a run while
Figure 12-5 shows the population at generation 10. Figure 12-6 shows it at
generation 20 and 12-7 at the final generation, generation 40. By comparing
these images we can see the appearance of shared content and structure within
the population emerging from the random "ball of string" in generation 0. By
the final generation shown in Figure 12-7, we can see how the content diversity
has been reduced to a comparatively small number of variables and the structure
is fairly similar across the individuals in the population.

The plots of only the nodes for the same problem follow in Figures 12-8
through 12-11.

182 GENETIC PROGRAMMING THEORY AND PRACTICE III

Content Diversity for Run - 0 Fold - 0 Gen - 0

Q28

52423 22 2 1 2 0 1 9 1 8 ^ .
2 7 2 6 " ^ ' 1 5 1 5 .

^ 5 6 0 6 1 6 2 63 64 65666"?'

-4 -2

Figure 12-4. Generation 0 Content Plot

Goirtltent D ivers i ty f o r Run - 0 Foicl - 1 Gen - ID

^^^^252423 222120 13181716,3

^^60 6162 63 64 65 66 6"?

-6 -4 -2

Figure 12-5. Generation 10 Content Plot

Content Diversity in Genetic Programming and its Correlation with Fitness 183

Gqnterit Diversity for Run - 0 Fpld - 1 jSen - 2Ö

52423 2221201918^16

'58 59 606162 63 64 6566 6768^

Figure 12-6. Generation 20 Content Plot

Content Diversity for Run - 0 Fc^d - 1 Gen - 4Ö

25 24 23 22 2120 1918^

^^606162 63 64 65 666"?

-8 -6

Figure 12-7. Generation 40 Content Plot

184 GENETIC PROGRAMMING THEORY AND PRACTICE III

Content Diversity for Run - 0 Fold - 0 Gen - 0

^^^^^423222^019161716^5^

'%06I52636̂

-8 -6

Figure 12-8. Generation 0 Content Plot - Endpoints

Content Divers i ty for Run - 0 Fold - 1 Gen - 10

- I r-

'101711
^ % |

-8 -6 -4 -2

F/̂ Mre 72-9. Generation 10 Content Plot - Endpoints

Content Diversity in Genetic Programming and its Correlation with Fitness 185

Conterit Divera4% l̂ sr* ;i^ - 1 Gen - 20

-1 r- -1 r-
,^^52423222^0l9i;i

-. « ,̂ .

r-'*""

Figure 12-10. Generation 20 Content Plot - Endpoints

Content Diversity for Rtiir - 0 fold - 1 Gen - 40

^ ^ ;
%

06153535^!

Figure 12-1L Generation 40 Content Plot - Endpoints

186 GENETIC PROGRAMMING THEORY AND PRACTICE III

3, Fitness Plots
Correlation between content, structure and fitness can be made by comparing

fitness plots with the circle plots above. Scatter plots of the individual fitness
values in a test population shown in Figure 12-7 have a surprising diversity
of fitness among the population, even late in the evolutionary process. The
fitnesses of all individuals have been sorted by the training set fitnesses (not
shown here) with the least fit individuals appearing at the left end of the graph
and the most fit at the right end. Figure 12-12 shows the fitness distribution in
generation 0, 12-13 at generation 10, Figure 12-14 at generation 20, and Figure
12-15 at the end of the GP run, generation 40.

Test Fitness Diversity for Run = 6 Fold = 1 Gen = 9

8*8

8,6

8.4

1 , K r "^fr-r^
<

- f «

X X X X Ä X
X X

L X >J<X »< XX XX X X
1 X X :^>< X XX' X

X X X X'Ä X X X XX X « X Sffr;
X X X K X

X XX X
•-•i X >*Ö< X X

X , *X X X
h X » ; X X X XX XX X

X X X XX)SK
X X X X

X XX Ä }K
k x SKX X X X X
X Ä S o c « » ; X X XX

L >^< >K XX
k X XXX X X X X

XX X X
k x X X X X

X X X
X X X X X X

k X
f >K X

X X X

X X X

1 U^ 1 1

X
X

XX

X

X
X X

X
X

1

- r ^e r

X X X
X< X
X XX

-a 1>()iX X 1 H St. ^v* SK
; : X X y: X

X xie X X X X
X X A X X X X

X XX XX X X X
X X > « < X X X X X > « X

X ^ X »<. X X ^ - « X X XX5IK.
X X X Ä X » c >«)0*:.>«!<x ;;> >

M X X X X x x ^ XX X x3^ XX X X :«x: w

•^if

i^' S£
X X

X

X X X
X X

X X
X

X

_J

X X X
X K X X

X
XX

X X
X X

X X
X

X

_ J l _

XX' X
sex X X X X 3C X

X X >-.
X m. X

X X >X
X X X

X
X X

X
X X

X

1 1

280 258

Ind iv idua ls

Figure 12-12. Test Fitnesses at Generation 0

By comparing the circle plots and the fitness, we can see that although the
content diversity narrows, the fitness variance among individuals remains high
but we can also see that there are certain fitness bands that dominate the popu­
lation as the content goes down.

4, Conclusions and Future Work
The examples shown above were developed in a multi-deme system using

generational evolution on a classification problem with a particular fitness mea­
sure suited for the type of classification problem we were working on. Any

Content Diversity in Genetic Programming and its Correlation with Fitness 187

Test Fitness Diversity for Run = 9 Fold

1 1 *̂ ^—1 y. \<H H T H
X X X X X X

X >i(CX 3C< JÄX
X X X

X X S K X » K X X X X
X X X X X K X X X) «

L X X X
f X XX XX X X X X : «

XX X X5K >OOOt)X » K X XX
X)*; X X X

X X 3iCX»< X X X X
»< X X X X

X X XX X
V X X X X X X X

X X
X X X
X 3K X X

X X
Ä X X X X

L X X X
X X

XX X X XX X
>iK X X

K X ?0< X
MC»»«

Ä X X
f X

X
X

X X

1 u 1 1 I

>ac

X

-̂ >r H ^ ' O O O C -im i X JvC 1
XX X X X X X X

X >0<X X X
X X X > « X

X X SK X >«
X X X < X X)« X 3K X >0<

X »< X>»e9K X X X K X >0O< X

K X X X XX X X X X X 3 ^
X. :4^ xx.« X ^ » « x 3HC S K x ; >3c<ae x
X X X X X X X X X
XX XX X XIC X X

X X
X X

X
X X

X X X

X
X

1 I 1 1 1

'''—1

H
X
X X

J
aoJ

*]

J

H

28B 258

I n d i v i d u a l s

Figure 12-13. Test Fitnesses at Generation 10

Test Fitness Diversity for Run

3XÜ X

X X X>ftCXX X X
X X X X X X X » C

X X W X X 3K X X X X X
X X X X X X X X

X X x a r X X X x x x
X X XX8K XmiTÜM » X X X X a

X X X >^X X X >i3eC4MBINC«CMK
X X XX >0<X< XXK X x:<?<

XX X X « X X XXXX XX
X X X X XXXX X

X X X X X

>«< X
X

X

XK

X >S<
X X J

«xx
X>Ö< X

X
Ix X

X X X
X

20e 258 309

I n d i v i d u a l s

Figure 12-14. Test Fitnesses at Generation 20

GENETIC PROGRAMMING THEORY AND PRACTICE III

Test Fitness Diversity for Run = 0 Fold = 2

8«8

r ~ — 1 - .-T • • (• - J

X X >
X

XX X>i
X ;K

L X >3<

i ^ " — ' 1 — • • • • • ' | - J - ' / ^ — 1 1 —

X X X X<
X X XXX X XX
X XX X X

X XXX X X
aSK X >CXX3iiC
X X > » : XK.»0^ 30K X

X XX »< >S< St K X XÄ X XX X ^MCXC
X x » ; x x X x > « ;

X >« X » ;
XXX XX) «

X X >X X
h X X .vfc-

X X X X

X » < X K X X SK XX
X»f X X

X X X X X
X X

X X
M j e X X X X X X X

X :KX X
< X X X X

3<
L X)JKX

X X X
XX XX

vx X :>?<x
>« X

p? X X X
I X X
r X X

w.
kx X

K X

X X

X X X
X
X

X X
X

1 1 1 1 _

1

X

X X

^ ^ ^ • c m
SMC } | i m i |

X

•mm

X X
X X

X
» ^ X

^ • • C X

X

X

i

•E XTM
M
X

J
J

m

X
X

-1

X

J

•j

» 258 386

Ind iv idua ls

350 '488

Figure 12-15. Test Fitnesses at Generation 40

general conclusions about GP and the changes in content and its correlation to
fitness will have to wait until this approach is applied to more varied problems
and environments.

One limitation we have encountered is that in problem sets where there are
a large number of inputs and a large population, the "ball of string" effect for
full plots can make identification of subtle difference difficult as even minor
differences begin to run together. We have considered sampling the individ­
uals in a population rather than using the whole population to help deal with
this problem. We are also trying 3D plots where the number of repeats of a
segment corresponds to plot height. Another interesting experiment might be
coloring the individuals according to the fitness and seeing the correspondence
in between the fitness, structure and the content diversity.

However, this approach shows potential as a way to model the dynamics
of GP by providing insight into both structure and content during evolution.
There are a number of questions that could be resolved more completely in
terms of GP behavior such as the difference in diversity caused by crossover,
a comparison of fitness proportional versus tournament selection, and perhaps
most interesting, comparing populations in separate demes and the effect of
different rates of transfer between the demes.

Content Diversity in Genetic Programming and its Correlation with Fitness 189

Similarly, running with varying probabilities of crossover and mutation and
comparing the content distribution and its relationship to fitness will give an
indication of how much GP is influenced by the building block hypothesis and
the schema theory as opposed to structural limitations.

Also, by comparing the circle plots described here with Daida et al 's struc­
ture plots (Daida et al., 2003), we will be able to see how much of the structure
is captured in the circle plot compared to their approach. If the structure shown
in the circle plots does not correspond to the structure relationships shown by
Daida et al (Daida et al., 2003), then adding structure plots to circle plots and
correlating with fitness should show the interplay between structure, content
and fitness, testing many of the current theories in Genetic Programming.

References
Angeline, Peter J. (1997). Subtree crossover: Building block engine or macro-

mutation? In Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B.,
Garzon, Max, Iba, Hitoshi, and Riolo, Rick L., editors. Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 9-17, Stanford
University, CA, USA. Morgan Kaufmann.

Daida, Jason (2004). Considering the roles of structure in problem solving by a
computer. In O'Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill,
editors. Genetic Programming Theory and Practice II, chapter 5. Kluwer,
Ann Arbor.

Daida, Jason M., Hilss, Adam M., Ward, David J., and Long, Stephen L. (2003).
Visualizing tree structures in genetic programming. In Cantu-Paz, E., Foster,
J. A., Deb, K., Davis, D., Roy, R., O'Reilly, U.-M., Beyer, H.-G., Standish,
R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter,
M. A., Schultz, A. C, Dowsland, K., Jonoska, N., and Miller, J., editors.
Genetic and Evolutionary Computation - GECCO-2003, volume 2724 of
LNCS, pages 1652-1664, Chicago. Springer-Verlag.

Holland, John H. (1975). Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. University of Michigan Press, Ann Arbor, Michigan, USA.

Jeffrey, HJ (1990). Chaos game representation of gene structure. Nucleic Acids
Research, 18(8):2163-2170.

Koelle, Katia. Private communications with Katia Koelle. University of Michi­
gan, Center for the Study of Complex Systems.

McPhee, Nicholas Freitag and Hopper, Nicholas J. (1999). Analysis of genetic
diversity through population history. In Banzhaf, Wolfgang, Daida, Jason,
Eiben, Agoston E., Garzon, Max H., Honavar, Vasant, Jakiela, Mark, and
Smith, Robert E., editors. Proceedings of the Genetic and Evolutionary Com-

190 GENETIC PROGRAMMING THEORY AND PRACTICE III

putation Conference, volume 2, pages 1112-1120, Orlando, Florida, USA.
Morgan Kaufmann.

Poll, Riccardo and McPhee, Nicholas Freitag (2001). Exact schema theory for
GP and variable-length GAs with homologous crossover. In Spector, Lee,
Goodman, Erik D., Wu, Annie, Langdon, W. B., Voigt, Hans-Michael, Gen,
Mitsuo, Sen, Sandip, Dorigo, Marco, Pezeshk, Shahram, Garzon, Max H.,
and Burke, Edmund, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 104-111, San Francisco,
California, USA. Morgan Kaufmann.

V. Solovyev, S. Korolev, H. Lim (1993). A new approach for the classification
of functional regions of DNA sequences based on fractal representation. Int,
Journal of Genome Research, 1(2): 109-128.

Voolich, Johanna and Devaney, Robert L. (2005). The chaos game.
http://math.bu.edu/DYSYS/applets/chaos-game.htm.

http://math.bu.edu/DYSYS/applets/chaos-game.htm

Chapter 13

GENETIC PROGRAMMING INSIDE A CELL

Gene Regulation and Self-Organization:
Inspirations from Genetic Programming in vivo

Christian Jacob '̂̂ and Ian Burleigh
Department of Computer Science, University of Calgary;
Department of Biochemistry & Molecular Biology, University of Calgary

Abstract We present an agent-based, 3D model of the lactose {lac) Operon, a gene regula­
tory system the bacterium E. coli. The lac Operon is a prime example of a 'real
genetic programming' system, which has been studied extensively and lends itself
to rigorous mathematical analysis and computational simulations. We suggest
natural gene regulatory systems, as observed within E. coli, to serve as testbeds
for future in silico genetic programming systems.

Keywords: agent-based, biological modelling, gene regulatory system, lactose Operon, bioin-
formatics, simulation, swarm intelligence, self-organization

1. Introduction
The last decade has brought about a revolution in the understanding of

epigenesis—the still awe-inspiring processes of evolving a simple, undiffer­
entiated cell into a complex adult organism—and other natural development
processes. Genetic programming (GP) (Koza, 1992; Banzhaf et al, 1997), as
a relatively new research area, is now entering a stage of maturation, where we
strive to use evolutionary and developmental principles to automatically con­
struct and 'grow' more and more complex systems, such as computer programs.
Interestingly enough, complex patterns and structures emerge within highly dy­
namic systems without any central control, which would globally regulate the
development of particular subsystems, emergence and self-organization prin­
ciples play a major part in the decentralized construction of complex structural
computational entities or 'agents' (Kauffman, 1995; Holland, 1998).

192 GENETIC PROGRAMMING THEORY AND PRACTICE III

Agent-based, massively parallel, decentralized approaches provide an appro­
priate level of abstraction, where local interaction rules determine agent behav­
iors, from which the overall 'collective system intelligence' emerges (Bonabeau
et al., 1999; Kennedy and Eberhart, 2001). In conjunction with using GP to
evolve agent-behavior programs, 'swarm intelligence' systems have the poten­
tial to inspire not only our understanding of developmental processes and their
evolution, but to inspire current and future GP methodologies and applications
from studying and modeling 'programming in vivo' (Jacob, 2000).

In this paper, we discuss one of the simplest gene regulatory systems—an
example of 'real genetic programming'—with the objective of elucidating the
underlying self-organization and swarm-interaction principles. We do this, first
of all, to understand how to build agent-based models of biomolecular systems
and, secondly, to derive abstractions for use in future genetic programming
systems. We present a 3D-space, agent-based model of the lactose {lac) operon
within the bacterium Escherichia coli (E. coli), which is one of the most basic
and extensively investigated systems of gene regulation (Müller-Hill, 1996;
Ptashne and Gann, 2002).

The observable dynamics of biomolecular systems, such as gene regulation
within a cell, results from the interactions of a (usually large, but finite) number
of 'bio-agents,' such as proteins, peptides, signaling or macro-molecules. Our
agent-based models apply swarm intelligence algorithms in order to simulate
bio-molecular systems, an approach which is gaining a much broader accep­
tance within the life sciences research community (Burleigh et al., 2003; Jacob
and Burleigh, 2004), thus complementing most of the current, more abstract
mathematical and computational models (Salzberg et al., 1998; Bower and
Bolouri, 2001).^

The paper is organized as follows: In Section 2 we introduce Operons as
the basic modular units on bacterial genomes and describe the lac operon in
detail. In Section 3, we present our model to explain how the on/off switching of
genes results from the interactions among several bio-agents. Section 4 analyses
typical simulation runs where the E, coli bacterium—i.e., its genome—reacts
to an influx of lactose. In Section 5, we offer an outlook of the future of GP,
based on what we have learned from our E. coli model.

2, Operons as Self-Regulating Genetic Modules
An operon is a group of genes located on the DNA (Deoxyribose Nucleic

Acid) of bacteria that are transcribed as a unit. The so-called lac operon, found

'Several alternative and complementary computer-based models of the lac operon exist, including simple
grammar-based approaches (Collado-Vides, 1992), functional hybrid Petri net models (Matsuno et al., 2001),
systems based on rewrite rules (Suen and Jacob, 2003), and systems based on large sets of differential
equations (Tomita et al., 2000).

GP inside a Cell 193

in the E. coli bacterium, is one of the best-studied gene regulatory systems,
and is still used as a basis for investigating more complex genetic systems (Ja­
cob and Monod, 1961; Beckwith and Zipser, 1970; Müller-Hill, 1996; Ptashne
and Gann, 2002). E, coli is a prokaryotic organism without a nucleus that
is normally found in a lactose-rich environment, such as the gut of humans.
E. coli requires the energy source of glucose for much of its growth and has
evolved a solution for obtaining glucose from its environment by converting
lactose into glucose and galactose. This conversion is accomplished through
the enzyme ^-galactosidase, which is one of the products of the lac operon.
In the presence of lactose, the lac operon is turned on and, hence, produces
/3-galactosidase. When lactose is no longer present, the lac operon turns itself
off and, consequently, stops the production of ^ö-galactosidase, thus conserving
cellular resources. Gene-based self-regulation is an emergent property, medi­
ated by the interactions of proteins, enzymes, molecules, and DNA. In order to
understand how this 'emergence' can be accomplished through the interactions
of 'swarms' of agents, we will describe the lactose operon in detail. The main
components of the lac operon as a regulatory unit on the bacterial DNA consists
of four genes: lacZ, lacY, lacA, and lad (Figure 13-1).

Module One: lacZ-Y-A. The lacZ-Y-A genes appear as a single module and
are located adjacent to one another on the operon (Figure 13-1(a)). A control
complex consisting of a promoter (P) and an operator (O) precedes the three
genes. RNA polymerase reads the lacZ-Y-A sequence of genes, resulting in the
production of their corresponding proteins Z, Y, and A through the processes of
transcription and translation (explained in Section 3).

Module Two: lacL The lad gene, the second key module, is located down­
stream of the main lac complex (Figure 13-1 (a)). It likewise contains a promoter
region, and produces proteins with the help of RNA polymerase. The lad gene
product is known as a repressor, which has a high affinity towards and binds
to the operator region, thus preventing RNA polymerase from reading and ex­
pressing the lacZ-Y-A genes.

Flipping the Switch: On, Off, and In-between. When lactose enters the
cell, it binds to the repressors, forming a repressor-lactose complex (Figure 13-
1(b)). Due to conformational changes, the repressor is no longer able to bind to
the operator region of lacZ-Y-A, Consequently, RNA polymerase is now free to
read lacZ, lacY, and lacA —producing ^-galactosidase, lactose permease, and
transacetylase, respectively. Among these three gene products, /3-galactosidase

194 GENETIC PROGRAMMING THEORY AND PRACTICE III

is the enzyme that converts lactose into glucose and galactose.^ /?-galactosidase
will then break down any lactose it encounters into glucose and galactose. Once
lactose is removed from the system, the repressor is, again, free to bind to the
operator region and terminate the production of/?-galactosidase; hence, the lac
Operon is switched off. In this manner, the lac operon is able to regulate its own
gene products, depending on the presence of lactose.

/
. — i
tuc i ln i

mRNAf"^ /^-^

Ribosomes

i /
CI5

•̂ ^ RNA >j Repressor binds
[o opermor

/
\?JÖ

N

LacZ i LacY [LacA |

1
1

0 tnRNA and no proteins

[:t^^i1l:l | | ! | ' 0 | LacZ JLacY|LaM]

ConfurmMionaJ change

(a) (b)

Figure 13-1. (a) After RNA polymerase docks onto Pi, the Lad promoter site, it transcribes the
Lad gene into its mRNA representation, which is then translated by ribosomes into the repressor
protein I. This repressor binds to the LacZ-Y-A operator site, which in turn blocks RNA p) and
start scanning for promoter/operator sections. Once transcription is initiolymerase; hence, none
of the three genes are expressed, (b) When lactose enters into the cell, it induces a shape change
in the repressors that disables them from binding to the operator. Consequently, the LacZ-Y-A
genes are accessible by the RNA polymerase and are expressed as proteins Z, Y, and A.

3. The Emerging Switch
Our computer implementation of the lactose operon model and its visual­

ization incorporates a swarm-based approach within a 3D visualization engine
(Jacob and Burleigh, 2004; Burleigh et al., 2003). Each individual element
in the simulation is treated as an independent agent governed by simple rules
of interaction (Figure 13-2 and 13-3). Dynamic elements in the system move
randomly in 3D space, executing specific actions when colliding with or getting
close to other agents, which all operate within the boundaries of a spherical cell.

^Lactose permease enhances the movement of lactose from the outer environment into the cell, whereas
transacetylase does not seem to play a role in this regulatory system (Ptashne and Gann, 2002; Alberts et al.,
1998).

GP inside a Cell 195

Figure 13-2, Zooming into a simulated E. coli cell, (a) All intra-cellular interactions are confined
within a spherical cell, (b) Closeup of the circular DNA and a number of interacting 'bioswarm'
agents.

From DNA to Proteins
We represent the actual encoding of the lac operon gene as a circular DNA

double-helix-^ with its characteristic Watson-Crick complementarity pattern
(Figure 13-3) (Watson and Crick, 1953). Groups of three nucleotide bases
(Adenine, Cytosine, Guanine, and Thymine) form codons, which encode for
specific amino acids, the basic building blocks of proteins. We chose to use
codons for representing genetic sequences that make up the DNA strands.

There are two distinct gene regions in the lac operon: the lad and the lacZ-
Y-A region (see Section 2). For the purposes of this model, we only include the
lad and lacZ gene regions. The lacY and lacA genes do not greatly impact the
function of the system and are therefore not included in our current model."^

Transcription. The processes of transcription and translation serve as inter­
mediary steps in order to produce proteins from a given gene. Once genes are
'switched on', i.e., their operator region is not blocked by any repressor (Fig­
ure 13-1(b)), RNA polymerase has access to the encoding regions of the struc­
tural genes on the DNA. Transcription is the process of converting DNA into
an intermediate molecule known as messenger Ribonucleic Acid (mRNA). The
enzyme RNA polymerase is responsible for this particular conversion, which
proceeds as follows: (1) RNA polymerase searches along the DNA structure

^The DNA is kept still within the cell. In this model, we do not consider any thermal fluctuation of DNA,
such as translation, rotation, or chain flexibility.
"̂ The codons around the two operator sites and the stop codons represent actual sequences from the E. coli
genome. The rest of the circular DNA consists of random codons. Incorporation of the complete lac operon-
related genome is possible in this model and will be a part of the next version of our biomolecular simulation
system currently under construction.

196 GENETIC PROGRAMMING THEORY AND PRACTICE III

Ribosome y L * | | | k

AA chain

mRNA

RibüSOrTie

yl>?

^
^^

rnRNA

|l-galactosidases ~ ^ \a.

Figure 13-3. An annotated snapshop of our Lactose operon simulation: RNA polymerases
(brown) attach to the DNA strands (turning pink) and start scanning for promoter/operator sec­
tions. Once transcription is initiated, RNA polymerases produce mRNA strands, undergoing
translation by multiple ribosomes. The ribosomes construct the amino acid (AA) chains of
unfolded proteins (repressors and /3-galactosidases) based on the mRNA codon sequence. The
snapshot also shows the key proteins involved in the switching behavior: /3-galactosidases and
repressors.

until it encounters an appropriate promoter region. (2) Starting at the promoter
region, RNA polymerase begins to synthesize mRNA based on the genes found
downstream from the promoter.̂ (3) Once transcription is complete, the mRNA
strand is free to undergo a second conversion process (through translation),
whereas RNA polymerase reiterates the process of transcription.

In our model, RNA polymerases, the initiators of transcription, are repre­
sented as dark (detached) or brighter (attached) large spheres (Figure 13-3).
Once RNA polymerase attaches to a DNA region, it starts scanning along the
chain of codons. Transcription occurs once RNA polymerase has encountered

^Here we make the simplifying assumption that mRNA copying begins right after the promoter region. In
general, however, promoters can be quite distant from a coding region.

GP inside a Cell 197

a viable promoter region. Genes adjacent to the promoter region are transcribed
into mRNA, represented as a twisted single-stranded helix. As an example of
the bio-agent rules that govern the overall simulation, Table 13-1 describes the
simple programs for the polymerases.

Table 13-1. Rules governing the behavior of RNA polymerase as an example swarm
agent.Pseudocode is presented with each state of RNA polymerase outlined. The corresponding
biological actions are described in the right column.

I t e r a t e Pseudo Code

case s t a t e of

FLOATING: / * i n i t i a l s t a t e * /
i f near DNA:

a t t a c h t o n e a r e s t DNA codon
s t a t e = DOCKED

e l s e :
move randomly w i t h i n t h e c e l l

DOCKED:

i f promoter r eg ion i s reached :
s t a t e = READY_TO_TRANSCRIBE

e l s e :
move a long DNA t o next codon

READY_TO_TRANSCRIBE:
c r e a t e an empty mRNA molecule
s t a t e = TRANSCRIBING

TRANSCRIBING:
i f a s t o p codon i s reached :

r e l e a s e c o n s t r u c t e d mRNA
s t a t e = DETACHED

e l s e i f b locked by a r e p r e s s o r :
d e s t r o y p a r t i a l mRNA
s t a t e = DETACHED

e l s e :
move t o t h e next codon
append codon mRNA

DETACHED:
de tach s e l f from DNA
move rauidomly
s t a t e = FLOATING

end case

Biological State and Action

Floating:
RNA polymerase is usually found near DNA
and moves about the cell in a random manner.
In this state, RNA polymerase will attempt to
attach itself to the nearest free DNA strand.

Docked:
Once RNA polymerase has docked onto a
free DNA strand, it will begin reading the
DNA.

Ready to Transcribe:
When a promoter/operator sequence is
found, the RNA polymerase will begin to ini­
tiate transcription.

Transcribing: RNA polymerase will tran­
scribe the DNA sequence into an mRNA
molecule. RNA polymerase reads each
codon sequentially, and appends a new
base to the growing mRNA molecule. This
process is completed once RNA polymerase
encounters the appropriate stop codon. RNA
polymerase will then detach itself from the
DNA.

Detached:
Once RNA polymerase has detached from
DNA, it will again resume its random move­
ment within the cell.

198 GENETIC PROGRAMMING THEORY AND PRACTICE III

Translation, During translation a protein is synthesized from an mRNA
strand. This m/?A^A-to-protein conversion is achieved through the action of
ribosomes and transfer RNA (tRNA) as follows: (1) A ribosome locates and
attaches to a free mRNA strand. (2) The ribosome begins to read the strand and
synthesizes a chain of amino acids with the support of tRNA. (3) The chain then
folds into a 3-dimensional protein structure. Once translation is complete, the
ribosome detaches from the mRNA strand and releases the newly made protein.

The process of translation occurs once an mRNA strand has been synthesized.
Ribosomes (Figure 13-3) attach to a free mRNA strand and begin to synthesize
the associated amino acid (AA) chain, which is shown as a strand of disks.
Multiple ribosomes can simultaneously read a single mRNA strand.^ Once an
AA chain is completely synthesized, it turns into its associated protein, such as
a repressor or /3-galactosidase.^

From Proteins to DNA
In the case of the lac operon, repressor proteins and /3-galactosidase enzymes

are synthesized through the processes of transcription and translation. Repres­
sors have a natural affinity for the operator region of the lac operon. They
attempt to bind to the operator region and physically block transcription of the
lacZ gene, which turns the lac operon off. This sequence of events is illustrated
in Figures 13-4(a-c) through snapshots taken during our simulation over 2000
iteration steps. In Figure 13-4(c) the operator site is surrounded by a number
of repressors, which ensure that the operator is blocked (almost) all the time,
so that no RNA polymerase can proceed past the operator site.

At this point it should be noted that the 'switch-off' state is a collective
property, resulting from the interactions of multiple repressor proteins with the
operator site, in the following sense. Any repressor that binds to an operator
does in fact detach after a certain time period. Consequendy, a single repressor
will not be able to keep an operon section switched off continuously. However,
a 'swarm' or group of repressors that tend to be around the operator site can
cooperatively accomplish to block the operator for a much longer period. Once
a repressor releases, another one will attach to the vacant operator. This aspect
is reflected in our model and will be discussed in more detail in the following
section. Hence, the expression of /3-galactosidase is cooperatively suppressed
as illustrated in Figure 13-4(c).

Once lactose is introduced into the cell (Figure 13-4(d)), repressor-lactose
complexes are formed, which cause any bound repressor to be released from

^In the E. coli bacterium, ribosomes are abundant within the cell. For proper visualization, we assume that
there is always a sufficient number of ribosomes, which we only make visible when they attach to an mRNA.
^In order to keep the model simple, we skip the complicated—and still largely unknown—processes of
folding an AA chain into the specific 3-dimensional shape of a protein.

GP inside a Cell 199

J^G^^^W^^^^^

^Wp m

L§

V f 1

_̂ -̂ ^̂ l
(c)

- • • " • . • • . a m ; .

''*' C O fc^* ''^>

(f)

Figure 13-4. Different stages of the lac Operon simulation, (a) RNA polymerases scan the DNA
strands and search for promoter regions, (b) RNA polymerases synthesize mRNA molecules.
Ribosomes synthesize proteins, (c) Repressors (center bottom) around the operator block RNA
polymerase from transcribing the LacZ gene, (d) Lactose is introduced into the system, (e)
Lactose binds to repressors preventing them from blocking RNA polymerase. One RNA poly­
merase (on the left) has just started to transcribe part of the LacZ gene, (f) Most of the lactose
is split into glucose and galactose. A number of /5-galactosidases are visible in the left half.

the operator site. This, in turn, enables RNA polymerases to pass beyond the
operator and initiate expression of /?-galactosidase. In Figure 13-4(e), one

200 GENETIC PROGRAMMING THEORY AND PRACTICE III

polymerase has already started to scan past the operator to the left of the DNA.
Each of the produced /3-galactosidases will start to break down lactose into
glucose and galactose (Figure 13-4(f)). As soon as all lactoses, including those
bound to any repressor, are broken down, repressors will again start to attach
to the lacZ operator, blocking any further production of ^ö-galactosidase. All
the particles (except RNA polymerase and ribosomes) in the simulation system
have a predefined lifespan, so that if a protein is not constantly expressed,
it will eventually be degraded. Consequently, the simulated cell will finally
switch back to a state analogous to Figure 13-4(c), where only repressors are
expressed.

Table 13-2, Control parameter settings for the biomolecular agents in Figure 13-4. The cell
radius defines the unit step size (velocity: cell radius / iteration step; life span: iteration step).

Parameter

Number of polymerases:
Polym-DNA docking distance:
mRNA velocity:
mRNA life span:
Repressor velocity:
Repressor floating period:
Lactose velocity:
Glucose velocity:
Galactose velocity:

Value

24
0.3

0.01
18

0.03
20.0
0.03
0.03
0.03

Parameter Value

Number of lactoses: 400
Polymerase velocity: 0.02
Ribosome docking interval: 3.5
/3-galactosidase life span: 50
Repressor binding period: 5.0
Repressor life span: 140
Lactose life span: 1000
Glucose life span: 500
Galactose life span: 500

4. How Good is the Agent-based Model? — A First
Analysis

During each simulation we track the numbers of all bio-agents. Figures 13-
5(a) and (b) show concentration graphs of two typical runs over 5000 time steps,
similar to the simulation illustrated in Figure 13-4. Initially, there are no re­
pressors or /3-galactosidases in the system. Although the number of repressors
then starts to increase over the first 200 iterations, it cannot prevent the produc­
tion of /?-galactosidase enzymes. However, once the repressor concentration
has reached its first peak level at around t = 500, it almost completely blocks
the lacZ operator, which drastically reduces expression of /3-galactosidase. At
t — 500, lactose is introduced into the cell, which triggers the formation of
repressor-lactose complexes, and the concentration of free repressors decreases
rapidly. Now free repressors are too few to block the operator. After a short
delay the number of /?-galactosidases increases, resulting in a corresponding

GP inside a Cell 201

imRNM mRNA

oJ U —

0 111

i Mi
1

ill mi
2000 3

1

L„
ii 11 .11.1

m
0 5000 |G

- J

j Q

^ j

Lui

/ / / 1

m

G

1

I
\ \ \ 0 20

lucos

/ f /
f •)0 30

e

. \ \ \ \ \)0 40 io 50< \Q

N

1 0 Ö 0 2 0 Ö 0 3 0 Ö 0 "

G a l a c t o s e

(a)

TÖÖÖ 2ÖÖÖ 3ÖÖÖ 4ÖÖÖ 5000

ri~r
J l i
- Mil

TT l i i i ,
ii Milin

10Ö0 20Ö030Ö0 m

,ii
5o 5000

i
TÖOÖ 2ÖÖÖ 3 Ö 0 Ö 4 Ö Ö Ö 5ÖC

H n
K

10Ö0 20ÖÖ 3ÖÖÖ 4ÖÖÖ 5ÖÖ0

§
(b)

-ih
m R N A

..hil 1.1
FiniTnrfüiiiffFiüTi

lilLilUiAillülllJHillU

R e p r e s s o r s

TÖÖÖ 2ÖÖÖ 3ÖÖÖ 40Ö0

ifiinfimnnf

iRepLaci R e p - L a c C o m p

. 0

Lc

N;
r

10

V
^

loi:

/
/ y

kAAi
W\

Ao 20

La

S

0 20^

Gal

\
I
I ̂. V

l T

ha 30

c tose

\
V

üU

w

M 40

*̂

0 30Ö0 40

actose

1
/
f

... .

,

s. ...̂

io

^0

T Ö Ö Ö 2 Ö Ö Ö 3 Ö Ö Ö 4 0 Ö 0

i rBmi

l̂l
1 1

iRepi

00 In
00 1 Ä

i
00 1 \ i j
00 yy

10

ß-Gal | /

1 10

iG lu i

1 1 J /

mRNA

0 2000 3000

Repressors

k n ft
\W 1 u IV ÜAJ

V PW 1 r 1)0 2oAo 3000

J -Galactosid

1 1 1 1

11 111 u m i l Ö0 20Ö0 30Ö0

G l u c o s e

1 k UÄ.

4 0 0 0 5 0 0 0

ill 1
ä ii
HM/N

IF 1

4o io 5o io

ase

4o io 5o io

1. TÖÖÖ 2ÖÖÖ 3ÖÖÖ 4ÖÖÖ 5ÖÖ0

IRepLaci R e p - L a c C o m p

o-j

1 /I»
0

IC

III 1
10

Gall

1 1
J
1Ö

M

m 20

L

io 20

Ga

1
\ m

ÖÖ 2Ö(

>
F̂

io 3

ac to

h

X) 3

lac t

[1

w V

0Ö0 40

se

\\
L

3io 40

ose

\h\
}ÖÖ 4Ö(

!)0 5000

0 50

5Ö 5Ö(

')0

To

(c) (d)

F/̂ wr̂ 13-5. Evolution of the concentrations of biomolecular agents during four of our lactose
simulations, (a) and (b) show two typical runs with the configuration parameters as described
in Table 13-2. (c) Polymerase velocity is increased by a factor of 10: Vpoiy — 0.2. (d) 10-fold
reduction of the time between ribosome docking: tdockirih) = 0.35.

202 GENETIC PROGRAMMING THEORY AND PRACTICE III

t = 50 i = 50

\

*̂ ^ ^M^

^ fe,

'̂- • * ^̂

t = 500 t = 500

2000

(a)

Figure 13-6. Example snapshots during the evolution resulting from different settings of two
bio-agent parameters, (a) Polymerase velocity, Vpoiy =0 .2 : increased by a factor of 10. (b)
Ribosome docking delay, tdocki^ib) = 0.35: 10-fold reduction of the time between ribosome
docking. The detailed evolutions are illustrated in Figures 13-5c and 13-5d, respectively.

rise of both glucose and galactose. The lifetime of lactose within the cell was
set to 1000 time steps, which reduces the lactose concentration to zero at around
t — 1500. This causes the repressor concentration to build up again and resume

GP inside a Cell 203

the repression of /?-galactosidase production, which brings the system back to
its initial state with a relatively high number of repressors and a low base level of
/3-galactosidase. By reintroducing lactose at t = 2500 one can observe similar
interaction dynamics. Figures 13-5(a) and 13-5(b) result from two runs with
the same parameter settings (Table 13-2), which illustrate the inherent noise in
the agent model. However, the switching behavior occurs consistently.

In order to find out how changes of some of the bio-agent control parameters
would affect the overall evolution of the lac Operon simulation, we show two
more experiments, where we modified the velocity of RNA polymerases and
the docking interval for ribosomes. The graphs in Figure 13-5(c) result from a
10-fold increase of RNA polymerase velocity to velpoiy — 0.2 units per time
step. As in the previous two experiments, we introduced lactose at t = 500 and
again at t = 2500. With the polymerases' faster speed, the different base levels
for repressors, /?-galactosidases and rep-lac complexes obviously become less
noisy. Hence, transcription speed determines the level of noise suppression in
the system. Snapshots of this experiment are illustrated in Figure 13-6(a). In
another experiment (Figure 13-5(d)), we reduced the mRNA docking interval
between ribosomes from originally tdod^ib) == 3.5 to tdod^ib) — 0.3 time
steps. This results in a drastic increase of the number of repressors, which
almost immediately reduce any increase in /?-galactosidase to a very low base
level. Interestingly, the lac operon switch is still functional. Snapshots of this
experiment are illustrated in Figure 13-6(b).

5, Gene Regulation and Genetic Programming
Evolutionary optimization techniques can be used for bio-agents finding

suitable or alternative settings for the bio-agent control parameters. This would
allow a fine-tuning of the model with respect to measurements retrieved from
in vitro and in vivo experiments.

A combination of both automatic and interactive fitness evaluation turns out
to be quite useful for both parameter tuning and 'reverse engineering.' The
automatic fitness function would take care of simulation aspects that can easily
be compiled into a mathematical formula, such as keeping the average density
of particles within a certain range, or checking whether the switch is turned
on/off. These constraint criteria would act as filters for the simulations that
are then shown to an interactive evaluator, i,e., the model designer, who is
usually an expert in the system under study. If we go back to the lac operon
model discussed here, the microbiologist would observe a set of simulations
on the computer screen. Looking at the interaction dynamics of the particles
(e.g., Figure 13-6) and at plots of system-related aspects of the tracked particles
(e.g., Figure 13-5), the expert is able to decide whether the parameter settings
proposed by the evolutionary system make sense within the context under in-

204 GENETIC PROGRAMMING THEORY AND PRACTICE III

vestigation or not. This interactive breeding of model parameters does not only
provide a tool for optimization in the classical sense, but serves as a platform
for exploratory investigations in general—an inspirational tool to think about
emergent patterns in complex systems (Kwong and Jacob, 2003).

Within the same breeding scenario, GP can expand the scope of constructing,
investigating, and analyzing agent-based models of bio-molecular systems or,
in general, 'swarm' systems in the following ways:

We can use GP to evolve interaction rules between the bio-agents. A
rule set would be shared by the same types of agents, such as repressors,
^-galactosidases, RNA polymerases, or ribosomes. Such rules can become
relatively complicated (see Table 13-1), but one can certainly identify elemen­
tary behavioral commands (random walking, attaching, detaching, etc) which
serve as suitable building blocks for the evolutionary construction of interaction
programs. The evaluation criterion for this scenario could, first of all, be formu­
lated as a regression problem, where measurements from wet lab experiments
of the system under study determine the desired system output. Again, the
expert's intervention through interactive fitness evaluation would complement
the automatic rule-evolving GP system. However, approaching the evolution
of interaction rules from a simplistic regression perspective is in many cases
too naive, not realistic and not feasible. Most biological systems, for which
computational and mathematical models would be highly desirable, are only
partially understood. Consequently, there are usually not enough experimen­
tal data available to compare a fitness function to. In this case, GP provides
a promising vehicle to evolve different agent types, in combination with their
interaction rules. Hence, one can investigate different ways of generating some
desired temporal and spatial dynamics that result in specific—partly observable
or measurable—system outputs. Questions about a particular system could be
asked, such as whether a different set of agent interaction rules leads to similar
behavior {e.g., in the case of the lac operon: is the switch still working?).

6. Conclusion and Future Work
We have presented a 3D agent-based model of the lac operon gene regulatory

system, including a fast visualization engine.^ The model focuses on simulating
important aspects of a biomolecular system including basic genetic processes
such as transcription and translation. We believe that such simulations and vi­
sualizations will serve as powerful educational tools, and will support biologists
in their understanding of complex gene regulatory systems, and decentralized,
massively-parallel biological systems in general. Furthermore, such exam-

^Currently, we work with a Java3D version (used in a CAVE^^ Automated Virtual Environment) and a
C++/OpenGL version of our simulations.

GP inside a Cell 205

pies of (relatively simple) 'real genetic programming' systems should serve
as an inspirational platform for future genetic programming systems in silico.
Studying real genetic programming systems, such as the one within E. coli,
gives us a much better understanding not only of the underlying mechanisms of
gene regulation (with major consequences for gene therapy, drug design, etc),
but can also provide alternative ways of constructing computer programs with
built-in self-regulation mechanisms. In addition to studying robustness proper­
ties within our lac Operon model, we are currently working on a GP approach
that incorporates aspects of gene regulation and Boolean networks (Kauffman,
1995).

One can find further information about our lactose operon model on our
Evolutionary & Swarm Design web site (www.swarm~design.org), which
is being expanded to incorporate other types of bio-molecular agents as well
as several communicating cells, and other swarm-based models of biological
systems, such as the A-switch and an artificial immune system (Jacob et al.,
2004).

References
Alberts, Bruce, Bray, Dennis, Johnson, Alexander, Lewis, Julian, Raff, Martin,

Roberts, Keith, and Walter, Peter (1998). Essential cell biology: an introduc­
tion to the molecular biology of the cell. Garland, New York.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert, and Francone, Frank D.
(1997). Genetic Programming: An Introduction. Morgan Kaufmann, San
Francisco, CA.

Beckwith, Jon R. and Zipser, David, editors (1970). The Lactose Operon. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Bonabeau, Eric, Dorigo, Marco, and Theraulaz, Guy (1999). Swarm Intelli­
gence: From Natural to Artificial Systems. Santa Fe Insitute Studies in the
Sciences of Complexity. Oxford University Press, New York.

Bower, James M. and Bolouri, Hamid, editors (2001). Computational Modeling
of Genetic and Biochemical Networks. MIT Press, Cambridge, MA.

Burleigh, Ian, Suen, Garret, and Jacob, Christian (2003). Dna in action! a 3d
swarm-based model of a gene regulatory system. In First Australian Confer­
ence on Artificial Life, Canberra, Australia.

Collado-Vides, J. (1992). Towards a grammatical paradigm for the study of the
regulation of gene expression. In Goodwin, Brian and Saunders, Peter, edi­
tors. Theoretical Biology. Epigenetic and Evolutionary Order from Complex
Systems, pages 211-224. Johns Hopkins University Press, Baltimore, ML.

Holland, John H. (1998). Emergence: From Chaos to Order. Addison-Wesley,
Reading, MA.

http://www.swarm~design.org

206 GENETIC PROGRAMMING THEORY AND PRACTICE III

Jacob, Christian (2000). The art of genetic programming. IEEE Intelligent Sys­
tems, 15(3):83-84.

Jacob, Christian and Burleigh, Ian (2004). Biomolecular swarms: An agent-
based model of the lactose operon. Natural Computing, 3(4):361-376.

Jacob, Christian, Litorco, Julius, and Lee, Leo (2004). Immunity through swarms:
Agent-based simulations of the human immune system. In Artificial Immune
Systems, ICARIS2004, Third International Conference, Catania, Italy. LNCS
3239, Springer.

Jacob, Fran9ois and Monod, Jacques (1961). Genetic regulatory mechanisms
in the synthesis of proteins. Molecular Biology, 3:318-356.

Kauffman, Stuart (1995). At Home in the Universe: The Search for Laws of
Self-Organization and Complexity. Oxford University Press, Oxford.

Kennedy, James and Eberhart, Rüssel C. (2001). Swarm Intelligence. The Mor­
gan Kaufmann Series in Evolutionary Computation. Morgan Kaufmann Pub­
lishers, San Francisco.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Kwong, Henry and Jacob, Christian (2003). Evolutionary exploration of dy­
namic swarm behaviour. In Congress on Evolutionary Computation, Can­
berra, Australia. IEEE Press, emergence.

Matsuno, H., Doi, A., Tanaka, A., Aoshima, H., Hirata, Y., and Miyano, S.
(2001). Genomic object net: Basic architecture for representing and simulat­
ing biopathways. In Ninth International Conference on Intelligent Systems
for Molecular Biology, Copenhagen, Denmark.

Müller-Hill, Benno (1996). The lac Operon - A Short History of a Genetic
Paradigm. Walter de Gryter, Berlin.

Ptashne, Mark and Gann, Alexander (2002). Genes & Signals. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY.

Salzberg, S.L., Searls, D.B., and Kasif, S., editors (1998). Computational Meth­
ods in Molecular Biology, volume 32 of New Comprehensive Biochemistry.
Elsevier, Amsterdam.

Suen, Garret and Jacob, Christian (2003). A symbolic and graphical gene regula­
tion model of the lac operon. In Eifth International Mathematica Symposium,
pages 73-80, London, England. Imperial College Press.

Tomita, M., Hashimoto, K., Takahashi, K., Matsuzaki, Y, Matsushima, R.,
Saito, K., Yugi, K., Miyoshi, F., Nakano, H., Tanida, S., Saito, Y, Kawase,
A., Watanabe, N., Shimizu, T, and Nakayama, Y (2000). The e-cell project:
Towards integrative simulation of cellular processes. New Generation Com­
puting, 18(1): 1-12.

Watson, James D. and Crick, Francis H. C. (1953). A structure for deoxyribose
nucleic acid. Nature, 171:737-738.

Chapter 14

EVOLUTION ON NEUTRAL NETWORKS
IN GENETIC PROGRAMMING

Wolfgang Banzhaf̂ and Andre Leier^
Department of Computer Science, Memorial University of Newfoundland,

St. John's, NL, AlB 3X5, CANADA

Abstract We examine the behavior of an evolutionary search on neutral networks in a
simple linear genetic programming system of a Boolean function space problem.
To this end we draw parallels between notions in RNA-folding problems and in
Genetic Programming, observe parameters of neutral networks and discuss the
population dynamics via the occupation probability of network nodes in runs on
their way to the optimal solution.

Keywords: neutrality, linear GP, networks, population dynamics

1. Introduction
For more than a decade now, neutrality has been observed to play an important

role in Genetic Programming (GP) runs. This was originally believed to be an
atypical phenomenon, perhaps related to the choice of representation (Koza,
1992; Altenberg, 1994a; Angeline, 1994). It was later realized that introns or
non-effective code, as it became to be called, constitute the bulk of material
generating neutrality in GP and that this type of code would appear in most
representations of GP systems (Nordin and Banzhaf, 1995). For a long time
the debate centered around questions of reasons for the emergence of this type
of code which certainly was unintended by the designers of GP systems, and
originally deemed disadvantageous (Soule et al., 1996; Langdon and Poli, 1998;
Soule and Heckendom, 2002).

During the same time, it was proposed that the theory of neutral mutations as
put forward in the seventies and eighties for natural evolution (Kimura, 1983),
could be understood in terms of the existence of neutral networks (Schuster,

208 GENETIC PROGRAMMING THEORY AND PRACTICE III

1995; Forst et al., 1995; Reidys et al., 1997). Subsequent to that proposal
various natural evolutionary systems have been examined, and the existence
of neutral networks has been confirmed (Huynen et al., 1996; Babajide et al.,
1997). Its benefits for evolution were gradually revelled (Nimwegen et al.,
1998; Schultes and Bartel, 2000), and thus it was natural to ask what neutral
networks would have to offer for evolutionary search.

Bamett proposed to adopt a search paradigm different from a population-
based Genetic Algorithm (GA) search in landscapes with considerable neutral­
ity (Bamett, 2001). Smith et al (T. Smith and O'Shea, 2001) argue that, due to
higher evolvability, GA systems with neutrality in search behave more aptly in
difficult search landscapes.

Recently, the confluence of both lines of inquiry can be observed in GP as
well. Early observations (Banzhaf, 1994) spoke to the advantage of using plenty
of neutrality. In the context of circuit design using Cartesian GP Miller and
coworkers argued for search efficiency as one characteristic of representations
with neutrality (Vassilev and Miller, 2000b; Vassilev and Miller, 2000a; Vassilev
et al., 2003). Ebner (Ebner et al., 2002) pointed out how neutral networks can
influence evolvability and Yu (Yu and Miller, 2001) studied the interaction
between neutral and adaptive mutations in the context of search in Boolean
function landscapes.

In this contribution we shall discuss neutrality and the benefit of neutral net­
works in the context of a simple Boolean search problem using a linear GP
representation, that consists of registers and logic operators. We shall show
the relation between genotype and phenotype networks, discuss how the search
benefits from neutrality as offered by non-effective code, and demonstrate the
population dynamics of a search process. In the final section we shall put our
eyes on robustness of the evolutionary solutions, and ask ourselves how evolv­
ability of the search process can be improved if the observations put forward
here can be generalized.

2. Problem, GP representation and Search Operators
In order to be able to examine the effects we are interested in, we have chosen

a small problem instance of a Boolean problem space. While it can be argued
that this space is not suitable to solve real problems, the emphasis here is on
trying to understand the influence of neutrality, notably its benefits.

The problem space under consideration is the NAND space where two binary
inputs xi and X2 are used and the output x^ is studied under various NAND-
combinations of inputs.

Xz = fNAND{xi,X2) (14.1)

Evolution on Neutral Networks in GP 209

This follows work done by (Langdon and Poll, 1999) where it was shown, for
tree-based GP, that there is a complexity threshold above which all Boolean
functions can be reached by a combination of Boolean operators on inputs.

We use a linear GP representation because it is much easier to analyse in terms
of non-effective code (Banzhaf et al., 1998; Brameier and Banzhaf, 2001),
and because it is easier to understand. The representation consists of a set
of instructions in a register machine language, interpreted by the CPU as a
program. As for the content of the registers, we allow only Boolean values "0"
and " 1 " as the operators of these programs in the logical NAND operation.

Even with so small a set of elements, combinatorics is at play, forcing us to
quickly relinquish the plan to depict everything exhaustively. One choice we
have is whether we want to have only a single type of register (read-and-write)
which can act both as source and destination register of the programs executed,
or two types of registers (input and calculation) which differ in that input reg­
isters hold the input values constantly, i,e, are only acting as source registers,
and calculation registers can act both as source and destination registers.

Table 14-1 shows the combinatorics in these two different systems, depend­
ing on the length of programs allowed. In the following, we shall concentrate
on C == / = 2. The first calculation register also works as the output register.

Table 14-1. Comparison of the number of programs for different number of registers. C: Num­
ber of calculation registers; I: number of input registers; L: Length of programs in number of
instructions. The number of programs is calculated by (/ + C)2^ C^.

C Registers

2
3
1
2
3

/ Registers

0
0
2
2
2

L = 2

64
729
81

1,024
5,625

L = 3

512
19,683

729
32,768

421,875

L = 4

4.1 X 10^
5.3 X 10^
6.6 X 10^
1.0 X 10^
6.3 X 10^

L = 6

3.3 X 10"̂
1.4 X 10"̂
5.9 X 10^ .
3.4 X 10"̂
2.4 X 10^

L - 10

1.1 X 10^
2.1 X lO '̂*

.. 3.5 X 10^
1.1 X 10^^
5.6 X 10^^

A typical program (for i?0, Rl calculation registers and i?2, R3 input regis­
ters, output in register RO) looks like this:

RO = R l NAND R2

R l = R l NAND RO

RO = R3 NAND R l

R l = R l NAND R2

R l = R l NAND RO

R l = R2 NAND R l

(*)
(*)
(*)

which we code as the following genotype:

012 110 031 112 110 121

210 GENETIC PROGRAMMING THEORY AND PRACTICE III

This is different from the phenotype of that program which results after remov­
ing the introns^ ((*)-marked code, above) to yield

RO = Rl NAND R2

Rl = Rl NAND RO

RO = R3 NAND Rl

which we code as the following phenotype:

012 110 031

Figure 14-1 depicts which functions can be reached with programs of different
length up to L = 8. As seen in the figure, there is a large discrepancy between
the presence of different Boolean functions, with some like "Equivalance" being
frequently found and thus being easy, and others like "Identity" being seldomly
found and thus being difficult. Note the complexity threshold again: Below
program length 5 there is no solution to the Equivalence function.

In the following, our GP system will be set up to find the most difficult func­
tion, the "Equivalence" function, and we shall study how the system achieves
this solution and what can be said about the neutral networks it uses to find it.

After introducing the representation, we have to say a few words about the
search operator(s) we shall employ in our GP runs. In this contribution we
decided again for the operator mutation, which is the easiest to analyse. Whereas
it can again be argued that this is not an efficient way to traverse the problem
space at hand, we would counter, that at least we can understand what is going
on in the system.
For illustration purposes, suppose a mutation would change a bit in the genotype
mentioned below.

012 110 031 112 110 121 -> 012 110 031 012 110 121

This would mean, that the phenotype now changes, too:

012 110 031 -> 012 110 012

In other words, by switching one bit, one of the instructions has been rendered
non-effective, whereas a previously non-effective one has become effective.

The evolutionary dynamics we have chosen is again a very simple one, we
observe and examine runs with a population of /L^(1 + A) searchers, where
the notation is borrowed from Evolutionary Strategies. There are // indepen­
dent searchers (providing for statistics), each one acting in an elitist way (+-
strategy), and exploring the neighborhood with A trials (in our case, A = 10).
If one of these neighbor states is equal or better in fitness, the searcher assumes
the new state; if not, it remains where it was.

^The last three instructions only affect register Rl and not the output register RO.

Evolution on Neutral Networks in GP 211

size

Boolean functions

Figure 14-1. Boolean function space for various length of programs. For L = 5 "<^" has a
0.00114 % share of the search space, in contrast to "= 1" with a share of 23.4 %. For L < 5
"<^" is not present at all.

3, Non-effective Code, Neutral Networks, and the
Genotype-Phenotype Map

As we have mentioned in the beginning, we expect that neutrality should
play an important role in the search process in our Boolean function landscape.
Neutrality is provided by non-effective code. This is unintentionally generated
by a sequence of instructions if a later instruction simply overwrites what has
been computed before. It might even happen that all instructions are non­
effective. This is the case, if no data is written into the predetermined output
register of the GP system. We refer to the corresponding phenotype as the
"empty phenotype."

The Genotype-Phenotype-Mapping (GPM) function is provided through re­
moving the non-effective code. This is analogous to the neutrality provided in

212 GENETIC PROGRAMMING THEORY AND PRACTICE III

RNA folding (Gruener et al., 1996). By analysing a program's code, beginning
from the last line, we identify those instructions which are not effective (it could
be an entire block of instructions). All other instructions which will have an
influence on the result of the calculation, are subsequently copied and treated
as the phenotype of the program.

Table 14-2 shows, for an exhaustive examination of all possible genotypes in
a small example, the frequency of corresponding phenotypes. This is precisely
the sort of picture one encounters in RNA folding landscapes: Many very
uncommon phenotypes, and few highly common phenotypes, if looked at from
the point of view of enumeration of all genotypes.

Table 14-2. Redundancy of genotypes mapping into phenotypes for C = 2; / = 2; L = 5. The
last line shows total number of genotypes and phenotypes. G: Number of genotypes; P: number
of phenotypes; R=G/P: Redundancy. The fitness value relates to <^ as the reference function.

G

1,192,960
87,808
415,744
749,568
948,224
1,030,400
384,000
100,352
657,408
1,413,120
2,560,000
405,504
1,753,088
917,504
4,096,000
131,072

4,259,840
3,276,800
1,048,576
8,126,464

1 33,554,432 "

P

1,192,960
5,488
12,992
15,616
14,816
12,880
4,000
392
856
920
1,000
144
428
56
100
2
40
10
1
4

1,262,705

R

i
16
32
48
64
80
96
256
768
1,536
2,560
2,816
4,096
16,384
40,960
65,536
106,496
327,680
1,048,576
2,031,616

Best Fitness

0
2

2

2
2
2
2
1
2
2
2

Worst Fitness \

4 \
2
3
3
4
3
2
2
2
2
2
3
3
2
2
2
2
2
2
3

Each genotype can be considered a node in a graph. A mutation would
then provide a link between nodes in the graph, allowing evolution to move
if this step is actually allowed by selection. Due to the genotype-phenotype

Evolution on Neutral Networks in GP 213

mapping, however, there is also a graph of nodes constituting the network of
phenotypes. Each of these nodes has a particular fitness depending on how the
fitness function was defined for the problem. A movement on the genotype
network driven by mutation now induces a corresponding movement on the
phenotype network. Figure 14-2 shows the graph of phenotypes in a Boolean
problem small enough that all phenotypes can be enumerated and drawn (length
of programs: 2 instructions only).

: ;/ m:.......

Figure 14-2. Phenotype network graph for a Boolean function problem with C ~ 2\I =
2;L = 2. Nodes have different colors, depending on the particular fitness they represent which
is calculated as the difference to the AND function. Two neutral networks are shown with black
edges. Self-connections of nodes are not shown.

The links between nodes correspond, as we said, to mutations, except that
we have not shown self-connections which may still have a substantial impact
on evolutionary search. These links are distributed unequally between nodes,
induced by the GPM.

Neutral networks are constituted by those nodes in the network which have
the same fitness and are connected by mutations. Note that there is a difference
between this definition of neutrality and the definition used by e.g. (Ebner
et al., 2002). Here we consider all phenotypes with the same fitness to be in
the same neutral network, provided there is a mutational link. Ebner et al.

214 GENETIC PROGRAMMING THEORY AND PRACTICE III

considers neutral networks only between the same phenotypes (which surely
will have the same fitness). There are two disconnected components of the
neutral network to the second-best fitness level.

Strictly speaking, the phenotype network has no direct meaning for the evo­
lutionary search. Our GPM is a simple many-to-one projection and the con­
nectivity of nodes on a path in the phenotype network is not necessarily related
to the path in the genotype network. That is to say, some phenotype nodes are
hiding the fact that the genotypes represented by them are actually not con­
nected at all. Therefore, the connectivity distribution of the phenotype network
seems to be only of minor interest. We shall address this problem later again
by suggesting another way of forming phenotypes.

4. Connectivity of Neutral Networks and Population
Dynamics

It is interesting to study the connectivity of neutral networks, and relate it to
the dynamics of a population of searchers on the network. The reason is that,
as is well known from the study of random walks on graphs, those nodes in the
network which have the highest connectivity tend to be visited the most. This
is a simple Markov chain result (Lovacz, 1993; Noh and Rieger, 2004), and it
leads to the following prediction: The search in the neutral network will not be
a pure random drift. It will have a bias, and will concentrate on those nodes
of the network where connectivity is highest. If in the mutation neighborhood
of those nodes a node with a better fitness can be found, it will be discovered
quickly. This can be captured by saying that the nodes of the neutral network
have a different effective fitness (Nordin and Banzhaf, 1995; Banzhaf et al.,
1998; Stephens and Vargas, 2000; Banzhaf and Langdon, 2002), and those
nodes with a higher connectivity will have a higher effective fitness.

As pointed out (Schuster et al., 1994), it can be safely assumed that neutral
networks for different levels of fitness are strongly intertwined. Le, it will not
be difficult to encounter transition nodes from one of these networks to another
with a higher fitness. These so-called portal nodes (Nimwegen et al., 1998)
are spread throughout the network and provide ample chance to jump off a
neutral network onto one with better fitness. The only problem in our Boolean
example is that in fact the problem is so easy (only 5 different fitness values)
that it is difficult to observe all the phenomena. By looking at Figure 14-3 we
can compare an exhaustive mapping of the search space in terms of connectivity
characteristics with a mapping based on 100,000 GP runs. With this amount
of sampling, the GP runs are already approaching full knowledge of the search
space.

Connectivity characteristics lends itself as a new way of observing the system,
and allows an alternative definition of phenotypes. The only condition of these

Evolution on Neutral Networks in GP 215

fitness value 2

f Ifitssti väluö^S

neutral neighbors

(a) (b)

litness value 2

fitness value 2

neutral neighbors

(C) (d)

Figure 14-3. Distribution according to connectivity characteristics: A genotype's connectivity
characteristics is given by a triplet of values (/, Â , D) where / (D) is the number of neighbors
with improved (deteriorated) fitness and Â the number of neutral neighbors. Since the total
number of neighbors is constant (35), two values (here: / and N) are sufficient for characteri­
zation. The 3D/2D plots show the proportions of connectivity for all genotypes of fitness 2 in
the genotype network (Figures (a) and (b)) and for all visited nodes of fitness 2 within 100,000
GP runs (Figures (c) and (d)).

phenotypes will be that the fitness of an individual should be carried by the
phenotype. So our alternative phenotypes look like this: {fitness, N, I)i for

216 GENETIC PROGRAMMING THEORY AND PRACTICE III

' # ° » ^
8«*°oo

* V:«
*••

<%
E) * ^
3 03 O %

0 8 o o

•
<b

o

•^•p;:

Figure 14-4. The alternative phenotype definition allows to visualize a PT network. Node colors
reflect the fitness levels from high fitness (white) to low fitness (dark gray). Pale nodes in the
network center correspond to nodes in the subnetwork depicted in next figure. Three nodes with
fitness 0 (perfect solutions) lie in the upper left corner of the network. Fruchterman-Reingold
algorithm (2D) was used to create graphs.

individual i, where Â is the number of neutral connections and / is the number
of improving connections of the individual node.

5. Robustness and Evolvability
Two of the main functions of neutrality in biological systems are considered

to be (i) robustness of phenotypes against mutation and (ii) evolvability. For
(i) to work, a viable genotype would try to locate itself in the center of a
neutral network such as to make sure that any mutation that might happen to
it still allows it to stay on the neutral network. In the absence of neutrality,
a viable genotype/phenotype pair might always stand a high probability to
produce deleterious mutations.

The other function is to provide more potential for evolvability. Follow­
ing Kirschner and Gerhardt (Kirschner and Gerhart, 1998) evolvability can be

Evolution on Neutral Networks in GP 217

11400

^12600' 12500

Figure 14-5. Neutral network of the most frequently visited nodes. More than 95% of all edges
in the PT network passed during 1,000 GP runs belong to this subnetwork. Node labels specify
fitness value (one digit), number of neutral neighbors (two digits) and number of improved
neighbors (two digits). Self-connections are not shown, although they contribute over 50% .

defined as the capacity of an organism to generate heritable variation. It is in­
teresting to note that modem metazoa seem to have developed in that direction.

In the context of evolutionary computation this would come about by al­
lowing genotype/phenotype pairs to escape local optima through higher di­
mensional saddles, produced by neutral changes to the pair. Furthermore, if the
network provides a clear guide via effective fitness, it could accelerate evolution
even in the case of not being caught in a local minimum. Evolution would most
probably be attracted to genotypes/phenotypes which are highly connected in
the network, and thus have a better chance to be connected to higher-fitness
states.

Another aspect of evolvability - not discussed here - is modularity (Altenberg,
1994b; Wagner and Altenberg, 1996). For this to work, a clearer picture of what
building blocks are should be developed. We feel that more research needs to
be done on the question of building blocks in GP before this question can be
approached. For recent progress in this field, see (Langdon and Banzhaf, 2005).

218 GENETIC PROGRAMMING THEORY AND PRACTICE III

6. Suggestions for Future Work, Summary and
Conclusions

We have shown, in the context of a very simple hnear GP system, that neu­
tral mutations play an important role in setting the system up for exploration.
We argue that the situation in this type of a GP system is analogous to what
can be found in RNA-folding and optimization: There are many uncommon
phenotypes, and just a few very common ones. From this we concluded that
neutral networks must be highly intertwined such as to allow a quick transition
from one neutral network to the next, through certain portal nodes.

By exhaustively enumerating solutions for a small Boolean logic problem we
have demonstrated these ideas. The problem space is by no means considered to
be difficult. Yet, by choosing the most difficult Boolean function to be realized
in the system, we have at least made every effort possible to make it "relatively"
difficult.

Unfortunately, systems like the present are combinatorial and do not lend
themselves to exhaustive search very easily, except for the smallest choice of
parameters. It would be interesting, for example to analyse the networks of
C, / > 2. As Table 14-1 illustrates, however, this becomes quickly infeasible.

Notwithstanding the problem of exhaustive examination, we plan to analyse
networks locally, around local optima or best fitness phenotypes found so far.
We also want to provide more thorough statistical measures of network charac­
teristics, such as centrality of neutral networks etc. It would be most interesting
to be able to pinpoint the nodes which most searchers have to pass through and
to manipulate the search in order to either lead it towards these nodes or away
from them.

Acknowledgements
The authors wish to thank NSERC for support under Discovery grant RGPIN

283304-04. Software used to visualize our networks: Pajek 1.0 by Vladimir
Batgelj & Andrej Mrvar

h t t p : / / v l a d o . f m f . u n i - 1 j . s i / p u b / n e t w o r k s / p a j ek

References
Altenberg, Lee (1994a). Emergent phenomena in genetic programming. In Se-

bald, Anthony V. and Fogel, Lawrence J., editors. Evolutionary Programming
— Proceedings of the Third Annual Conference, pages 233-241, San Diego,
CA, USA. Worid Scientific Publishing.

Altenberg, Lee (1994b). The evolution of evolvability in genetic programming.
In Kinnear, Jr., Kenneth E., editor. Advances in Genetic Programming, chap­
ter 3, pages 47-74. MIT Press.

http://vlado.fmf.uni-1j.si/pub/networks/paj

Evolution on Neutral Networks in GP 219

Angeline, Peter John (1994). Genetic programming and emergent intelligence.
In Kinnear, Jr., Kenneth E., editor, Advances in Genetic Programming, chap­
ter 4, pages 75-98. MIT Press.

Babajide, A., Hofacker, I.L., Sippl, M.J., and Stadler, PR (1997). Neutral net­
works in protein space. Fold. Des., 2:261-269.

Banzhaf, W. and Langdon, W. B. (2002). Some considerations on the reason
for bloat. Genetic Programming and Evolvable Machines, 3(1):81-91.

Banzhaf, W., Nordin, P., Keller, R., and Franconce, F. (1998). Genetic Program­
ming - An Introduction. Morgan Kaufmann, San Francisco, CA.

Banzhaf, Wolfgang (1994). Genotype-phenotype-mapping and neutral variation
- A case study in genetic programming. In Davidor, Yuval, Schwefel, Hans-
Paul, and Männer, Reinhard, editors, Parallel Problem Solving from Nature
III, volume 866 of LNCS, pages 322-332, Jerusalem. Springer-Verlag.

Bamett, Lionel (2001). Netcrawling-optimal evolutionary search with neutral
networks. In Proceedings of the 2001 Congress on Evolutionary Computa­
tion, 2001, pages 30 - 37. IEEE Press.

Brameier, Markus and Banzhaf, Wolfgang (2001). A comparison of linear ge­
netic programming and neural networks in medical data mining. IEEE Trans­
actions on Evolutionary Computation, 5(1): 17-26.

Ebner, M., Shackleton, M., and Shipman, R. (2002). How neutral networks
influence evolvability. Complexity, 7:19—33.

Forst, e.V., Reidys, C, and Weber, J. (1995). Evolutionary dynamics and opti­
mization: Neutral networks as model-landscapes for ma secondary-structure
folding-landscapes. In Advances in Artificial Life, ProcECAL 1995. Springer-
Verlag, LNAI Vol 929.

Gruener, W., Giegerich, R., Strothmann, D., Reidys, C.M., Weber, J., Hofacker,
I.L., Stadler, PF, and Schuster, P. (1996). Analysis of dna sequence structure
maps by exhaustive enumeration - part i: Neutral networks. Monatsh. hemic,
127:355-377.

Huynen, M., Stadler, PF, and Fontana, W. (1996). Smoothness within rugged-
ness: The role of neutrality in adaptation. Proc. Natl. Acad. Sei. USA, 93:397—
401.

Kimura, Motoo (1983). The Neutral Theory of Molecular Evolution. Cambridge
University Press.

Kirschner, M. and Gerhart, J. (1998). Evolvability. Proc. Natl. Acad. Science
(USA), 95:8420—8427.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Langdon, W. B. and Poli, R. (1998). Fitness causes bloat: Mutation. In Banzhaf,
Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C, edi­
tors. Proceedings of the First European Workshop on Genetic Programming,
volume 1391 of LNCS, pages 37-48, Paris. Springer-Verlag.

220 GENETIC PROGRAMMING THEORY AND PRACTICE III

Langdon, W. B. and Poli, R. (1999). Boolean functions fitness spaces. In Poll,
Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C ,
editors. Genetic Programming, Proceedings ofEuroGP'99, volume 1598 of
LNCS, pages 1-14, Göteborg, Sweden. Springer-Verlag.

Langdon, William B. and Banzhaf, Wolfgang (2005). Repeated sequences in
linear genetic programming genomes. Complex Systems, in press.

Lovacz, L. (1993). Random walks on graphs: A survey. Technical report. De­
partment of Computer Science, Yale University, CT, USA.

Nimwegen, E.V., Crutchfield, J.P., and Huynen, M. (1998). Neutral evolution
of mutational robustness. Proc. Natl Acad. Sei. USA, 96:9716—9720.

Noh, J.D. and Rieger, H. (2004). Random walks on complex networks. Phys.
Rev. Lett., 92:nS70l-l-3.

Nordin, Peter and Banzhaf, Wolfgang (1995). Complexity compression and
evolution. In Eshelman, L., editor. Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 310-317, Pittsburgh, PA,
USA. Morgan Kaufmann.

Reidys, CM., Stadler, RE, and Schuster, P. (1997). Generic properties of com­
binatory maps-neutral networks of ma secondary structures. Bull. Math. Biol,
59:339—397.

Schultes, E.A. and Bartel, D.P. (2000). One sequence, two ribozymes: Impli­
cations for the emergence of new ribozyme folds. Science, 289:448—452.

Schuster, R, Eontana, W., Stadler, RE, and Hofacker, I.L. (1994). Erom se­
quences to shapes and back: A case study in ma secondary structures. Proc.
Roy. Soc. Lond. B, 255:279—284.

Schuster, Peter (1995). Extended molecular evolutionary biology: Articial life
bridging the gap between chemistry and biology. In Langton, C.G., editor.
Artificial Life: An Overview, pages 39 - 60. MIT Press, Cambridge, MA.

Soule, Terence, Poster, James A., and Dickinson, John (1996). Code growth in
genetic progranmiing. In Koza, John R., Goldberg, David E., Eogel, David B.,
and Riolo, Rick L., editors. Genetic Programming 1996: Proceedings of the
First Annual Conference, pages 215-223, Stanford University, CA, USA.
MIT Press.

Soule, Terence and Heckendom, Robert B. (2002). An analysis of the causes of
code growth in genetic programming. Genetic Programming and Evolvable
Machines, 3(3):283-309.

Stephens, C. R. and Vargas, J. Mora (2000). Effective fitness as an altema-
tive paradigm for evolutionary computation I: General formalism. Genetic
Programming and Evolvable Machines, l(4):363-378.

T. Smith, Ph. Husbands and O'Shea, M. (2001). Neutral networks in an evo­
lutionary robotics search space. In Proceedings of the 2001 Congress on
Evolutionary Computation, 2001, pages 136-145. IEEE Press.

Evolution on Neutral Networks in GP 221

Vassilev, Vesselin K., Fogarty, Terence C, and Miller, Julian F. (2003). Smooth­
ness, ruggedness and neutrality of fitness landscapes: from theory to appli­
cation. In Ghosh, Ashish and Tsutsui, Shigeyoshi, editors. Advances in evo­
lutionary computing: theory and applications, pages 3-44. Springer-Verlag
New York, Inc.

Vassilev, Vesselin K. and Miller, Julian F. (2000a). The advantages of landscape
neutrality in digital circuit evolution. In Proceedings of the Third Interna­
tional Conference on Evolvable Systems, pages 252-263. Springer-Verlag.

Vassilev, Vesselin K. and Miller, Julian F. (2000b). Embedding landscape neu­
trality to build a bridge from the conventional to a more efficient three-bit
multiplier circuit. In Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick,
Spector, Lee, Parmee, Ian, and Beyer, Hans-Georg, editors. Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2000),
page 539, Las Vegas, Nevada, USA. Morgan Kaufmann.

Wagner, G.P. and Altenberg, L. (1996). Complex adaptations and the evolution
of evolvability. Evolution, 50:967—976.

Yu, Tina and Miller, Julian (2001). Neutrality and the evolvability of boolean
function landscape. In Miller, Julian F, Tomassini, Marco, Lanzi, Pier Luca,
Ryan, Conor, Tettamanzi, Andrea G. B., and Langdon, William B., editors.
Genetic Programming, Proceedings ofEuroGP '2001, volume 203 8 of LNCS,
pages 204-217, Lake Como, Italy. Springer-Verlag.

Chapter 15

THE EFFECTS OF SIZE AND DEPTH LIMITS ON
TREE BASED GENETIC PROGRAMMING

Ellery Fussell Crane^ and Nicholas Freitag McPhee^
University of Minnesota, Morris, Morris MN 56267, USA

Abstract Bloat is a common and well studied problem in genetic programming. Size
and depth limits are often used to combat bloat, but to date there has been little
detailed exploration of the effects and biases of such limits. In this paper we
present empirical analysis of the effects of size and depth limits on binary tree
genetic programs. We find that size limits control population average size in
much the same way as depth limits do. Our data suggests, however that size
limits provide finer and more reliable control than depth limits, which has less of
an impact upon tree shapes.

Keywords: size limits, depth limits, genetic programming, population distributions, tree
shape

1. Introduction
The causes and effects of code growth in Genetic Programming (GP) have

been extensively researched (Langdon and Poli, 2002). In order to avoid the
negative repercussions of bloat, a variety of corrective measures are employed
to keep program sizes in check (Poli, 2003; Silva and Almeida, 2003; Luke and
Panait, 2002; Koza, 1992). One frequently used method is to employ a fixed
limit on program size by restricting either the depth or the size of syntax trees.

While these limits have the desired effect of keeping the sizes down, little is
known about what other impacts such limits might have on the dynamics of GP.
Previous research has shown that decisions such as these can have significant
effects on the behavior of runs (Gathercole and Ross, 1996) and on important
structural features such as the size and shape distributions of populations (Poli
and McPhee, 2003; McPhee and Poli, 2002). It would therefore be useful
to better understand what structural effects size and depth limits might have,
especially given their widespread use.

224 GENETIC PROGRAMMING THEORY AND PRACTICE III

In (McPhee et al., 2004), we examined these issues using variable length
linear structures. Here we extend that work to binary tree GPs. Several im­
portant differences exist between these two structures. In variable length linear
structures, which are essentially unary trees, a size limit is exactly the same as
a depth limit. This is not the case in binary trees, where it is possible to have a
large depth and small size.

To evaluate the effects of depth and size limits, we performed a large number
of empirical runs using various limits on a problem that induces bloat. In
this chapter, we present and analyze data taken from these runs. The focus of
this analysis is learning how depth and size limits affect the average size of
individuals in a population and how they affect tree shape. From this analysis,
we also draw conclusions about the differences between size and depth limits,
and provide a tentative recommendation for the use of size limits.

Of special significance to this result is the fact that depth limits have been
widely used to combat bloat in genetic programming. This is in part a result of
the use of depth limits in John Koza's first two highly influential books (Koza,
1992; Koza, 1994). In explaining his use of depth limits, Koza noted

... that for the default value of 17 for the maximum permissible depth ... for a
program created by crossover is not a significant or relevant constraint on program
size. In fact, this choice permits potentially enormous programs. For example,
the largest permissible ... program consisting of entirely two-argument functions
would contain 2^^ = 131,072 functions and terminals. (Koza, 1994, p. 659)

This reasoning regarding depth limits certainly seems plausible, and depth
limits have served the needed goal of reducing program size for over a decade.
The results in this paper make it clear, though, that depth limits can severely
constrain the space of trees that GP is likely to explore (supporting, e.g., (Daida,
2003)). Using our definition of depth, a depth limit of 17 theoretically allows
for a tree with 262,143 nodes. In doing this study we generated nearly 100
million individuals with depth limit 17 using a problem with a strong tendency
to bloat. The largest individual we generated had a size of 341.

While many researchers (including Koza) have moved to using size limits,
many continue to use depth limits. Such researchers may be under the mis­
taken belief that these limits aren't significantly affecting the dynamics of their
systems. It is valuable, then, to better understand the impact of both of these
widely used types of limits.

Surprisingly, our results show that, with appropriate values, both size and
depth limits have nearly the same effects upon the average size of a population.
The key difference between the two limits appears to be in how they affect
the relationship between population average size and population average depth.
Size limits do not seem to affect this relationship at all, while depth limits appear
to bias the population towards slightly smaller average depths.

The Effects of Size and Depth Limits on Tree Based Genetic Programming 225

When comparing data from runs using a depth Hmit with that from runs
using comparable size limits, we find that the distributions of sizes are extremely
similar. The distribution of depths are also quite similar, but depth limits clearly
restrict the depths much more than size limits restrict sizes. In both cases, the
distributions are also very similar to the gamma-like distributions seen in earlier
work on variable length linear structures.

In Section 2 we present background material necessary for understanding
the rest of the chapter, including problem set up and definition of terms. In
Section 3 we present and analyze data generated from runs using depth limits,
and in Section 4 we do the same for runs using size limits. Based on questions
arising from those two sections, we present an analysis of the impact of depth
and size limits on tree shape in Section 5. After discussing future avenues of
research on this topic in Section 6, we summarize our conclusions in Section 5.

2. Background
In this section, we define several terms and concepts used in this chapter. We

also define the test problem and parameters we use.

Convergent average size and the strength of Umits
In (McPhee et al., 2004), we defined the notion of a population's convergent

average size in populations where a strong size limit is in place. We now extend
this definition to account for tree depth.

In the presence of bloat, the average size and average depth of individuals
in any population increase rapidly during the early generations of a run. After
this initial period of unchecked tree growth, the population "hits" the size or
depth limit, and the population average size remains at a relatively constant
value over time. We refer to this value as the run's convergent average size, and
more precisely define it as the mean of the population's average size over all
of the generations after a run has converged. Figure 15-1 in Section 3 provides
several examples of the population average size "converging" after reaching a
limit.

Closely related to convergent average size is the notion of size or depth limit
strength. Though all of the runs using limits that we examined experienced the
convergence described above, it is clear from both (McPhee et al., 2004) and
the work presented later in this chapter that not all limits cause the same amount
of deviation from the convergent average size. Some limits cause very small
amounts of variation from the convergent average size, and we refer to them
as stronger limits than those which cause larger amounts of variation. Once
again, this is easy to observe in Figure 15-1, where the larger limits clearly have
more variation around the convergent average size than do the smaller limits.

226 GENETIC PROGRAMMING THEORY AND PRACTICE III

We therefore define a size or depth limit's strength as the standard deviation of
population average size over all of the generations after a run has converged.

Binary Syntax Trees
In our previous work (McPhee et al, 2004) we studied the impact of size

limits on variable length linear structures. Those structures were essentially
trees with two different unary functions (labeled 0 and 1) and a single type of
leaf (labeled 0).

In this chapter we extend our previous work to binary trees, which are more
frequently used than linear structures. We will have two functions or internal
nodes, again labeled 0 and 1, and a single type of leaf or terminal node, again
labeled 0. Thus individuals will consist of binary trees where every internal
node is labeled with a 0 or a 1, and every leaf is labeled with a 0.

We also define the size of a tree to be the number of nodes (both internal
nodes and leaves) in the tree. The depth of a tree is the number of edges along
the longest path from the root node to a leaf. Thus, for example, a tree consisting
of just a single leaf node has depth 0 and size one, while a full tree of depth 2
has size 7. More generally, the size of a full tree of depth d is 2̂ "̂ ^ — 1.

Crossover Operator
Because our primary interest is the effect of size limits on code growth due to

crossover, we focus exclusively on the standard subtree-swapping GP crossover
operator. Thus there will be no use of mutation or any other genetic operators
in this study.

The crossover operator acts by removing a non-empty subtree of an individual
and replacing it with a subtree taken from another individual. In the work
reported here, the subtrees are chosen uniformly from the set of all a tree's
(non-empty) subtrees, including the entire tree itself. Note that we are not using
any sort of bias. This includes, for example, the common bias of choosing 90%
of the crossover nodes as internal nodes.

The One-Then-Zeros Problem
We have used the one-then-zeros problem in a number of previous studies

of the effect of bloat and genetic operators on variable length linear structures
(McPhee et al., 2004; Rowe and McPhee, 2001). This problem has the advan­
tage of being simple to explain and amenable to schema theory analysis. It
also has a natural tendency to bloat, Le,, the average size of individuals tends
to increase over time in a manner that is not directly dependent on their fitness.

One limitation of this previous work has been the restriction to variable length
linear structures, while a large proportion of the GP community uses (non-unary)
tree structures to represent expressions and programs. In this study we extend

The Effects of Size and Depth Limits on Tree Based Genetic Programming 227

our earlier work to examine binary trees, and as a result need to generalize the
one-then-zeros problem to the case of binary trees.

We thus introduce the degree-N one-then-zeros problem. In this problem the
trees will consist of N-ary internal nodes, all labeled either 0 or 1, and leaf nodes,
all labeled 0. Regardless of the degree, the fitness function is the same. The
fitness of a tree (or string in the unary case) is 1 if the root node is labeled 1, and
all other nodes (internal and leaf) are labeled 0; the fitness is 0 otherwise. Thus
the only fit trees are those that follow the pattern, and those trees are all equally
fit. Given this, our earlier work used the degree-1 one-then-zeros problem, and
the work presented here uses the degree-2 one-then-zeros problem. ̂

Another important property of this problem is that it has no direct structural
bias in the sense that (with two exceptions discussed below) the fitness function
doesn't favor any particular sizes or shapes. Thus most of the data on sizes,
depths, and tree shapes presented in this paper are being driven by the underlying
dynamics of GP and standard subtree crossover, and not by particular properties
of this problem. The two exceptions are (a) trees with a single (leaf) node are
guaranteed to be unfit (since the only leaf label is 0), so there is a bias away
from that particular tree shape and (b) this problem induces bloat, so there is a
general pressure towards larger sizes and depths. If, as seems likely, the bloat
is being driven in large part by the benefits of accurate replication (McPhee and
Miller, 1995), then this can be obtained using any large tree, regardless of its
shape and depth.

Experimental Setup
All the runs presented in this paper use the same parameters with the excep­

tion of the size or limit.

Number of generations All runs were for 3,000 generations.

Control strategy We use a non-elitist generational control strategy.

Initialization The populations were initialized entirely with fit individuals con­
sisting of full trees of depth 2.

Size and depth limits These were implemented such that an otherwise fit in­
dividual received a fitness of 0 if its size was strictly greater than the size
limit, or if its depth was strictly greater than the depth limit.

Selection mechanism We used fitness proportionate selection in these exper­
iments. Since all individuals have either fitness 0 or 1, this reduces to
uniform selection from the set of individuals with fitness 1.

^This could obviously be generalized further to account for trees with a mixture of node arities, but that
would add complexity that would only complicate the current presentation.

228 GENETIC PROGRAMMING THEORY AND PRACTICE III

Operators We used crossover exclusively in these experiments, so every in­
dividual was constructed by choosing two fit parents and performing
subtree crossover as described above. There was no mutation or copying
of individuals from one generation to the next.

In each run the convergent average size of the population was calculated by
taking the mean value of the population averages in the final 1000 generations of
the run. This region was selected because in all cases studied here the population
had always converged by generation 2000.

We did a series of about 30 runs each for a variety of size and depth limits in
order to better understand the larger trends. In particular, we looked at a series
of depth limits ranging from 5 to 50. We chose a set of 10 values following a
geometric (exponential) series, yielding the set of values {5, 6, 8, 10, 13, 17,
23, 29, 38, 50}. We chose the geometric series in an effort to broadly sample
this range while still focusing more on the smaller values where (as was seen
in (McPhee et al., 2004)) small differences were likely to be more significant.
We then used a similar set of size limits ranging from 50 to 5,000, yielding the
values {50, 83, 139, 232, 387, 645, 1077, 1796, 2997, 5000}. To better see
the impact of some even larger size limits, we also did runs with size limits
of 10,000, 12,000, and 15,000. Due to space limitations, only a representative
sample of these runs are discussed in this paper, but the trends we present here
hold for the entire data set.

3. Depth Limit Analysis
Figure 15-1 presents data about population average size over time for runs

using a number of different depth limits. Each point in this graph represents
the average size of the individuals in the population at a specific generation
for one run. This provides excellent visual evidence that depth limits have an
impact upon population size that is extremely similar to that of the size limits
examined in (McPhee et al., 2004). In each case, we see the average size of
the population increase rapidly in the early generations due to bloat and then
quickly reach a convergent average size.

Similar to (McPhee et al., 2004), the strength of the limit being used seems
to control how much variation there is once the convergent average size has
been reached. In the case of the depth limit 8 data, for instance, this variance is
very small- no more than about 3. The depth limit 50 data, however, varies by
as much as two hundred. Clearly, the stronger depth limit of 8 provides much
tighter bounds on the convergent average size than does the weaker limit of 50.
This observation has led us to the more precise definition of size limit strength
given in Section 2.

A key feature of Figure 15-1 is that the population average sizes of runs
using depth limits are very small relative to the maximum size allowable by the

The Effects of Size and Depth Limits on Tree Based Genetic Programming 229

2500 3000

Figure 15-1. Population average size over time for a large number of runs using various depth
limits. The "bands" of data correspond, from top to bottom, to runs using depth limits of 50, 29,
17, and 8.

depth limit. Depth limit 17, for instance, would allow for a maximum tree size
of 2^̂ — 1, or 262,143. The convergent average size of the runs using depth
17, however, is approximately 42. This is clearly very much smaller than the
possible program sizes allowable by the limit, and it is not a priori obvious that
this would be the case. As mentioned in Section 1, literature suggests that using
a depth limit like 17 allows for the exploration of the space of very large trees.
As we shall examine in Section 5, program sizes within a population appear to
have a left skewed gamma distribution. This indicates that very little exploration
of large sizes is in fact occurring. This is an important result, and suggests that
existing assumptions about the behavior of depth limits are incorrect.

Interestingly, the average depth of the population appears very correlated
with the population's average size. In other words, there seems to be very little
variation in average size for a given average depth. Figure 15-2 illustrates this
phenomenon by presenting the average sizes that were contained in Figure 15-1
and their corresponding average depths without accounting for time. Though
there seems to be a general relationship between average size and average
depth, it is also clear that each depth limit behaves slightly differently. There
seems to be a "natural" relationship between average size and average depth

230 GENETIC PROGRAMMING THEORY AND PRACTICE III

35

30 h

25

S. 20

% 15 <

10

n 1 1 1 1 n

Depth limit 50

Depth limit 29

— Depth limit 17

^ — Depth limits

50 100 150 200 250 300 350 400 450 500

Average Size

Figure 15-2. Population average size versus population average depth for runs using a variety
of depth limits. The labeled clusters represent the space of convergent values for runs using
different depth limits.

that populations would follow in the absence of any size or depth limits. (See
Figure 15-4 for an additional example, and Section 6 for additional discussion.)
Indeed, it appears that for all of the depth limits we examined, runs follow this
"natural" relationship until they reach convergence, where they cluster slightly
below the "natural" curve. As the corresponding depths for thee average sizes
are lower than those in the natural relationship, this suggests that depth limits
cause trees to become slightly more bushy once the population has reached
convergence. We examine this idea further in Section 5.

An Exceptional Case
We performed hundreds of runs to generate the data presented in this study.

As we have shown, the behavior exhibited by runs using certain depth limits
is remarkably consistent. In Section 4, we show this to be true for size limits
as well. There was one run out of the hundreds, however, which displayed
startlingly different behavior.

This run, which used a depth limit of 23, had a convergent average size of
about 50,000. Every other run using depth limit 23 had a convergent average

The Effects of Size and Depth Limits on Tree Based Genetic Programming 231

size of approximately 70. Further, there were individuals in the exceptional case
which reached sizes of upwards of 3.7 million nodes. These observations made
us conclude, initially, that some form of programming or software error was
responsible for the deviant behavior of the run. Further investigation revealed
the truth: the run, though definitely abnormal, was valid.

Examination of the run's early generations suggested that, through a series
of stochastic events, the population grew to consist of large, bushy trees, rather
than the usual "stringy" trees which seem to be common in the other runs (see
Section 5) and which are predicted by (Daida, 2003). This initial behavior likely
produced a positive feedback loop which led to a continued increase in tree size.
This resulted in the enormous average size observed after the population had
reached convergence.

This exceptional run, therefore, provides us with an example of the kind of
behavior implied by the quote in Section 1. Though we are in no position to
claim just how frequentiy this actually occurs, the fact that it happened only
once in the hundreds of runs we performed suggests it is very rare. It also
suggests disturbing implications about the reliability of depth limits. Though
this errant run may be the exception (and our data certainly supports that idea),
the fact that it is possible to unpredictably have program sizes balloon vastly
beyond normal ranges makes the choice of using depth limits questionable.
Size limits, for instance, would not have allowed the behavior described above,
as they explicitly limit program size.

There are at least two specific concerns about the possibility of this sort of
aberrant run. The first is the obvious implications for computing resources.
Using our hardware, for instance, a typical run using a depth limit of 23 took
approximately five minutes to complete. The exceptional run took about 8 hours
to complete. Though the times are, of course, specific to both our problem and
hardware, it seems reasonable to assume a proportionate amount of resources
would be required for a similar run using other problems and hardware. Second,
and perhaps more important, is the problems of doing statistical analysis on a
set of runs containing such outlier results.

4. Size Limit Analysis
Figure 15-3 presents data in much the same fashion as Figure 15-1, though

for runs using a variety of size limits rather than depth limits. Like the runs
using depth limits, discussed in Section 3, we see a distinct convergence in
both size and depth after a very small number of generations, again mirroring
the the findings of (McPhee et al., 2004). Figure 15-3 and 15-1 are in fact
extremely similar. The scales of the two graphs differ, but this is simply due
to the disparate strengths of the limits being shown. From a comparison of the

232 GENETIC PROGRAMMING THEORY AND PRACTICE III

2500

2000

1500

1000

500

r-
Size Limit 5000
Size Limit 1077
Size Limit 387
Size Limit 139

3000

Figure 15-3. Population average size over time for a large number of runs using various size
limits. The "bands" of data correspond, from top to bottom, to runs using size limits of 5000,
1077, 387, and 139.

two figures, it appears that size and depth limits have almost the same, if not
identical, effects upon population average size.

This is an important observation, as it is not conceptually obvious that size
and depth limits would restrict population sizes in a similar way. Indeed, the
fact that depth limits, which could conceivably allow an enormous range of
sizes, behave in the same way as size limits, which explicitly limit tree size, is
quite remarkable.

Figure 15-4 shows the relationship between population average size and
population average depth, as we did in in Figure 15-2 in Section 3. Unlike
the depth limits analyzed in Section 3, the size limits used here do not display
any marked deviance from the "natural'' relationship between average size and
average depth discussed eariier. This is so much the case, in fact, that it becomes
hard to discern which data corresponds to which size limit.

By comparing Figures 15-2 and 15-4, several inferences can be made. The
"natural" relationship between average size and average depth for this problem
appears the same whether depth or size limits are used. Size limits seem to
have no impact upon this relationship. Depth limits, however, evidently bias
this relationship to some extent by lowering the depth slightly. Whether this bias

The Effects of Size and Depth Limits on Tree Based Genetic Programming 233

120

100

1000 1500
Average size

2500

Figure 15-4. Population average size versus population average depth for a number of size
limits. The labeled clusters represent the space of convergent values for runs using different
depth limits.

has a positive or negative impact upon a given run is almost certainly problem
dependent, and there is no evidence to suggest what the extent of the bias might
be for problems with fitness functions that alter tree shape.

Sub-Quadratic Relationship Between Size and Depth Limits
Given the close relationship between size and depth limits, an obvious ques­

tion is, for a given depth limit, what size limit is roughly equivalent in the
sense that it yields a similar convergent average size? An initial analysis of
our data suggests that, at least for this problem, the relationship can be roughly
approximated by 5 ^ 0.410063 * D^'^'^, where S is the size limit and D is the
depth limit. The details of the constants aren't important except to note that
the exponent is slightly less than two. Thus the "equivalent" size limit grows
roughly with the square (or less) of the depth limit instead of the exponential
relationship one might expect.

From a practitioner's standpoint, this reinforces the idea that one can use
size limits to achieve a qualitatively similar results to those obtained with depth
limits. It also suggests that "equivalent" size limits are polynomial (quadratic

234 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 15-5. Visualization of ail of the 10,000 individuals taken from the last 10 generations
(generations 2991-3000) of a representative run using depth limit 17 (on the left) and size limit
118 (on the right). The inner circle is at depth 17, and the outer circle is at depth 40.

or slightly sub-quadratic in our case) in the depth limit and not exponential as
one might expect.

5, Impact of Limits on Tree Shapes
In the previous section we found that there are depth and size limits that lead

to similar convergent average sizes. We saw earlier, however, that depth limits
tend to push the tree shapes off the "natural" shape and size limits don't (see,
e.g.. Figs 15-2 and 15-4). This then raises the question of whether the shapes
of the trees using "equivalent" size and depth limits are in fact different. To see
this we used the visualization techniques of (Daida et al., 2005) to visualize the
entire population of a single run for two pairs of limits (depth limit 17 and size
limit 118, and depth limit 50 and size limit 600) that are roughly equivalent. By
equivalent, we mean that in each pair the size and depth limits produced similar
convergent average sizes.

Fig 15-5 shows a visualization of every individual present in each of the last
10 generations {i.e., generations 2991 to 3000)^ of a representative run using
depth limit 17 (on the left) and size limit 118 (on the right). The inner circle
is at depth 17, so the size limit case has more trees that exceed that depth, and
they exceed it by considerably more. Thus while the average sizes and depths
of these two runs are extremely close, their distributions seem to be somewhat
different.

^Note, then, that each graph is displaying an aggregate view of 10,000 individuals.

The Effects of Size and Depth Limits on Tree Based Genetic Programming 235

Figure 15-6. Visualization of the entire population of 1000 individuals in the final generation
(generation 3000) of a representative run using depth limit 50 (on the left) and size limit 600 (on
the right). The inner circle is at depth 50, and the outer circle is at depth 100.

Figure 15-6 shows a visualization of all the individuals present in the last
generation (i.e., generation 3000) of a representative run using depth limit 50
(on the left) and size limit 600 (on the right). The inner circle is at depth 50,
and again the size limit case has more trees that exceed that depth, and they
exceed it by considerably more.

One of the key features of the visualizations in (Daida et al., 2005; Daida,
2003) was the lack of variety of tree shapes, with the majority of the trees
sharing a significant amount of structure. In our visualizations, however, there
is a much wider variety of sizes and shapes. In Figure 15-5, for example, there
are at least a few trees containing branches in almost every part of the space up
to depth 17, whereas the population visualizations in (Daida et al., 2005; Daida,
2003) cover only a tiny fraction of the space.

It seems likely that this is a result of structural differences between the degree-
2 one-then-zeros problem used here, and the regression problems used in (Daida
et al., 2005; Daida, 2003). In the one-then-zeros problem, all that matters is
the simple pattern of having a one at the root and zeros elsewhere (which is
largely independent of tree size and shape) and avoiding size or depth limits
as appropriate. This implies that the "meaning" of subtrees is largely indepen­
dent of context in the one-then-zeros problem, so a subtree can be moved, via
crossover, to an entirely different location in the tree without (in many cases)
changing the fitness. This is in strong contrast to most GP problems (like re­
gression), where context is crucial to the "meaning" of a subtree, and moving a
subtree to a different location often has a large, and typically detrimental, effect
on the fitness. This context dependence presumably plays a large role in the
uniformity of shapes seen in (Daida et al., 2005; Daida, 2003), just as the lack

236 GENETIC PROGRAMMING THEORY AND PRACTICE III

0.04

-^ 0.03

0.02

0.01

Depth Limit 17
Size Limit 118
Depth Limit 50
Size Limit 600

200

Tree size

300 400

Figure 15-7. Distribution of sizes (left) and depths (right) for depth limits 17 and 50 and size
limits 118 and 600. Note the different scales for proportions.

of this sort of dependence presumably plays a large role in the dispersion of
shapes in our examples.

Figures 15-5 and 15-6 speak volumes about the distribution of tree shapes,
but leave open the question of how the sizes and depths are distributed. Previous
work on variable length linear structures (Poli and McPhee, 2003; McPhee et al.,
2004) has shown a strong tendency for the size distribution of populations to
be similar to a gamma distribution, with a very large proportion of short strings
balancing out a small number of much longer strings. An open question has
been whether these results would generalize to N-ary trees, and the distributions
in Figure 15-7 suggest that they do.

The graphs in Figure 15-7 show the distribution of sizes depths for the same
two pairs of depth and size limits used in Figures 15-5 and 15-6. In all cases
the distributions are again very similar within each pair, lending weight to the
idea that corresponding size and depth limits can have very similar impacts on
population structure. Note, for example, the size distributions for depth limit
50 and size limit 600, which are nearly indistinguishable over the bulk of their
range.

We also find in all cases that the distributions are similar to the gamma-like
distributions found in earlier work on variable length linear structures. Thus we
find here that the distributions of both sizes and depths are skewed significantly
to the left, with a large number of small sizes/depths being balanced by a much
smaller number of large sizes/depths.

These graphs also point out the specific impacts of size and depth limits on
particular distributions. In the size distribution graph we see a sharp dip in the
size limit 118 distribution right around size 118. There is a similar, but smaller,
dip in the size limit 600 distribution that is off the right hand side of the graph.
There are also similar, but more pronounced, dips in the depth distributions for
the runs using depth limits, which again suggests that depth limits are having a
stronger (perhaps undesirable) impact on our population distributions.

The Effects of Size and Depth Limits on Tree Based Genetic Programming Til

It's worth noting that in each case where a hmit creates a dip in the corre­
sponding distribution, there is perforce an increase in some other part of the
distribution to compensate. In the depth limit 17 depth distribution, for ex­
ample, this is seen quite clearly as a significant increase in the proportions of
depths around 10, indicating that a size limit of 118 allows for a slightly broader
exploration of a range of depths than does the otherwise similar depth limit of
17. Similarly, in the size limit 600 size distribution the small dip (not visible
in this graph) leads to a small rise in the proportions of very small trees when
compared to the depth limit 50 distribution. These dips and compensations
are consistent with predictions from the "theory of holes" (Poli and McPhee,
2003; McPhee et al., 2004), where schema theory analysis shows that limits
like these (in the case of variable length linear structures) lead to the sort of
shifts in distributions seen in this work.

6. Future Work
This study directly addresses one of the major questions from (McPhee et al.,

2004), namely how well the distribution results from variable length linear
structures generalize to N-ary trees. Two other questions from that earlier paper
remain open, however. First, prior results on different mutation operators (Rowe
and McPhee, 2001) and combinations of genetic operators (McPhee and Poli,
2002) suggest that these can themselves act to limit size and depth, so studying
their interaction with explicit limits might be fruitful. Second, preliminary data
suggests that population size plays a significant role in determining the strength
of limits and the convergent average sizes and depths. The specifics of this
relationship are unclear at the moment and warrant further investigation.

Additionally, this work on binary trees raises questions about the "natural"
relationship between size and depth (see Figures 15-2 and 15-4). This seems
likely to be related to both the the Flajolet line (Langdon and Poli, 2002, Chapter
11) and Region I of (Daida and Hilss, 2003). Exploring the details of these
relationships is beyond the scope of this paper, but such an exploration would
likely be fruitful.

The work presented here is all for a single "toy" problem, and a key question
is obviously how well the results generalize to other problems. Since our
results on the relationship between size and shape look quite similar to results
obtained by other researchers with a broader range of problems (Langdon and
Poli, 2002; Daida and Hilss, 2003, Chapter 11), we can hope that other results
will generalize (at least qualitatively) as well. As seen in Section 5, however,
there is at least one important structural difference between the degree-2 one-
then-zeros problem and the regression problems studied in (Daida et al., 2005).
Thus some additional work is clearly necessary to better understand which
results will generalize to other problems, and to what degree.

238 GENETIC PROGRAMMING THEORY AND PRACTICE III

The exceptional case discussed in Section 3 appears to be reasonably rare (we
only saw such a thing once in over 300 runs), but we currently lack sufficient
data to estimate how often it is likely to occur. Given how profoundly different
the performance and results of such a run are going to be, knowing more about
their frequency would be helpful.

We've seen {e,g., Section 5) that there are size and depths limits that lead
to similar outcomes. It would be useful to know more about the nature of
that relationship, with the ultimate goal being the development of a model
with predictive power that would allow us to map from size limits to roughly
equivalent depth limits and vice versa.

?• Conclusion
Throughout this chapter, we have examined the behavior of depth limits and

size limits on binary tree genetic programs. The results of this investigation
have yielded several major findings.

In Section 3 we show that depth limits, contrary to GP folklore, do not
typically allow for large ranges of tree size. Instead, we observe that they
produce tree sizes that are nearly the same as those produced by size limits with
maximum sizes that are orders of magnitude below the maximum size possible
using the depth limit. In only one case out of the hundreds of runs generated
for this study did we observe tree sizes that were anywhere near the maximum
possible using depth limits. This leads us to conclude that although in the vast
majority of cases depth limits seem to control code growth very similarly to
size limits, their consistency is questionable. Furthermore, since the one case
where this inconsistency manifested took vastly more computational resources
than the normal cases and led to results that were wildly different from the other
cases, the unreliability of depth limits is worrying.

In both Sections 3 and 4 we show that there is a well defined relationship
between population average size and population average depth which is visible
using either size limits or depth limits. Size limits did not appear to affect this
relationship in any meaningful way, though depth limits appeared to add a small
yet significant bias towards smaller depths. Though it is unclear how strong
this bias actually is, lack of understanding regarding it supports the idea that
using depth limits holds a great deal of uncertainty.

Visualization of our populations suggests that runs with size limits are able to
explore more of the tree space than those with depth limits. We also showed that
both types of limits induce gamma-like distributions of both sizes and depths,
similar to those seen in earlier work with variable length linear structures (Poli
and McPhee, 2003; McPhee et al, 2004).

Another finding of this study has been that our observations of how size
limits affect population average size were almost identical to those made in our

The Effects of Size and Depth Limits on Tree Based Genetic Programming 239

earlier work using variable length linear structures (McPhee et al., 2004). This
has important implications about the generalizability of research using linear
structures. Use of analytical tools such as schema theory on N-ary syntax trees
is exceedingly difficult, which makes the use of linear structures to simplify
analysis desirable. A question that has always arisen from such analysis is
whether the results can be generalized to N-ary trees. We show in this study
that, in at least the context we use here, many of them do.

It's important to remember that all these results are in the context laid out
in Section 2, including the use of the degree-2 one-then-zeros problem, so care
must be taken to not over generalize. We do believe however, that many of these
results will generalize, at least qualitatively, to a variety of other problems.

Acknowledgments
We wish to thank Wolfgang Banzhaf and Jason Daida for their helpful reviews

of this chapter. We would also like to thank all of the participants in the GPTP
workshop for their insightful comments and suggestions.

The population visualizations in Section 5 were generated using Daida, et
a/'s Mathematica notebook; we are very grateful for their willingness to share
these resources. The remainder of our graphs were generated with gnuplot,
and we greatly appreciate the work of all the authors of gnuplot and the many
other open source tools that were used in generating and analyzing our data,
and presenting our results.

References
Daida, Jason M. (2003). What makes a problem GP-hard? A look at how struc­

ture affects content. In Riolo, Rick L. and Worzel, Bill, editors. Genetic
Programming Theory and Practice, chapter 7, pages 99-118. Kluwer.

Daida, Jason M. and Hilss, Adam M. (2003). Identifying structural mechanisms
in standard genetic programming. In Cantu-Paz, E. et al., editors. Genetic and
Evolutionary Computation - GECCO-2003, volume 2724 of LNCS, pages
1639-1651, Chicago. Springer-Verlag.

Daida, Jason M., Hilss, Adam M., Ward, David J., and Long, Stephen L. (2005).
Visualizing tree structures in genetic programming. Genetic Programming
and Evolvable Machines, 6. Prepublication Date: 6 August 2004.

Gathercole, Chris and Ross, Peter (1996). An adverse interaction between
crossover and restricted tree depth in genetic programming. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors. Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 291-
296, Stanford University, CA, USA. MIT Press.

Koza, John R. (1992). Genetic Programming: On the Programming of Com­
puters by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

240 GENETIC PROGRAMMING THEORY AND PRACTICE III

Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts.

Langdon, W. B. and Poli, Riccardo (2002). Foundations of Genetic Program­
ming. Springer-Verlag.

Luke, Sean and Panait, Liviu (2002). Lexicographic parsimony pressure. In
Langdon, W. B. et al., editors, GECCO2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 829-836, New York. Morgan
Kaufmann Publishers.

McPhee, Nicholas Freitag, Jarvis, Alex, and Crane, Ellery Fussell (2004). On
the strength of size limits in linear genetic programming. In Deb, Kalyanmoy
et al., editors, Genetic and Evolutionary Computation - GECCO-2004, Part
II, volume 3103 of Lecture Notes in Computer Science, pages 593-604,
Seattle, WA, USA. Springer-Veriag.

McPhee, Nicholas Freitag and Miller, Justin Darwin (1995). Accurate replica­
tion in genetic programming. In Eshelman, L., editor. Genetic Algorithms:
Proceedings of the Sixth International Conference (ICGA95), pages 303-
309, Pittsburgh, PA, USA. Morgan Kaufmann.

McPhee, Nicholas Freitag and Poli, Riccardo (2002). Using schema theory to
explore interactions of multiple operators. In Langdon, W. B. et al., editors,
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, pages 853-860, New York. Morgan Kaufmann Publishers.

Poli, Riccardo (2003). A simple but theoretically-motivated method to control
bloatin genetic programming. In Ryan, C. and et al, editors. Proceedings of
the Sixth European Conference on Genetic Programming (EuroGP-2003),
volume 2610 of LNCS, pages 204-217, Essex, UK. Springer Vertag.

Poli, Riccardo and McPhee, Nicholas Freitag (2003). General schema theory for
genetic programming with subtree-sw apping crossover: Part II. Evolutionary
Computation, 11(2).

Rowe, Jon E. and McPhee, Nicholas F. (2001). The effects of crossover and
mutation operators on variable length linear structures. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-200I), San
Francisco, California, USA. Morgan Kaufmann.

Silva, Sara and Almeida, Jonas (2003). Dynamic maximum tree depth. In Cantu-
Paz, E. et al., editors. Genetic and Evolutionary Computation - GECCO-
2003, volume 2724 of LNCS, pages 1776-1787, Chicago. Springer-Vertag.

Chapter 16

APPLICATION ISSUES OF GENETIC
PROGRAMMING IN INDUSTRY

Arthur Kordon', Flor Castillo', Guido Smits^ and Mark Kotanchek^
^The Dow Chemical Company, Freeport, TX; ^Dow Benelux, Temeuzen, The Netherlands;
-^EvolvedAnalytics, Midland, MI

Abstract This chapter gives a systematic view, based on the experience from The Dow
Chemical Company, of the key issues for applying symbolic regression with
Genetic Programming (GP) in industrial problems. The competitive
advantages of GP are defined and several industrial problems appropriate for
GP are recommended and referenced with specific applicafions in the
chemical industry. A systemafic method for selecting the key GP parameters,
based on stafisfical design of experiments, is proposed. The most significant
technical and non-technical issues for delivering a successful GP industrial
application are discussed briefly.

Keywords: Genetic programming, symbolic regression, industrial applications, design of
experiments, real world problems, parameter selection

1. Introduction

Recently, Genetic Programming (GP) has demonstrated its growing
potential to resolve various industrial problems in modeling, process
monitoring and optimization, and new product development (Kotanchek et
al, 2003). In parallel to the theoretical development in the area of GP, much
effort has been spent in developing a robust methodology for practical
implementation that is applicable for a broad range of solutions.
Unfortunately, the industrial application efforts are not so well published as
the theoretical development and are virtually unknown to the research
community. The objective of this chapter is to present a systematic view of
the key results from exploiting GP in a large global company, such as The
Dow Chemical Company.

242 GENETIC PROGRAMMING THEORY AND PRACTICE III

The chapter is organized in the following manner. Some guidance on
finding practical problems which are appropriate to be resolved by GP is
given in Section 2. A methodology for selecting robust key GP parameters,
based on Design Of Experiments (DOE), is described in Section 3. The key
technical and non-technical issues to be resolved for successful GP
applications in industry are presented in Section 4.

2. When is Genetic Programming an Appropriate
Industrial Solution?

One of the significant factors for success in the current industrial R&D
environment is the speed of introducing an emergent technology into
practice. Usually a new technology is introduced in two phases: (1)
capability exploration and (2) proof-of-concept application. In the first
phase, the features of the technology are assessed and matched with the
existing specific needs of each industry. An important component is the
estimate of the potential effort for adopting the new technology into the
existing work processes in research and manufacturing. Critical for business
acceptance, however, is the second phase, which includes a convincing
demonstration of the benefits in a well-selected case study. Usually it is
based on real data and very often illustrates a novel solution to a difficult
industrial problem.

The first question that needs to be addressed in any new technology
introduction is a clear definition of its competitive advantages relative to
other, similar approaches.

Competitive Advantages of Genetic Programming

Computational intelligence is a research area that includes many
competitive approaches with different technical nature (fiazzy logic,
evolutionary computation, neural networks, swarm intelligence, etc.) for
solving complex practical problems. On the one hand, this opens new
opportunities and broadens the scope of potential applications. On the other
hand, however, it requires additional efforts from industrial practitioners to
understand the technical features of very diverse technologies and to
estimate their potential value. The comparative analysis is not trivial and has
to take into account not only the relative technical advantages but also the
total cost-of-ownership (potential internal research, software development
and maintenance, training, implementation efforts, etc.).

Application Issues of Genetic Programming in Industry 243

From our experience, one generic area where GP has demonstrated a
clear competitive advantage is the development of simple empirical models.
The specific approach within GP is symbolic regression (Koza, 1992). We
have shown in several cases that the models generated by symbolic
regression are a low-cost alternative to both high fidelity models (Kordon et
al, 2003a) and expensive hardware analyzers (Kordon et al, 2003b). The
specific competitive advantages of symbolic regression generated by GP and
related to the generic area of empirical modeling are defined as follows:

• No Ö priori modeling assumptions - GP model development does
not require assumption space limited by physical considerations (as
is in case of first-principle modeling) or by statistical considerations,
such as variable independence, multivariate normal distribution and
independent errors with zero mean and constant variance.

• Empirical models with improved robustness - Using Pareto front
GP (Smits and Kotanchek, 2004) allows the simulated evolution and
model selection to be directed toward solutions based on an optimal
balance between accuracy and expression complexity. The derived
symbolic regression models have improved robustness during
process changes relative to both conventional GP and neural-
network-based models.

• Easy integration into existing work processes - Since the derived
final solutions, generated by GP are symbolic expressions there is no
need for specialized software environment for their run-time
implementation. This feature allows for a relatively easy integration
of the GP technology into most of the existing model development
and deployment work processes.

• Minimal training of the final user - The symbolic regression
nature of the final solutions generated by GP is universally
acceptable by any user with mathematical background at the high
school level. This is not the case either with the first-principle
models (where specific physical knowledge is required) or with the
black-box models (where some training on neural networks is a
must). In addition, a very important factor in favor of GP is that
process engineers prefer mathematical expressions and very often
can find an appropriate physical interpretation. They usually don't
hide their distaste toward black boxes.

• Low total cost of development, deployment, and maintenance -
Contrary to the common opinion, the key disadvantage of GP - the
computationally intensive and time-consuming model generation-
does not add significantly to the development cost because it does
not occipy the model developer's time. What is required from the
model developer is to set the parameters at the beginning of the

244 GENETIC PROGRAMMING THEORY AND PRACTICE III

simulation and to assess the selected models at the end. With the
Pareto front GP method, the derived models have minimal total cost.
They are derived and automatically selected at the optimum
performance— complexity Pareto front and as such, have better
robustness (I.e., reduced need for model re-tuning during process
changes and maintenance cost), are parsimonious (even with
potential interpretation by the experts), and with minimal
implementation requirements and cost. The alternative approaches
require specialized software, expertise on the specific technology,
training on the approach and the related software, and significant
model validation and support expenses.

The major disadvantages of GP relative to other techniques are (1) the
absence of commercial software infrastructure, (2) the computational effort
typically required for the model building, and (3) typically lower absolute
model accuracy relative to techniques such as neural networks.

Recommendations for Industrial Problems Appropriate for
Genetic Programming

With this impressive list of competitive advantages over first-
principle, statistical and neural network frameworks for modeling, GP has
very broad application potential in industry. Since the mid-90s we've
explored the capabilities of GP, developed our intemal software toolboxes
on MATLAB and Mathematica, and gradually introduced the technology to
the businesses. Critical for the sustainability of the support of this R&D
effort was the continuous series of successfiil applications that demonstrated
the value from our GP development agenda.

Our experience in applying GP to real industrial problems in the
chemical industry suggests these suitable targets::

• Fast development of nonlinear empirical models - Symbolic-
regression problems are very suitable for industrial applications, and
are often optimal in terms of both development and maintenance
costs. One area with tremendous potential is inferential or soft
sensors, i.e. empirical models that infer difficult-to-measure process
parameters, such as NOx emissions, melt index, interface level, etc.,
from easy-to-measure process variables such as temperatures,
pressures, flows, etc. (Kordon et al, 2003b). The current solutions in
the market, which are based on neural networks, require frequent re­
training and specialized run-time software.

An example of an inferential sensor for propylene prediction
based on an ensemble of four different models derived by Genetic

Application Issues of Genetic Programming in Industry 245

Programming is given in (Jordaan et al, 2004). The models were
developed from an initial large manufacturing data set of 23 potential
input variables and 6900 data points. The size of the data set was
reduced by variable selection to 7 significant inputs and the models
were generated by five independent GP runs. As a result of the
model selection, a list of 12 models on the Pareto front was proposed
for further evaluation to process engineers. All selected models have
high performance (R^ of 0.97 - 0.98) and low complexity. After
evaluating their extrapolation capabilities with "What-If' scenarios,
the diversity of model inputs, and physical considerations, an
ensemble of four models was selected for on-line implementation.
Two of the models are shown below:

GP Moden=A+B
Tray64 _T "^Vapor

2

Rflx _ ßow

GP Mockl2=C+D
Feed^ -sJTrayAe _T - Tray56 _ T

2 4

Vcpor * Rflx _ flow

where A, B, C, and D are fitting parameters, and all model inputs in
the equations are continuous process measurements.

These models are simple and interpretable by process engineers.
The difference in model inputs increases the robustness of the
estimation scheme in case of possible input sensor failure. The
inferential sensor is in operation since May 2004.
Emulation of complex first-principle models - Symbolic
regression models can substitute parts of ftindamental models for
on-line monitoring and optimization. The execution speed of most
complex first-principle models is too slow for real-time operation.
One effective solution is to replace a portion of the fundamental
model with a simpler symbolic regression called an emulator, which
is based only on a subset of variables. The data for the emulator are
generated by design of experiments from the first-principle model.
Usually the fundamental model is represented with several simple
emulators, which are implemented on-line. One interesting benefit
of emulators is that they can be used to validate fundamental models
as well. The validation of a complex model in conditions where the
process is chanting continuously requires tremendous efforts in data
collection and numerous model parameter fittings. It is much easier

246 GENETIC PROGRAMMING THEORY AND PRACTICE III

to validate the simple emulators and to infer the state of the complex
model on the basis of the high correlation between them. An
example of such an application for optimal handling of by-products
is given in (Kordon et al, 2003a). The mechanistic model is very
complex, and includes over 1500 chemical reactions with more than
200 species. Ten input variables and 12 output variables were
suggested by domain experts. A data set based on a four levels
design of experiments was generated and used for model
development and validation. For 7 of the outputs a linear emulator
gave acceptable performance. For the remaining 5 emulators, a
nonlinear model was derived by GP. An example of a nonlinear
emulator selected by the experts is given below:

6X3+X4 + X5+2X6+X2X9 z j -
_ (X2 +X7X1)

ln(V X9X10)

where Y is the predicted output (used for process optimization), and
the X variables are measured process parameters. The emulators
have been used for by-product optimization between two chemical
plants in The Dow Chemical Company since March 2003.

• Accelerated first-principle model building - Beginning first-
principle modeling not from scratch but from symbolic regression
models and building blocks (transforms) can significantly reduce the
hypothesis search space for potential physical/chemical
mechanisms. New product development effort can be considerably
reduced by eliminating unimportant variables, enabling rapid testing
of new physical mechanisms and reducing the number of
experiments for model validation. The large potential of this type of
application was demonstrated in a case study for structure-property
relationships (Kordon et al, 2002). The GP-augmented solution was
similar to the fundamental model and was delivered with
significantly less human effort (10 hours vs. 3 months).

• Linearized transforms for Design Of Experiments - GP-
generated transforms of the input variables can eliminate significant
lack of fit in linear regression models without the need to add
expensive experiments to the original design, which can be time-
consuming, costly, or maybe technically infeasible because of
extreme experimental conditions. An example of such type of
application for a chemical process is given in (Castillo et al, 2002).

A selected set of GP applications from the above-mentioned industrial
problems is given in Table 16-1. For each application the following

Application Issues of Genetic Programming in Industry 247

information is given: initial size of the data set (including all potential
inputs and data points), reduced size of the data set (after variable selection
and data condensation), model structure (number of inputs used in the
selected final models and the number of models; some of them are used in an
ensemble), and a corresponding reference which contains a detailed
description of the application, including the GP parameters used. In all the
cases the final solutions obtained with the help of GP were parsimonious
models with a significantly reduced number of inputs.

Table 16-1. Selected GP applications in Dow chemical

Application

Inferential
sensors
Interface level
prediction
Interface level
prediction

Emissions
prediction

Biomass
prediction
Propylene

prediction
Emulators
Chemical
reactor

1 Accelerated
modeling
Structure-

property
Structure-
property

Linearized
transforms
Chemical

1 reactor model

Initial data
size

(25 inputs X

6500 data pts)
(28 inputs X
2850 data pts)

(8 inputs X
251 data pts)

(10 inputs X
705 data pts)
(23 inputs X

6900 data pts)

(10 inputs X
320 data pts)

(5 inputs X 32

data pts)
(9 inputs X 24
data pts)

(4 inputs X 19
data pts)

Reduced
data size

(2 inputs X

2000 data pts)
(5 inputs X
2850 data pts)

(4 inputs X 34
data pts)

(10 inputs X
705 data pts)
(7 inputs X

6900 data pts)

(10 inputs X
320 data pts)

(5 inputs X 32

data pts)
(9 inputs X 24
data pts)

(4 inputs X 19
data pts)

Model
structure

3 models

2 inputs
One model
3 inputs

Two models
4 inputs

9 models ens
2-3 inputs
4 models ens

2-3 inputs

5 models
8 inputs

One model

4 inputs
7 models
3-5 inputs

3 transforms

Reference

Kordon and

Smits, 2001
Kalos et al,
2003

Kordon er a/,
2003b

Jordaan et al
, 2004
Jordaan et al

, 2004

Kordon e/a/,
2003a

Kordon et al,

2002
Kordon and
Lue, 2004

Castillo et
al, 2002

248 GENETIC PROGRAMMING THEORY AND PRACTICE III

3, How to Select the Genetic Programming Parameters

Another important issue in industrial applications of GP is the GP
algorithm parameter selection. As a first step, the parameters can be selected
according to the rule-of-thumb recommendations of Koza (Koza, 1992).
However, a more systematic statistical approach is recommended since the
numerous parameters and settings used by GP introduce uncertainty about
the way they affect the search algorithm and therefore the solution found.
This has significant theoretical implications. Among them is the amount of
information the parameters provide and the possible restrictions in the set of
right solutions. It is therefore important to understand the effect of the
parameters, the effect of the various combinations of them, and how robust
they are to different data sets. This is of special importance given that the
GP algorithm is used with a variety of data sets with different degrees of
complexity.

The optimum set of GP parameters can be determined through statistical
experimental design techniques, such as design of experiments (DOE). This
section explains how to use an appropriate DOE and the appropriate set of
replications to understand the effect of GP parameters.

Statistical Experimental Design: Design of Experiments

Design of Experiments is a statistical approach that provides enhanced
knowledge of a system by quantifying the effect of a set of inputs (factors)
on an output (response). This is accomplished by systematically running
experiments at different combinations of the factor settings (Box et al,
1978).

A classical DOE is the t design, in which all factors are investigated at
an upper and lower level of a range, resulting in t experiments where k is
the number of factors. This design has the advantage that the effects of the
individual factors (main effects), as well as all possible interactions
(combination of factors), can be estimated. However, the number of
experimental runs increases rapidly as the number of factors increases. If the
number of experiments is impractical, fractional factorial design can be used.
Li this case, only a fraction of the fuU 2*" design is run by assuming that some
interactions among factors are not significant. However, this assumption can
sometimes confound the main effects and interactions, so they therefore
cannot be estimated separately.

Depending on the type of fractional factorial, main effects may be
confounded with second-, third-, or fourth-order interactions. The level of
confounding is dictated by the design resolution. The higher the design

Application Issues of Genetic Programming in Industry 249

resolution, the less confounding occurs among factors. For example, a
resolution III design confounds main effects with second-order interactions;
a resolution IV design confounds second-order interaction with other
second-order interactions; and a resolution V design confounds second-order
interactions with third-order interactions. Felt and Nordin (2000)
investigated the effect of 17 GP parameters on three binary classification
problems using highly fractionated designs assuming, in some cases, that
even second- and third-order interaction are not significant, i,e., the
combined effect of two factors and three factors has no effect on the
response. However, these assumptions have not been verified.

Given that the study of GP parameters involves computing experiments
as opposed to pilot plant or laboratory experiments, it is desirable to run a
full factorial when possible, so that any second and third order interaction
which may have statistically significant effects on the response can be
quantified.

Pareto Front Genetic Programming DOE

The GP experimental design we would like to describe differs from that
of Felt and Nording in three aspects. First, it allows the estimation of
interactions. Second, it uses the convergence to the Pareto front as the
response variable. Third, the robustness of GP parameters to the different
data sets is investigated with industrial data sets with different degrees of
complexity based on dimension of input matrix and degree of input
correlation.

The need for a more systematic DOE approach is also driven by the
significant benefits of the Pareto front-based GP, demonstrated in several
industrial applications (Smits and Kotanchek, 2004). In this approach, the
optimal models fall on the curve of the non-dominated solutions, called
Pareto front, i.e., no other solution is better than the solutions on flie Pareto
front in both complexity and performance. As discussed above in Section
2.2, parsimonious models with high performance are the greatest importance
in industry. These occupy the lower left comer of the Pareto front indicated
in the diagram in Figure 16-2. In that context, the goal is to select GP
parameters that consistently drive simulated evolution toward the lower left
of this diagram. The Pareto front GP parameters (factors) and their ranges
are presented in the following table:

250 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 16-2. Factors for the Pareto Front GP Doe

Factor
xl - Number of cascades
x2 - Number of generations
x3 - Population size
x4 - Probability of function selection
x5 - Size of archive

Low level (-1)
10
10
100
0.4
100

High Level (+1)
50
50

500
0.7
500

The response variable proposed is the convergence to the Pareto front
(Smits and Kotanchek (2004) which includes the prediction error (1-R)̂ as
the performance measure and the sum of the number of nodes of all sub-
equations as the value of complexity. The factor xl, number of cascades, is
the number of independent runs with a freshly generated starting population.
The ranges of the factors have been selected based on the experience from
various types of practical problems, related to symbolic regression. Since the
objective is a consistent Pareto front GP, they differ from the
recommendations for the original GP.

Once the factors and ranges are selected the necessary number of
replications must be determined. This is of key importance because in the
case cf GP parameters we do not know for sure if the variability of the
response is the same for the different combination of factors. The following
figure illustrates this situation for three factors.

To estimate the number of required replications, an initial set of n
replications can be run, from which the standard deviation of the response is
calculated. In our case, the response is the convergence to the Pareto Front.
Li this case a frxed level of complexity for the number of nodes is selected.

For this level the corresponding number of models is observed and the
standard deviation of the response between these models can be estimated.
Figure 16-2 illustrates the concept.

Once the standard deviation is calculated the number of replications can
be found applying the half width (HW) confidence interval method
(Montgomery, 1999)'. The half width can be use to represent the percent
error in the point estimate of the mean response. The half width (HW) is
defined as:

100(l-a)% confidence interval is a range of values in which the true answer is believed to
lie with 1- a probability. Usually a is set at 0.05 so that 95% confidence interval is
calculated. Half width, sometimes called accuracy of the confidence interval, is the
distance between the estimated mean and the upper or lower range of the confidence
interval.

Application Issues of Genetic Programming in Industry 251

Where tn-i,a/2 is the upper all percentage point of the / distribution with n-1
degrees of freedom, S is the standard deviation and n is the number of runs.

Figure 16-1. Combination of factors in a 2 "̂ design showing different variances for the
different factor combinations.

A plot of the 100(l-a)% HW confidence interval reveals the number of
replications above which little improvement in HW is obtained. This is
illustrated in Fig. 3.3 with an example with 95% confidence interval in
which 5'=0.08. The graph shows that beyond 10 replications there is little to
be gained in terms of half width.

The same procedure can be applied for the different combinations of
factors, and the desirable half width can be fixed so that the experimental
design can be completed with the required number of replications for the
required accuracy. If we knew for certain that the variability of the response
is about the same for the different combination of factors (experimental
runs), we could find the confidence interval of the difference in mean
response for any two combinations of factors, and find the number of
replications required^ which in this case will be the same for all
combinations of factors, (see, for example, Montgomery, 1999).

spread of response for
chosen level of
complexity

Pareto Front Models for
different replications

Complexity 100

Figure 16-2. Spread of response for a chosen level of complexity.

In this case the HW confidence interval is t a«-a,a/2 {2S In] ^ Where a is the number of
combination of factors (experimental runs), S is the standard deviation and n is the number
of replications

252 GENETIC PROGRAMMING THEORY AND PRACTICE III

Robustness of Pareto Front GP Parameters to Different Data Sets.

To address the issue of the robustness of GP parameters to the data set, the
experimental design previously described needs to be executed for different
industrial data sets with various degrees of complexity—for example, low,
medium, and high. The complete set of experiments follows an orthogonal
array design which is depicted in Figure 16-4 where yij is the response
associated with the ith data set and thQjth combination of GP parameters. If
there are n\ combinations of GP parameters and î data sets, then we need
«1*̂ 2 runs for the total experimental design and each run of the design will
have the required number of replications as indicated by the desired half
width. For simplicity. Figure 16-2 only shows one replication per
experimental run. The n'l n2 experimental design is an orthogonal design
composed of an inner array (GP parameter combinations) and an outer array
(the data sets). This type of design allows quantifying the interactions
(combined effect of two and three factors). It also reveals information on the
combinations of GP parameters that result in a reasonable response even
when different data sets are used (combinations of GP parameters that
produce correct responses with minimum variation between data sets). Of
particular importance in this case are the interactions between the GP
parameters and the data sets since these interactions determine the sensitivity
of the GP parameters to the type of data set. This is illustrated in the
following diagram, Figure 16-5.

0.15

0.1

0.05

Half width of Confidence Interval

•

* • • ^

T i i i i i

5 10 15
Number of replications

20 25

Figure 16-3. 95% Half width confidence interval versus number of replications.

In this case the diagram of the interaction shows a response that is not
sensitive to the type of data set if the upper level (+) of parameter x\ is used.
Determination of these types of interactions is fundamental to understand the
robustness of Pareto front GP parameter combinations.

Application Issues of Genetic Programming in Industry 253

A proper statistical analysis of the orthogonal design can be valuable; it
can provide information on how the response is affected by the Pareto front
GP parameter, and how the choice of data can modify that effect. This can
be used to determine the best set of parameters for different applications of
GP symbolic regression in the chemical industry (and elsewhere).

GP Parametei

X2 X3

Variables

X4 X5

Different Types of Data Sets
Data1

y11
y12
y13
y14
y15
y16
y17
y18
y19
y110
y111
y112
y113
y114
y115
y116
y117
y118
y119
y120
y121
y122
y123
y124
y125
y126
y127
y128
y129
y130
y131
y132

Data 2

y21
y22
y23
y24
y25
y26
y27
y28
y29
y210
y211
y212
y213
y214
y215
y216
y217
y218
y219
y220
y221
y222
y223
y224
y225
y226
y227
y228
y229
y230
y231
y232

Data 3

y31
y32
y33
y34
y35
y36
y37
y38
y39
y310
y311
y312
y313
y314
y315
y316
y317
y318
y319
y320
y321
y322
y323
y324
y325
y326
y327
y328
y329
y330
y331
y332

Figure 16-4. Orthogonal design with 32 runs in three data sets

4. Issues with Genetic Programming Applications

Applying a new technology, such as GP, in industry requires resolving
not only many technical issues, but also systematically and patiently

254 GENETIC PROGRAMMING THEORY AND PRACTICE III

handling problems of a non-technical nature. A short overview of the key
technical and non-technical issues is given below.

0
(/> c o
CO
0
Ql

^ ^

I

Data
base 1

^ x i (-)

xi(+)

1 ;
1

Data
base 2

Figure 16-5. Diagram of the interaction of the ith G? parameter with the data set type.

Technical Shortcomings

• Available computer infrastructure - Even with the help of
Moore's Law, GP model development requires significant
computational efforts. It is recommended to allocate a proper
infrastructure, such as a computer cluster, to accelerate this
process. The growing capability of grid computing to handle
computationally intensive tasks is another option to improve the
GP performance, especially in a big global corporation with
thousand of computers. However, development of parallel GP
algorithms in user-friendly software is needed.

• Professional GP software- The current software options for GP
implementation, either external or internally cfeveloped, are still
used for algorithm development and research purposes. One
of the obstacles to mass scale applications of GP is the lack of
professional-seeming and user friendly software packages, from
well-established vendors, that would also handle continuous
product development and product support. Without such a
product, the implementation effort is very high and it will be
very difficult to convince people to use for GP industrial
applications purposes.

• Symbolic regression is still not accepted as a modeling
standard - One of the difficulties in developing professional GP
software is that symbolic regression via GP is still not

Application Issues of Genetic Programming in Industry 255

included in the recently developed Predictive Model Markup
Language (PMML, 2004). Most of the other modeling
methods— linear regression, neural networks, rule -based models,
support vector machines, etc,, are techniques supported by this
standard and included in the professional software of well-known
empirical modeling vendors like the SAS Institute, SPSS, and
StatSoft. The best-case scenario for more widespread industrial
applications of symbolic regression with GP is to bundle the
technology in the existing popular statistical and data mining
tools, such as JMP, STATISTICA, Enterprise Miner, or some
other package. If that were done, GP would be introduced to the
modeling and statistical communities in a natural way and could
be used in combination with the other well-known methods.

• Special attention to data preparation - Another requirement of
using symbolic regression in an integrated statistical software
environment is the need for carefiil data preparation, including
outlier removal, data pre-processing, scaling, normalization, etc.,
before beginning the simulated evolution. Existing GP software
tools do not have built-in capabilities for data preparation. The
hidden assumption is that the available data is of high quality,
which for industrial data sets is often not the case.

• Technical limitations of GP - In spite of the fast theoretical
development since the early 90's, and increasing computational
speed, GP still has several well-known limitations. Generating
solutions in a high-dimensional search space takes significant
time. Model selection is not trivial and is still more of an art than
a science. Integrating heuristics and prior knowledge is not yet a
straightforward process for practical applications. Generating
complex dynamic systems by GP is still in its infancy.

Non-technical Issues

• Critical mass of developers - It is very important at this early
phase of industrial applications of GP to coordinate development
efforts. The probability for success based only on individual
attempts is very low. The best-case scenario would be the
creation of a virtual group that includes not only specialists
directly involved in GP development and implementation, but
also specialists with similar areas of expertise like machine
learning, expert systems, and statistics.

• GP marketing to business and research communities - Since
GP is virtually unknown not only to business-related users but

256 GENETIC PROGRAMMING THEORY AND PRACTICE III

also to other research communities as well, it is necessary to
promote the approach by significant marketing efforts. Usually
an approach to marketing research-grade includes a series of
promotion meetings based on two different presentations. One of
these presentations is directed toward the research communities
focuses on the "technology kitchen," which gives enough
technical details to describe GP, demonstrates the differences
from other known methods, and clearly illustrates the
competitive advantages of GP. The second presentation, for the
business-related audience focuses on the "technology dishes,"
i.e., it demonstrates with specific industrial examples the types of
applications that are appropriate for GP, describes the work
process to develop, deploy, and support a GP application, and
illustrates the potential financial benefits of applying GP.

• Management support - Consistent management support for at
least several years is critical for introducing any emerging
technology, including GP. The best way to win this support is to
define the expected research efforts and assess the potential
benefits from specific application areas. Of decisive importance,
however, is the demonstration of value creation by resolving
practical problems as soon as possible.

• Lack of initial credibility - As a new and virtually unknown
approach, GP has almost no application history for convincing a
potential user. Any GP application requires a risk-seeking culture
and significant communication efforts. The successfiil
application discussed in this chapter are a good start to gain
credibility and increase the potential GP customer base.

5, Summary

Among the emerging technologies in the area of computational
intelligence, GP has clear competitive advantages and potential for solving a
broad range of industrial problems. Several application areas in the chemical
industry—for example, inferential sensors, emulators of complex first-
principle models, accelerated development of fundamental models, and
generation of linearized transforms for design-of-experiments-model-
building—already have demonstrated the power of GP and created value.
However, a number of technical and non-technical issues, such as well-
defined data preparation, development of well-supported professional
software packages, GP marketing to business and research communities,

Application Issues of Genetic Programming in Industry 257

consistent management support, etc., have to be resolved before we can
expect mass-scale applications of GP in industry.

References

Box, G., Hunter, W., and Hunter, J. (1978). Statistics for Experiments: An
Introduction to Design, Data Analysis, and Model Building, New York,
NY: Wiley,

Castillo, F., Marshall, K, Greens, J. and Kordon, A. (2002). Symbolic
Regression in Design of Experiments: A Case Study with Linearizing
Transformations, In Proceedings of the Genetic and Evolutionary
Computing Conference (GECCO'2002), W. Langdon, et al (Eds), pp.
1043-1048. New York, NY: Morgan Kaufmann.

Feldt R. and Nordin P. (2000). Using Factorial Experiments to Evaluate the
Effects of Genetic Programming parameters. In Proceedings of
EuroGP'2000, pp. 271-282, Edinburgh, UK

Kalos A., Kordon, A, Smits, G., and Werkmeister, S. (2003) Hybrid Model
Development Methodology for Industrial Soft Sensors, In Proceedings of
the American Control Conference (ACC'2003), pp. 5417-5422, Denver.
CO.

Kordon A. and Smits, G. (2001) Soft Sensor Development Using Genetic
Programming, In Proceedings of the Genetic and Evolutionary
Computing Conference (GECCO'2001), L. Spector, et al (Eds), pp. 1346
- 1351, San Francisco, Morgan Kaufmann.

Kordon A., H. Pham, C. Bosnyak, M. Kotanchek, and G. Smits, (2002).
Accelerating Industrial Fundamental Model Building with Symbolic
Regression: A Case Study with Structure - Property Relationships, In
Proceedings of the Genetic and Evolutionary Computing Conference
(GECCO'2002), D. Davis and R, Roy (Eds), Volume Evolutionary
Computation in Industry, pp. 111-116. New York, NY: Morgan
Kaufmann.

Kordon A., Kalos, A. and Adams, B. (2003a), Empirical Emulators for
Process Monitoring and Optimization, In Proceedings of the IEEE IV^
Conference on Control and Automation MED'2003, pp.111, Rhodes,
Greece.

Kordon, A., Smits, G., Kalos, A., and Jordaan, E.(2003b). Robust Soft
Sensor Development Using Genetic Programming, In Nature-Inspired
Methods in Chemometrics, (R. Leardi-Editor), Amsterdam: Elsevier

Kordon A. and Lue, C. (2004) Symbolic Regression Modeling of Blown
Film Process Effects, In Proceedings of the Congress of Evolutionary
Computation CEC'2004, pp. 561-568, Portland, OR.

258 GENETIC PROGRAMMING THEORY AND PRACTICE III

Kotanchek, M, Smits, G. and Kordon, A. (2003). Industrial Strength Genetic
Programming, In Genetic Programming Theory and Practice, pp 239-
258, R. Riolo and B. Worzel (Eds), Boston, MA:Kluwer.

Koza, J. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection, Cambridge, MA: MIT Press.

Jordaan, E., Kordon, A., Smits, G., and Chiang, L. (2004), Robust Inferential
Sensors based on Ensemble of predictors generated by Genetic
Programming, In Proceedings of PPSN 2004, pp. 522-531, Birmingham,
UK.

Montgomery, D. (1999) Design and Analysis of Experiments, New York,
NY: Wiley.

Predictive Modeling Markup Language (PMML V 3.0) Specification, (2004)
Data Mining Group, http://www.dmg.org/pmml-v3-0.

Smits, G. and Kotanchek, M. (2004), Pareto -Front Exploitation in Symbolic
Regression, Genetic Programming Theory and Practice, pp 283-300,
U.M. O'Reilly, T, Yu, R. Riolo and B. Worzel (Eds), Boston,
MA:Springer,

http://www.dmg.org/pmml-v3-0

Chapter 17

CHALLENGES IN OPEN-ENDED PROBLEM
SOLVING WITH GENETIC PROGRAMMING

Jason M. Daida^
'The University of Michigan, Center for the Study of Complex Systems and Space Physics
Research Laboratory, 2455 Hayward Avenue, Ann Arbor, Michigan USA 48109-2143,
daida@umich. edu

Abstract: This chapter describes how genetic programming might be integrated as a tool
into the human context of discovery. To accomplish this, a comparison is
made between GP and a well-regarded strategy in open-ended problem
solving. The comparison indicates which tasks and skills are likely to be
complemented by GP. Furthermore, the comparison also indicates directions
in research that may need to be taken for GP to be further leveraged as a tool
that assists discovery.

Key words: genetic programming (GP), open-ended problem solving, McMaster Problem
Solving

Introduction

On July 25, 2002, Raymond Orbach testified before members of the
United States Congress about the Office of Science, a government agency
that funds basic research in the physical sciences. As director of the agency
that has initiated high profile investigations like the Human Genome Project,
Orbach spoke about, among other things, how the Japanese scientists were
able to gain leadership over the United States in gbbal climate change
research. He stated that they were able to do so because they adapted the
architecture of their computer to the problem rather than the reverse. In so
doing, "they have realized effective performance on global climate change
models an order of magnitude greater than we can achieve" (Orbach 2002).

260 GENETIC PROGRAMMING THEORY AND PRACTICE III

Although Orbach was alluding to the use of hybrid vector processing',
his comment would apply to those of us in the genetic programming (GP)
community. There is something to be said about adapting machines to the
needs of our problems.

In this, GP is perhaps, uniquely situated. Although pitched as a
technology that can compete against human experts, in actuality the
technology has gained favor with practitioners for its ability to compbment
and partner with experts. For example, unlike other heuristic methods that
produce "black box" solutions, GP can and has produced expert-level
solutions that come in the form of computer code that human experts can
later examine. It is not unusual to hear stories that such examinations yielded
insight, which have in turn lead to discovery and innovation. ̂

Unfortunately, our understanding of how GP is used as a tool within the
larger discovery process is largely anecdotal and is focused more on the
technology than on the people and organizations who would use this
technology. This chapter, then, takes a small step in trying to understand GP
in the context of this human activity. However, instead of conducting a
fieldwork study—which should eventually be done—our group has asked
the following question: "How does GP compare with what is known about
how people leam and do open-ended problem solving?"

We contend that by comparing GP with one of the well-regarded
strategies of open-ended problem solving, a person can

• Identify where in the problem-solving process GP
is most compatible

• Indicate areas of investigation that could further
leverage GP in discovery and innovation

Consequently, this chapter is organized as follows: Section 2 describes
GP as an invention machine and offers this chapter's motivation for
comparing GP with the way humans do problem solving. Section 3 provides
background to MPS, a well-regarded learner's strategy that describes what
needs to occur in basic open-ended problem solving. Section 4 compares GP
with MPS and indicates where is GP most compatible in this problem
solving process. Section 5 describes areas of investigation that could further
leverage GP in discovery and innovation. Section 6 concludes.

Hybrid vector processing represents an architecture that is not common in US
supercomputers, but was used specifically for building Japan's Earth Simulator. Climate
models that run on the Simulator do rely heavily on mathematical operations that take
advantage of vector processing. See (Triendl 2002).
Anecdotal evidence of this has often come up during the U-M Center for the Study of
Complex Systems Workshop on Genetic Programming Theory and Practice. For example,
see (Caplan and Beker 2004; Castillo, Kordon, et al. 2004; MacLean and Wollesen, et al
2004).

Challenges in Open-Ended Problem Solving in GP 261

2. GP as an Invention Machine

Koza states, "Genetic programming is an automated method for solving
problems," which "can be used as an automated invention machine" (Koza,
Jones et al 2004). Koza and his colleagues have actively promoted this view
of GP in a number of prior works (Koza, Bennett III et al 1999; Koza,
Keane et al 2000; Koza, Keane et al 2003). By 2003, there were at least 32
instances of solutions by GP that met criteria that humans would otherwise
need meet, if such solutions were to be deemed as innovative (e.g., peer-
review or patent law). As of the first quarter of 2005, one of these 32 was
sufficiently innovative to receive a patent (Keane, Koza et al 2002). Koza
and his colleagues reasonably contend that someday GP would routinely
make discoveries and inventions (Koza, Keane et al 2003).

However reasonable such claims are today, they would have been
dismissed in the late 80s and early 90s. Back then, Koza had just introduced
GP, which gamered attention in part because it was an automated method for
producing computer code. Although there were antecedents in automatic
code production, Koza's was the first to make a compelling, broad-based
case. See (Koza 1992). At the time, it was considered novel that computers
could program themselves at all.

The change in perception between then and now is partly because of the
maturation of the field of GP. It is also partly because GP is easily scaleable.
In particular, Koza (Koza, Keane et al 2003; Koza, Jones et al 2004) has
argued that one of the primary reasons for GP's current ability to produce
human-competitive results is because GP can take advantage of the
exponential gains in computational processing power. In other words, GP
had to wait until computer technology could match what GP needed for
producing such results. If the current number of human-competitive results
is any indication, the wait is over.

So we are now at a stage where GP can solve for difficult, real-world
problems, which are generally characterized as open-ended and that require
solutions that are inventive. A manager who does not know about how GP
works, but would like to use it to solve real-world problems, can reasonably
ask what kind of problems it can solve.

The following is a short, informal list of sample problems that GP can or
cannot solve given the current state-of-the-art:

• Design a patentable analog circuit that meets a given
set of specifications See (Keane, Koza et al 2002;
Koza, Jones et al 2004)

• Identify a statistical model that can be used for a
given Design of Experiments application in an

262 GENETIC PROGRAMMING THEORY AND PRACTICE III

industrial chemical process See (Castillo, Kordon et
al, 2004)

• Design a word processor that is comparable in function to
Microsoft Word version 1.0. (Unlikely)

• Answer the question: Why are the tops and bottoms of beer cans
tapered? (Unlikely)

In some senses, what GP can and has solved is reversed from the human
experience. For example, GP performs at an expert level: the first two
questions represent contemporary problems that have required expert
answers. However, GP stumbles on expert level programming: the third
question represents a programming problem for an application that is
decades old. Furthermore, GP stumbles on problems that could be used in
the hiring of an expert: the fourth question represents a classic interview
question for many competitive companies in technology (Poundstone 2003).̂

Insight as to why some questions are potentially harder or easier for GP
to solve might be gleaned if we examine what goes into the way humans
approach problem solving. The next section introduces research on problem
solving from a field that has not previously received much attention from the
GP community.

3. What Is Open-Ended Problem Solving?

The idea of comparing and contrasting what genetic and evolutionary
computation do to what people do for open-ended problem solving is not
new. In (Goldberg 2002), Goldberg articulates the beginning of a
computational theory of innovation based on his work with competent
genetic algorithms (GA). His work not only seeks to inform how to design
competent GAs for innovation using theory to inform practice, but also to
inform what competent GAs say about the design process for innovation.

My research group's approach to this comparison, at least for GP, has
taken a different route for two reasons: our long-term research interest in
problems that are difficult for GP to solve and our experience in education in
open-ended problem solving. Our long-term research interest has been
described in previous works, including (Daida 2004; Daida 2005). As for
education, Fve been developing and teaching an engineering course
involving design and open-ended problem solving for several years.

In science and technology education in general, there has been keen
interest in teaching students how to do open-ended problem solving. In
particular, engineering education in the United States has institutionalized

^ Using genetic and evolutionary programming to solve brain teasers and other puzzles is
considered in (Michalewicz and Fogel 2000).

Challenges in Open-Ended Problem Solving in GP 263

this interest as part of the accreditation standards for engineering schools and
colleges. There have also been a number of studies that not only recommend
how to teach open-ended problem solving (as in curricula developed for
project-based learning), but also those that analyze open-ended problem
solving as a complex task that involves a variety of skills, states, and goals.
It is out of engineering education research concerning analyses of problem
solving by learners that we introduce MPS.

MPS is an evidence-based strategy for problem solving that has been
articulated for the engineering education community by Donald Woods at
McMaster University e.g., see (Woods, Hrymak et al. 1997; Woods 2000).
In some ways, it is a consequence of directed observation, cognitive
psychology, and a study of over 150 basic strategies to solve problems in a
number of fields, including business, science, mathematics, engineering, art,
and psychology. See the references in (Woods 2000). In other ways, it also
represents an explicit strategy that has been tested and validated through
extensive observational and field research. The McMaster Problem Solving
Program is highly regarded in engineering education research to the degree
that many colleges have incorporated it into either their first-year curricula
or assessment programs.

MPS consists of six stages that subdivide 37 general problem-solving
skills (both cognitive and attitudinal). Woods depicts MPS as a circular set
of "rooms" with a center "hallway," as shown in Figure 17-1. The process of
problem solving that Wood is trying to convey is that a learner starts with
"Engage," then enters the "hallway" to go to any of the five other stages.
The learner can visit the stages in any order: what matters is that eventually
all stages are visited. An
implication of this work is that
missing any of the stages results
in an approach to problem
solving that is prone to failure.
Another implication is that if any
of the cognitive or attitudinal
skills are missing or
underdeveloped in any one of the
stages, that open-ended problem
solving may also be prone to
failure. At least from an
educational standpoint, the idea is
to develop each of the attitudinal
and cognitive skills needed for
each stage to become a doable
proposition with associated

Figure 17-1. MPS 6-stage strategy. Redrawn
and used with permission from Woods (Woods
1994).

264 GENETIC PROGRAMMING THEORY AND PRACTICE III

exercises and concrete outcomes. MPS can apply to a broad cross-section of
learners—from elementary school students to professionals.

If GP is to be used in the discovery process, it also inplies GP would
apply to somewhere in MPS. In the next section, we subsequently examine
how each of these stages and associated skills compares to GP.

4. Comparing GP with MPS

Tables 17-1 and 17-2 compare MPS with GP. Each table lists the six
stages of MPS and is based on (Woods 2000). Depending on which table is
discussed, each stage is expanded (or collapsed) to show (or to hide) the
cognitive/meta-cognitive skills and the attitudinal skills that are needed for
that stage. The comparisons are informal and speculative: there is no attempt
to rigorously measure the degree to which a match or mismatch occurs. Even
at this level, however, the comparison does illuminate some of the reasons
why some problems can be solved by GP while others can't, why people
have used GP as a tool to assist in discovery, and where potential research
areas are for GP investigators to leverage.

In particular. Table 17-1 indicates the MPS stages where GP does not
seem to complement. Those stages are expanded to show the skills that are
needed for them. The collapsed, highlighted stages correspond to those that
do seem to complement GP.

For some stages, it is obvious that GP is not a close match for that stage.
For example, the Engage stage is something that pertains to people and that
reading and listening are cognitive skills to which GP does not have any
inherent capability. While it could be argued that one day, perhaps, there
would be machines that listen or read with understanding andhQ crafted with
GP, it remains a stretch.

For other stages, it is less obvious that GP is not a close match. For
example, the Do It (or Implementing) stage calls for a solution to be put into
action. If one were talking about software, it would refer to the writing of
code that would serve as the "software" solution. Again, it is arguable that
GP does this already. However, I argue from a professional programmer's
standpoint— t̂hat what GP generally produces isn't code that would pass a
Turing test in a community of professional programmers.

For the most part, GP solutions in the real world do seem to require
additional vetting and handling before they are adopted into practice e.g.,
(Caplan and Beker 2004; Castillo, Kordon et al 2004; MacLean, Wollesen
et al. 2004). The challenges of implementing a GP solution do increase if the
form of a solution differs greatly from the representational

Challenges in Open-Ended Problem Solving in GP 265

Table 17-1. Comparison of MPS with GP where stages do not correspond well. Expanded
stages from (Woods 2000) elaborate what is included in those stages that do not compare well
with GP. (The grayed stages, those which GP does compare favorably, are collapsed and are
elaborated upon in Table 2).

Task

Engage: I Want To & I Can
• Read the problem
• Listen to someone describing a task to be done
• Observe a situation and identify the opportunity
• Manage distress
• Be motivated
• Continue to work on the problem

Define the Stated Problem
• Classify given information into: goal constraints,

inferred constraints, criteria, inferred criteria,
description of system

Cognitive
• Read
• Listen

• Identify main
items

• Use definitions to
identify parts

• Analyze / classify

Attitudinal
• Courage and drive to

attack the problem
• Distress management

skills
• Motivated, patient,

active
• Willing to cope with

ambiguity and to risk
• Monitor

• Patient, attentive.
systematic, tolerant.
active, underline key
ideas

• Monitor

Explore: Create Internal Idea of Problem

Plan a Solution

Do It: Carry Out the Plan • Analyze
• Manage resources
• Judge critically

• Concern for accuracy
• Active, systematic,

careful, attentive to
detail

• Monitor

Evaluate, Check, & Look Back Reflect
Elaborate
Analyze
Communicate
Judge critically
Select "cues"
Generalize,
evaluate, create

• Stress management
• Motivated, persistent
• Monitor

forms used during problem solving. For example, the problem-solving forms
for Koza's analog circuits consist of mathematical and computational
representations that can be manipulated and tested on a computer. Although
however complete the representation, the working form of a solution
ultimately resides in a physical instance of the actual circuit. Consequently,
the stage

266 GENETIC PROGRAMMING THEORY AND PRACTICE III

Table 17-2. Comparison of MPS with GP where stages do correspond well. Gray stages are
those in which GP does compare favorably. They are expanded and detailed [from (Woods
2000)] to show where in these stages might GP compare well. The other, remaining stages are
collapsed.

Task Cognitive Attitudinal

Engage: I Want To & I Can

Define the Stated Problem

Explore: Create Internal Idea of Problem • Apply heuristics
• See the situation from a wide variety of viewpoints • Simplify, make
• Ask "What if? '* often and do simple estimations to assumptions

predict the results • Generalize
• Translate the situation to a preferred style • Identify "cues"
• Esümate values for answer • Apply criteria
• From experience knowledge estimate values for the • Translate

different parameters that affect the answer , Exploit personal
• Make simplifying assumptions and solve the simple preference

problem to begin to get a sense of what the problem ^ Access
is about and what are the dominant factors or issues knowledee

• Repeat making a variety of simplifying assumptions , Access past
• Divide the problem into workable subproblems problems that
• Identify the key content-knowledge (e.g., *This is were solved

about forces"; 'That's Physics'*; '*The major laws successfully
that might relate are...") • Analyze

• Use pattern recognition skill to identify whether this • Create
is an exercise or a problem , Reason

• Try to clarify your internal image by writing out . Judge critically
what you see as bemg the problem

• Write down a "good" goal statement
• Check the reliability of data

• Able to learn
from mistakes

• Monitor
• Flexible
• Willing to take

risk, to make
assumptions
and to postpone
judgment

• Persistent

• Distress
management
when stuck

• Focus on each
sub-problem
separately

• Organized
• Stress

management

Plan a Solution

Do It: Carry Out the Plan

Evaluate, Check, & Look Back

• Analyze, manage
resources, decide,
identify sequences
and consequences

• Apply heuristics
• Judge critically

Systematic,
organized
persistent,
tenacious, careful
Monitor

Implementing would include the actual building of that circuit."^ It is rare
that GP actually controls and builds physical artifacts that result from its

Another example would include (Lohn, Hornby, et al 2004). At the workshop talk
associated with this chapter, Lohn described the special challenges that arose when having
to fashion the antennas from wire stock.

Challenges in open-ended problem solving with GP 267

code solution; typically some other technologies or humans would do it,
instead.

Table 17-2 indicates the MPS stages where GP does seem to
complement. As in the previous table, the highlighted stages correspond to
those that do seem to complement GP. However, unlike the previous table,
the highlighted stages are expanded to show the skills that are needed for
them.

Most of what GP does well matches with the stage entitled Explore:
Create Internal Idea of a Problem, Unlike some of the other stages, which
are described by self-explanatory descriptors. Explore does bear some
explanation, since as Woods describes, "[It] is probably the most underrated,
most challenging and least understood stage of all the stages" (Woods 2000
p. 449).

Open-ended problem solving presumes that the method and information
that is ultimately used by the method are not known ahead of time. At some
point during problem-solving then, there would need to be time set aside to
explore. Metaphorically speaking. Explore is the stage where one tries to
glean a path in the uncharted landscape of a problem: the process is not
straightforward, the way is not clear, and time is spent trying to put together
a variety of guesses that might hopefully illuminate where to go next.
According to (Woods 2000), this stage requires one to "explore the situation
from many conflicting points-of-view," to "connect the goal and the given
data," and to "guesstimate an answer."

It is not surprising then, that, practitioners have used GP in the discovery
process and that GP's use would likely fall in Explore, True, the current
level of programming skill that GP offers in its solutions isn't yet laudable.
However, what GP brings to the table does complement the skills that
humans need during Explore, Humans need to learn from mistakes, to take
risks, to persist in spite of failures, and to do distress management when
stuck. These attitudinal skills during Explore are crucial, since attitudes help
to shape our assumptions of what a solution should be. If there were a way to
vet out unnecessary assumptions, it would be welcome. Unnecessary
assumptions have a way of handicapping our ability to solve problems.

At least in GP, there is a way to assemble and to sift through potential
guesses in a systematic manner, without burdening assumptions brought
upon by one's attitudes. Since insight is a way of seeing beyond assumption,
GP can and has helped in providing insight as to how a problem can be
solved, if only because the technology provides a way to circumvent
potential assumptions brought about by attitudes, which are themselves
shaped by particular points-of-view. And of those attitudes, some of the
most pervasive are those concerning failure—either real or imagined. In that
area, GP shines. In the process of deriving a solution (or, in Woods's terms.

268 GENETIC PROGRAMMING THEORY AND PRACTICE III

a guesstimate since a final solution is often not GP code), GP assembles and
sifts through a multitude of failures as an inherent part of identifying
success. Its search in combinatorial space is littered with dead ends. There
are so many negative outcomes during a GP search that were a human to
replicate what GP does, that human would likely be regarded as equally
heroic and stupid. Of course, what matters is insight and if GP provides that,
better it than a human.

Given this comparison of GP with MPS in Tables 17-1 and 17-2,
one should note that GP is not a technology that leverages equally well in all
stages of open-ended problem solving. There are some stages that it applies
to better than others and so it is limited in what it can and cannot provide to
the discovery process. Consequently, the next section explores what these
limitations mean for the GP community.

5, Implications for GP

A useful and perhaps obvious observation about MPS is that the process
of open-ended problem solving consists of a variety of different skills that
need to be applied to perform distinct tasks within a particular stage. That
observation has consequences for GP because the observation suggests that
the technology needs other types of fiinctionality for it to be leveraged in the
discovery process. In other words, the bottleneck in the adoption of GP in
the discovery process in general may not necessarily lie in advancing the
technology itself Rather, the bottleneck may lie not in having the
appropriate tools that are ancillary to GP, per se, but that are integral to using
GP in the context of discovery. Specifically, there is a lack of tools that
support GP and that match well to the other stages in MPS.

An Illustration

Koza has argued that the exponential increase in computational
horsepower should be harnessed so that GP can start solving difficult, real-
world problems. An obvious place to do this is to have GP work with large
populations of hundreds of thousands to millions of individuals, instead of
the populations of several hundred to a few thousand individuals that
researchers study. Reasonable investigations, then, would include research in
distributed architectures amenable to GP, research in operators that could
leverage such distributed architectures for GP, and research in GP
phenomena that occur at those scales.

Having a better GP that is capable of assembling millions of guesses can
lead to a kind of dysftinction, however, if one considers the entirety of open-

Challenges in Open-Ended Problem Solving in GP 269

ended problem solving. If GP were a human doing open-ended problem
solving with the kinds of capabilities that it currently has, it would be one
that suffers from racing. Racing refers to a mental condition where a stream,
arguably a torrent, of free-associative thought happens unchecked.
Unfortunately, the ability to turn those thoughts into a reality, however
brilliant, is crippled because of an inability to plan, implement, and evaluate
consequences at the rate at which those thoughts occur. In other words,
ability to crunch through millions of guesses is not really helpful unless there
is a way to sustain its throughput throughout the entire process of open-
ended problem solving.

There are at least two key stages in MPS that currently receive scant
attention in the GP community, if only because it would seem that these
research developments should happen somewhere else in some other field:
Le,, Evaluating and Implementing, My list is by no means exhaustive and in
this chapter only illustrates how MPS can serve as a way to enhance the use
of GP in the context of open-ended problem solving. As others have pointed
out in this year's workshop, there are many other ways of applying MPS to
GP. In any case, the following sections offer examples of extending GP in
Evaluating and Implementing.

Evaluating (Understanding)

Perhaps the greatest bottleneck to using GP in the context of human
discovery lies in our ability to understand its results and to subsequently
isolate valuable insights, innovations, and discoveries. Certainly, GP outputs
code that is eminently more readable and more transparent than black-box
heuristics like neural nets. That being said, anyone who has tried to analyze
GP code would conclude that the production of readable code isn't one of
GP's strong points. Not many people can "read" GP-produced code fluently,
and have expertise in the domain of a problem, to be able to evaluate
whether such code contains anything worthwhile. Even for those who can
"read" GP-code, the process tends to be slow and manpower intensive.

Root-Bernstein wrote the following when he was discussing tools used
by scientists in the discovery process:

Tools of thought, in and of themselves, are useless to a scientist until linked by
'transformational thinking'—that is, the ability to translate a problem expressed
in one form (such as numbers) into another form more amenable to problem
solving (words, perhaps, or mental images); to mentally manipulate these words,
images, or models to solve the problem; and then to translate this solution into
yet another form (such as an equation or diagram or experimental protocol) that
can be communicated to other scientists. (Root-Bernstein 1989), p. 313.

270 GENETIC PROGRAMMING THEORY AND PRACTICE III

It might be that the tools—like GP—have progressed to the point where
another intermediate form may be needed, one that focuses on a rapid
evaluation of results in the broader context of determining what is creative to
an expert or to a field. Such a form might correspond to something that
currently exists as forms that are used to communicate results to other
people. It might be, though, that such forms could also be chosen to suit the
needs of a semi-automated means for doing such an evaluation.

Again going back to Koza's analog circuits, Koza and his colleagues
have sidestepped the issue of being able to read GP-produced code by
focusing on the artifacts produced as an outcome of executing GP code—
i.e., circuit schematics—as opposed to just the code itself The selection of
this form happens to be one that is understandable to analog circuit experts,
but also one that is amenable to rapid, automated analysis. While current
automated analysis methods fall short of being able to determine whether an
analog circuit is creative to an expert or to a field, they do allow for a rapid
evaluation of GP-produced results without the need for understanding
computer code.

Even though the notion of extending circuit diagrams to solve other
problems is not an option for many other fields, the notion of identifying
artifacts that could be used for rapid evaluation might be. For example, in
our own work, those artifacts have turned out to be forms for visualizing
quantitative results e.g., (Daida, Hilss et al. 2005). Our ability to see and to
evaluate statistical phenomena with these new visualization methods have
afforded studies that were not previously possible by either archetypes or
two-variable statistics that have been common in our field e.g., (Daida
2005). Although researchers have long understood that genetic and
evolutionary computation could benefit fi-om visualization, not many papers
have been published in this area, particularly for GP.

Implementing

Analogous to the MPS stage Do It, implementing a GP solution is more
than simply turning code into a physical or logical artifact that people would
then use. Perhaps the next biggest drawback to using GP in the context of
human discovery lies in implementing GP-produced findings into the
workflow of the people who would stand to benefit from these findings.
Protocols for incorporating GP-produced findings for one's workflow are
either nonexistent, nontrivial, or both.

That there needs to be any special handling for GP-findings requires
some explanation. There is the matter of perception because many humans
rightfully distrust solutions that are either not understandable or not
conventional. There is also the matter of hidden consequences, because GP

Challenges in Open-Ended Problem Solving in GP 111

LRunGP

2. Select models with
correlation>Threshold

3. Evaluate R̂ between model
prediction and actual response

4. Transform input variables
according to the model

5. Fit

with transformed variables (TLM)

Yes

7. Check error structure
Check correlation among process

parame îers

can take shortcuts that may
not be obvious to humans.
Of these, the latter may, in
the long run, be more
worrying since hidden
consequences sometimes
have a way of turning
catastrophic.

The identification of
protocols, such as those
indicated in (Caplan and
Beker 2004; Castillo,
Kordon et al 2004;
MacLean, Wollesen et al
2004) represent a promising
start. Although there are not
yet enough examples from
which to draw general
conclusions about the kinds
of protocols that work best,
such work already alludes to
the kinds of organizational
structures and methodolo­
gies that may need to
happen to accommodate GP
into the discovery process.
For example. Figure 17-2
depicts the protocol from
(Castillo, Kordon et al
2004), which describes a
means of using GP to
identify transforms that
eliminate lack-of-fit in a
Box-Behnkin design. In
Castillo et Ö/.'S case, the
technology of GP provides

only a portion—albeit a pivotal portion—of the total overall solution that is
needed to implement GP into this industrial setting. In particular, nearly all
of the technology that directly involves GP is confined to the work
represented by the first, topmost box of Figure 17-2. The rest of the Castillo
et a/.'s methodology is what was needed to make the GP-derived solutions
to be useful. Of course, implicit in the rest of their methodology are the

9. Compare original model, TLM,
GP model

Figure 17-2. Example of methodology that implements
GP-derived solution [from (Castillo, Kordon et al.
2004)]. Only the first, topmost box, is where most
published research stops. Used with permission.

272 GENETIC PROGRAMMING THEORY AND PRACTICE III

personnel, organization, and technologies that are needed for
implementation, which are not directly associated with GP. If Castillo et
al.'s protocol is any indication, there is a fair amount of work to be done in
Implementing.

6. Conclusions

This chapter began with Raymond Orbach, who commented on an
approach to some of the most highly profiled research involving the largest
of supercomputers. Effectiveness came from adapting the architecture of the
computer to the needs of a problem, rather than the other way around.

As a technology, GP has the potential not only to help machines adapt to
the needs of our problems, but also to help machines adapt to the ways we
solve them. To highlight how this might be so, I compared GP with a well-
regarded strategy that articulates the various tasks and skills associated with
open-ended problem solving. The comparison served to point out where in
the open-ended problem solving process GP is most compatible. Not
surprisingly, this match corresponds to the stage in open-ended problem
solving where one needs to explore how a path to a possible solution might
come about in the uncharted "landscape" of a problem. Already, experts in
various problem domains have used this technology as a tool to do so.

The comparison also indicated areas of investigation that could further
leverage GP into the process of traditional modes of human discovery and
innovation. Although it may be self-evident to some that GP is not a one-
stop tool, the comparison made clear that there are a variety of tasks that
need to be done in open-ended problem solving that are probably best met
with other technologies. The challenge lies not in turning GP into a super-
tool, but in developing an infrastructure that can support the volume of data
and information that GP can produce throughout the rest of the problem-
solving process.

To show how this might be done, I highlighted two MPS stages—
Evaluating and Implementing—that point to the kinds of infrastructural
development needed to support GP. For example, there are bottlenecks in
Evaluating GP-derived solutions in trying to determine whether they are, in
fact, discoveries or innovations. There are also many unknown consequences
and issues in Implementing GP-derived solutions in an industrial workflow.
Either of these issues currently receives scant emphasis within the GP
research community, if only because these have been considered ancillary to
the study of the technology.

In conclusion, if we were to address the broader challenges of using GP
as a tool for discovery and innovation, these "ancillary" areas really should

Challenges in Open-Ended Problem Solving in GP 273

not be left to the province of a discovery's research community (e.g., like the
analog-circuit design community). Given the overall context of problem
solving, the "ancillary" is actually essential to GP. After all, adapting GP to
meet the needs of the problem instead of the other way around gets to the
heart of Orbach's observation. GP needs these other technologies.
Consequently, if GP is to be such a tool that helps us to chart a path into the
unknown, it is in our field's best interests to make it so—it is not someone
else's "problem."

Acknowledgments

A chapter like this is an outcome of many conversations with many
people. I thank the following individuals from my research group
UMACERS: R. Tang, M. Samples, M. Byom, M. Pizzimenti, F. Tsa, M.
Rio, C. Kureka, B. McNally, X. Loy, T. Weltzer, and K. McNamara.
Foundation Coalition member J. Froyd introduced me to MPS, while G.
Herrin provided me the latitude in integrating MPS in my classes. The long
conversations with Dow researchers A. Kordon, M. Kotanchek, G. Smits,
and F. Castillo were enlightening. Reviews from U.-M. O'Reilly, T.
McConaghy, and A. Kordon were appreciated and helpful. Gratitude is
extended to the workshop organizers R. Riolo, W. Worzel, and T. Yu. As
ever, I extend my appreciation to S. Daida and I. Kristo.

References

Caplan, M. and Y. Beker (2004). Lessons Learned Using Genetic Programming
in a Stock Picking Context: A Story of Willful Optimism and Eventual
Success. Genetic Programming Theory and Practice IL U.-M. O'Reilly, T.
Yu, R. L. Riolo and W. Worzel. Boston, Kluwer Academic Publishers: 3 1 -
48.

Castillo, F., A. Kordon, et al (2004). Using Genetic Programming in Industrial
Statistical Model Building. Genetic Programming Theory and Practice IL
U.-M. O'Reilly, T. Yu, R. L. Riolo, and W. Worzel. Boston, Kluwer
Academic Pubhshers: 31-48.

Daida, J. M. (2004). What Makes a Problem GP-Hard? A Look at How
Structure Affects Content. Genetic Programming Theory and Practice. R. L.
Riolo and W. Worzel. New York, Springer: 99-118.

Daida, J. M. (2005). Considering the Roles of Structure in Problem-Solving by
Computer. Genetic Programming Theory and Practice IL U.-M. O'Reilly,
T. Yu, R. L. Riolo and W. Worzel. New York, Springer: 67-86.

Daida, J. M. (2005). Towards Identifying Populations that Increase the
Likelihood of Success in Genetic Programming. GECCO 2005. In print.

Daida, J. M., A. M. Hilss, et al. (2005). "Visualizing Tree Structures in Genetic
Programming." Genetic Programming and Evolvable Machines 6: 79-110.

274 GENETIC PROGRAMMING THEORY AND PRACTICE III

Goldberg, D. (2002). The Design of Innovation: Lessons from and for
Competent Genetic Algorithms. Boston, Kluwer Academic Publishers.

Keane, M. A., J. R. Koza, et al. (2002). General-Purpose Controllers. Patent
#6,847,851. Issued 25 January 2005. U. S. Patent Office. United States.
Assignee: Koza, J.R.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, The MIT Press.

Koza, J. R., F. H. Bennett III, et al. (1999). Genetic Programming III:
Darwinian Invention and Problem Solving. San Francisco, Morgan
Kaufmann Publishers.

Koza, J. R., L. W. Jones, et al. (2004). Toward Automated Design of Industrial-
Strength Analog Circuits by Means of Genetic Programming. Genetic
Programming Theory and Practice II. U.-M. O'Reilly, T. Yu, R. L. Riolo,
and W. Worzel. Boston, Kluwer Academic Publishers: 121-142.

Koza, J. R., M. A. Keane, et al (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Norwell, Kluwer Academic
Publishers.

Koza, J. R., M. A. Keane, et al. (2000). ''Automatic Creation of Human-
Competitive Programs and Controllers by Means of Genetic Programming."
Genetic Programming and Evolvable Machines 1(1/2): 121-164.

Lipson, H. and J. B. Pollack (2000). "Automatic Design and Manufacture of
Robotic Lifeforms." Nature 406(31 August 2000): 974-978.

Lohn, J. D., G. S. Hornby, et al. (2004). An Evolved Antenna for Deployment
on NASA's Space Technology 5 Mission. Genetic Programming Theory and
Practice II. U.-M. O'Reilly, T. Yu, R. L. Riolo, and W. Worzel. Boston,
Kluwer Academic Publishers: 301-313.

MacLean, D., E. A. Wollesen, et al. (2004). Listening to Data: Tuning a Genetic
Programming System. Genetic Programming Theory and Practice II. U.-M.
O'Reilly, T. Yu, R. L. Riolo, and W. Worzel. Boston, Kluwer Academic
Publishers: 245-262.

Michalewicz, Z. and D. B. Fogel (2000). How to Solve It: Modem Heuristics.
Berlin, Springer-Verlag.

Orbach, R. L. (2002). Testimony of Dr. Raymond L. Orbach, Director, Office of
Science, Before the House Science Committee Subcommittee on Energy.
Washington, D.C.

Poundstone, W. (2003). How Would You Move Mount Fuji? Microsoft's Cult of
the Puzzle: How the World's Smartest Companies Select the Most Creative
Thinkers. Boston, Litüe, Brown and Company.

Root-Bernstein, R. S. (1989). Discovering: Inventing and Solving Problems at
the Frontiers of Scientific Knowledge. Cambridge, Harvard University
Press.

Triendl, R. (2002). "Our Virtual Planet." Nature 416(11 April 2002): 579-580.
Woods, D. R. (1994). Problem-Based Learning: How to Gain the Most from

PBL. Waterdown, ON, Woods Publishing.
Woods, D. R. (2000). "An Evidence-Based Strategy for Problem Solving."

Journal of Engineering Education: 443-459.
Woods, D. R., A. Hrymak, et al. (1997). "Developing Problem Solving Skills:

The McMaster Problem Solving Program." Journal of Engineering
Education: 75-91.

Chapter 18

DOMAIN SPECIFICITY OF GENETIC
PROGRAMMING BASED AUTOMATED
SYNTHESIS: A CASE STUDY WITH SYNTHESIS
OF MECHANICAL VIBRATION ABSORBERS

Jianjun Hu^, Ronald C. Rosenberg^ and Erik D. Goodman'̂
Department of Computer Science, Purdue University, West Lafayette, IN, 47906;
Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824;
Department of Electrical and Computer Engineering, Michigan State University, East Lansing,

MI, 48824.

Abstract Genetic programming has proved its potential for automated synthesis of a variety
of engineering systems such as electrical, control, and mechanical systems. Given
any of these application domains, a set of generic GP functions can be developed
for its synthesis. In this chapter, however, we illustrate that while a generic GP
system can often be used to prove a concept, realistic or industrial automated
synthesis often requires domain-specific GP configuration, especially of the GP
function sets. As a case study, it is shown how the open-ended topology search
capability of GP readily exploits "loopholes" in a generic bond-graph-based GP
function set and evolves high-performance but unrealistic mechanical vibration
absorbers, even though the bond graphs would be readily implementable in, for
example, the electrical domain. The preliminary attempt to constrain evolved
topologies to only those that would be readily implementable in the mechanical
domain was not sufficiently restrictive.

Keywords: automated synthesis, genetic programming, passive vibration absorber, bond
graphs, mechatronic systems, domain knowledge

1. Introduction
Since 1997, it has been demonstrated that genetic programming can generate

human-competitive designs in a variety of domains, including analog circuits

276 GENETIC PROGRAMMING THEORY AND PRACTICE III

(Koza et al., 2003), antennas, and mechanical linkage mechanisms (Lipson,
2004). Each of these domains is defined by a set of realizable building blocks
to be assembled into a system. However, the building blocks of the modeling
tools, such as analog circuits or bond graphs, are composed of primitive com­
ponents, some of which do not have directly corresponding physical entities.
One question is how it is possible to evolve physically realizable systems using
primitive building blocks and how domain knowledge should be incorporated
into the GP system to evolve practical solutions. This chapter describes a pre­
liminary foray into this question, and illustrates that the question is non-trivial,
even for the domain of passive linear mechanical dynamic systems.

We are interested in evolving human-competitive results in a classical me­
chanical engineering domain, the design of vibration absorbers, which are
widely used, for example, in machine tools. The widespread and critical ap­
plication of vibration absorbers in structural control (Soong, 1990; JR et al.,
1997), space structures (Bruner, 1992), vehicle suspension (Hirataetal., 1995),
and helicopter vibration make it an important domain in which to develop au­
tomated approaches to facilitate creation of innovative solutions. Although the
first vibration absorber technology was invented a century ago (Frahm, 1911),
research in this field is still far from complete, and innovations continue to arise
frequently (Filipovic and Schroder, 1998).

In this chapter, we report lessons and failures to date involved in an effort
to evolve human-competitive vibration absorbers using the primitive building
blocks of bond graphs - a generic modeling tool for dynamic systems (Kamopp
et al., 2000). In our previous work, a generic synthesis framework based on
genetic programming and bond graphs (GPBG) was used to successfully evolve
a variety of mechatronic systems (Fan et al., 2001; Seo et al., 2002). Here, we
want to demonstrate that the GPBG system has the potential to duplicate signifi­
cant innovations in passive vibration absorber design in terms of fitness function
values. Unfortunately, most of the solutions evolved to date are not practical for
physical realization. We show that to prepare the GP/bond graph paradigm for
wide industrial adoption, it is necessary to re-configure the generic GP system
to accommodate domain-specific physical implementation constraints.

The remainder of this paper is organized as follows: Section 2 reviews some
representative vibration absorber designs as well as previous work on automated
synthesis of electrical circuits, mechatronic systems, and mechanisms. Section
3 defines the vibration absorber design problem and presents our GPBG frame­
work for their automated synthesis. The experiments and an analysis of results
are then introduced in Section 4. Finally, Section 5 concludes this chapter with
a discussion of planned future work.

Domain Specificity of Genetic Programming Based Automated Synthesis 277

2. Related Work
The idea of exploiting domain knowledge in configuring GP systems is well

known. In the very beginning, one has to consider the types of system compo­
nents and possible meaningful topological operations to design the GP function
set. However, most of the previous work of using GP for hard problems belongs
to domains where physical implementation is not a serious problem. Examples
include the analog circuit synthesis (Koza et al., 1999), control systems (Koza
et al , 2000), or computer programs. All of these systems allow very flexible
implementation. The physical constraints on the topologies of the designs are
not a big issue. Despite this, Koza (Koza et al., 2004a) suggested that exploiting
domain, or problem-specific knowledge, may be helpful to improve efficiency.
McConaghy and Gielen (McConaghy and Gielen, 2005) discussed the issue of
how to evolve industrially useful analog circuits, including use of specialized
GP for real-world problems, which is a similar thrust to ours. In our previous
work, we tried to evolve MEMS systems which can only be implemented using
a certain types of physical building blocks, which puts constraints on the GP
function set design (Fan et al , 2003). However, in that work, the realization
constraints were so strong that the set of available components and connection
topologies was strongly restricted, so the GP results were realizable.

The invention history of vibration absorbers has spanned almost a century.
The first patented vibration absorber was invented by H. Frahm (Prahm, 1911).
As shown in Figure 18-1, his passive vibration absorber attaches a mass to a
primary vibrating system through a damper and spring. By tuning the damping
coefficient and the spring's stiffness, one can dramatically reduce the magnitude
of vibration in response to a specified frequency of vibration. The limitation of
these passive vibration absorbers is that they work well only at that specified
frequency. If the frequency of the excitatory vibration changes, the vibration
absorber will become ineffective or even become harmful due to the "de-tuning"
phenomenon. A natural solution is to add an active controller to the whole
system, as shown in Figure 18-1(b). The benefits of active vibration absorbers
are that they can track a change in frequency of the excitation source and that
they work for a wide frequency band. They are especially useful for vibration
sources of unknown characteristics. The shortcoming of active controllers is
that the combined system could suffer from control-induced instability and from
large control effort requirements, making them inapplicable in many industrial
applications (Jalili, 2002). The third type of vibration absorber, as shown in
Figure 18-1(c), combines the advantages of passive and active absorbers by
integrating a tuning control mechanism with tunable passive devices, such as
variable rate damping and stiffness (Franchek et al., 1995; Nemir et al., 1994).
These adaptive passive vibration absorbers are welcomed by industry due to

278 GENETIC PROGRAMMING THEORY AND PRACTICE III

their low energy requirements and low cost. There are several reviews available
for further details (Kamopp, 1995; Jalili, 2002).

Figure 18-1. A typical primary structure equipped with three versions of vibration control
systems (absorbers): (a) passive, (b) active, and (c) semi-active configuration

Vibration absorbers are a class of dynamic systems which can be modeled
as analog circuits, block diagrams, bond graphs, etc. A special characteristic
of these particular dynamic,systems is that the building blocks usually have a
fixed number of interface ports and may not be connected arbitrarily. Automated
synthesis of dynamic systems has been investigated intensively in the past ten
years (Koza et al., 1999; Koza et al., 2003; Koza et al., 1997; Koza et al.,
2000; Lohn and Colombano, 1999). Instead of using electrical circuits and
block diagrams, we developed a GP-based framework for automated synthesis
of mechatronic systems using bond graphs as the modeling scheme. The so-
called GPBG approach has been applied to automated synthesis of analog filters
(Fan et al., 2001), redesign of an old-fashioned mechanical printer (Seo et al.,
2002) and pump (Seo et al., 2003), automated synthesis of MEMS systems
(Fan et al., 2004), and synthesis of robust analog filter circuits (Hu et al., 2005).
Figure 18-2 illustrates a very simple bond graph, marked up to show sites
at which topological modifications are allowed in the GPBG system, and a
corresponding electrical circuit. In previous work with the GPBG system, no
attempt has been made to duplicate or compare its designs with those invented
by experts.

3. Mechanical Vibration Absorber Synthesis Using Bond
Graphs and Genetic Programming

In this section, we define the vibration absorber synthesis problem and
present an improved methodology for open-ended computational synthesis
of multi-domain dynamic systems based on Genetic Programming and Bond
Graphs (Kamopp et al., 2000)-the GPBG approach. Compared to the basic
GPBG approach introduced in (Seo et al., 2003), methodological improvements
have been made in several aspects to be discussed next.

Domain Specificity of Genetic Programming Based Automated Synthesis 279

Problem Definition: Synthesis of Passive Vibration Absorbers
In this work, we are mainly interested in synthesizing passive vibration ab­

sorbers to reduce the vibration response of primary systems of various configu­
rations. Figure 18-3 shows a primary system and its corresponding bond graph
model. The design task is to attach some new components to the primary system
such that the frequency response at the excitation frequency uj be minimized.
Figure 18-4 shows the first vibration absorber, invented by H. Frahm in 1911,
and its bond graph model. The frequency response of the stand-alone primary
system and the primary system with vibration absorber is shown in Figure 18-5.
It can be seen that the vibration absorber can significantly quench the response
of the primary system at the excitation frequency. An advanced version of the
vibration absorber synthesis problem is to minimize the sum of the frequency
responses at two excitation frequencies (dual-frequency vibration absorber) or
across a frequency band in which response is to be minimized, corresponding
to the band-vibration absorber (Filipovic and Schroder, 1998).

i T

Rs

Figure 18-2. A bond graph and its equivalent electrical circuit. The dotted boxes in the left
graph indicate modifiable sites at which further topological manipulations can be applied.

F(t)

K

(a) 'y^

' '

M

i ^
/}/// /////

W

/.(b)

SI* -TP-< 1 h-

Figure 18-3. Schematic of the primary system and its bond graph model (a) The primary system
under perturbation of excitation force F(t); (b)The bond graph model of the embryo system.

280 GENETIC PROGRAMMING THEORY AND PRACTICE III

J

r(x) i^._i l H - _ _ i _ iH-

SE \

C
4

l - ^ R

7777777777777.

Figure 18-4. Schematic of the first patented vibration absorber and its bond graph model.

;-300

§350

-300

-400

(a)
500 1000 1500

frequency (Hz)

-450

(b)
500 1000 1500

frequency (Hz)

Figure 18-5. Frequency responses of the primary system under perturbation of excitation force
F(t): (a) without vibration absorber; (b) with a vibration absorber.

Bond Graphs
The bond graph is a multi-domain modeling tool for analysis and design of

dynamic systems, especially hybrid multi-domain systems, including mechan­
ical, electrical, pneumatic or hydraulic components. Details of notation and
methods of system analysis related to bond graphs can be found in (Kamopp
et al., 2000). Figure 18-2 illustrates a bond graph that represents the accompa­
nying electrical system. Figure 18-6 shows the complex bond graph model of a
vibration absorber. A typical simple bond graph model is composed of (using
notation from electrical systems): inductors (I), resistors (R), capacitors (C),
transformers (TF), gyrators (GY), 0-Junctions (JO), 1-junctions (JI), sources
of effort (SE), and sources of flow (SF). In this paper, we are only concemed
with linear dynamic systems represented as bond graphs, which are composed

Domain Specificity of Genetic Programming Based Automated Synthesis 281

of inductors (I), resistors (R), capacitors (C), sources of effort (SE) (as input
signals), and sources of flow (SF) as output signal access points.

Input Sgnal

Figure 18-6. The bond graph structure of a vibration absorber with 7 components exclusive of
the embryo components. (Component sizing values are omitted in the figure for simplicity.)

Evolving Dynamic Systems Using Bond Graphs and Genetic
Programming: the GPBG framework

The problem of automated synthesis of bond graphs involves two basic
searches: the search for a good topology and the search for good parameters for
each topology, in order to be able to evaluate its performance. We developed
a developmental GP system for synthesizing mechatronic systems represented
as bond graphs (Seo et al, 2003). It includes the following major components:
1) an embryo bond graph with modifiable sites at which further topological
operations can be applied to grow the embryo into a functional system, 2) a GP
function set, composed of a set of topology manipulation and other primitive
instructions which will be assembled into a GP tree by the evolutionary process
(execution of this GP program leads to topological and parametric manipulation
of the developing embryo bond graph), and 3) a fitness function to evaluate the
performance of candidate solutions.

Choosing a good function set for bond graph synthesis is not easy. In our
earliest work (Fan et al., 2001), a basic GP function set was used for evo­
lutionary synthesis of analog filters. In that approach, the GP functions for
topological operation included {InsertJO/Jl, Add_C/I/R, and Replace_C/I/R},
which allowed evolution of a large variety of bond graph topologies. The short­
coming of this approach is that it tended to evolve redundant and sometimes
causally ill-posed bond graphs. Later, we used a causally well-posed modular
GP function set to evolve more concise bond graphs with much less redundancy
(Hu et al., 2004). However, that encoding had a strong bias toward a chain-type
topology and thus may have limited the scope of topology search. In this paper,
we have improved the basic function set in (Fan et al., 2001) and developed the

282 GENETIC PROGRAMMING THEORY AND PRACTICE III

following hybrid function set approach to reduce redundancy while enjoying
the flexibility of topological exploration:

F={ Insert_JOE, I n s e r t _ J l E , Add_C/I/R, EndNode, EndBond,
ERC}

where the InsertJOE, InsertJlE functions insert a new 0/1-junction into a
bond while attaching at least one and at most three elements (from among
C/I/R). EndNode and EndBond terminate the development (further topology
manipulation) at junction modifiable sites and bond modifiable sites, respec­
tively; ERC represents a real number (Ephemeral Random Constant) that can
be changed by Gaussian mutation. In addition, the number and type of ele­
ments attached to the inserted junctions are controlled by three "flag" bits. A
flag mutation operator is used to evolve these flag bits, each representing the
presence or absence of the corresponding C/I/R component. Compared with
the basic set approach, this hybrid approach can effectively avoid adding many
bare (and redundant) junctions. At the same time, Add_C/I/R still provides
the flexibility needed for broad topology search. For any of the three C/I/R
components attached to each junction, there is a corresponding parameter to
represent the component's value, which is evolved by a Gaussian mutation op­
erator in the modified genetic programming system used here. This is different
from our previous work in which the "classical" numeric subtree approach was
used to evolve parameters of components. Our comparison experiments (to be
published elsewhere) showed that this function set was more effective on both
an eigenvalue and an analog filter test problem, so this new function set was
used in this paper.

VI V2 V3 OB

OB: Old bond modifiable site
NB:New bond modifiable site
NJ: New Junction modifiable site
Vi: ERC values for 1/R/C

OBNJl NB
01 0

I R C
V1V2V3

OJ NB

S o C/I/R
OJ: old junction modifiable site (12.0)
NB: new bond modifiable site

ERC: numeric value for C/I/R

Figure 18-7. Left: the InsertJOE GP function inserts a new junction into a bond along with
a certain number of attached components. InsertJlE works in a similar way. Right: The
Add_C/I/R GP function adds a C/I/R component to a junction.

Domain Specificity of Genetic Programming Based Automated Synthesis 283

Evolving Vibration Absorbers
In this work, we are interested in evolving three types of vibration absorbers.

The vibration absorbers of each type are evolved with several different config­
urations, such as different maximum numbers of masses to be used, the starting
embryo and its modifiable site(s), and the maximum number of components.
The synthesis problems include the following.

Single frequency vibration absorber In this problem, we want to see first
whether the GPBG system can reinvent the first patented vibration absorber,
shown in Figure 18-4. The design problem is extracted from (Jalili, 2002). The
parameters of the primary system are as follows:

rrip = 5.77 kg; Ä;p=251.132 *le6 N/m; Cp= 192.92 kg/s
The parameters of the standard passive absorber solution are the following:

rua = 0.227 kg; A:a=9.81e6 N/m; Ca= 355.6 kg/s
We used the bond graph embryos in Figure 18-3 for this problem. The modifiable
site is the 1-junction. We could also have different function sets for this GP-
based synthesis. Since it is not physically realistic to have many masses attached
to the primary structures, we limit the maximum number of masses to 2 in all
the experiments.

In this problem, the synthesis objective is to synthesize a vibration absorber
such that the frequency response

of the primary system mass (displacement) at the frequency u) of excitation
force / = /o * sinujt is minimized. The normalized fitness is defined as:

/ „ = ^ ^ ^ ^ (18.2)

where NORM is a normalization term aimed at adjusting the fnorm iî to the
range of [0,1]. This process transforms the minimization of deviation from
target frequency response into a maximization of fitness process as used in our
GP system. Since tournament selection is used as the selection operator, the
normalization term can be an arbitrary positive number. Here, NORM is set to
10, which gives a fitness range within [0, 1].

According to Equ.18.1, we need to calculate the frequency response as the

ratio j^/V where Xi is the displacement of the primary mass. However, we

can only extract from a bond graph the source effort signal X (s). We use the
following procedure to get the fraw'-

• calculate A, B, C, D matrices from a given bond graph;

• convert A, B, C, D into transfer function TFraw\

284 GENETIC PROGRAMMING THEORY AND PRACTICE III

• TF^orm-TF^au;* 1/5 is equal to ^ ;

• convert TFnorm back to A', B', C', D' matrices and simulate its frequency
response with Matlab.

Dual frequency vibration absorber This problem is borrowed from Olgac
et al, (Olgac et al , 1996)'s patented vibration absorber. In this problem,
the primary system parameters and corresponding standard passive absorber
parameters used in (Olgac et al., 1996) are as follows:

rup = 7.756 kg; A:p=62,000 N/m; Cp= 2,500 kg/s.
ma = 4 kg; fca=722,470 N/m; Ca= 1513.2 kg/s

The excitation force is

/ == / i * sinoüit + f2sinuj2t

where ui = 25Hz and ÜÜ2 = 70Hz.
The raw fitness in this case is defined as:

and the normalized fitness is defined in Equation 18.2. Since, in this paper, only
passive vibration absorbers are evolved, we are not aiming at outperforming the
dual frequency absorber invented by Olgac et al (Olgac et al., 1996), but at
determining how well a passive absorber can approximate the performance of
the active absorbers for this problem.

Bandpass frequency vibration absorber This problem is taken from the
vibration absorber invented by Filipovic and Schroder, reported as patent pend­
ing (Filipovic and Schroder, 1998). Their active absorber with a local feedback
force has the capability to absorb all disturbance in a given frequency band,
rather than only at discrete frequencies as do most other vibration absorbers.
In this problem, we are interested in testing how closely the evolved passive
absorbers can approximate the performance of the invention.

The parameters of the primary system are the following:

rrip = 20,000 kg; A:p=25,300,000 N/m; Cp= 39,700 kg/s

The natural frequency is thus Un — 35.7 rad/s. Filipovic and Schroder (Fil­
ipovic and Schroder, 1998)'s absorber sets the following parameters for the
corresponding passive absorber:

ma = 5,00 kg; A:a=632,500 N/m; Ca-=^ 4,900 kg/s

with the natural frequency ijJa —^n- The excitation force frequency bandwidth
is hw = Wrad/s and the center frequency is wo = 35rad/s.

To evolve a bandpass vibration absorber, we sum the frequency responses at
12 logarithmically distributed sampling frequencies in the frequency band.

Domain Specificity of Genetic Programming Based Automated Synthesis 285

Modified Developmental Genetic Programming
Compared to the GP systems used in (Koza et al., 1999) for analog circuit

synthesis, our GP system made the following modifications. First, a flag bit
mutation operator is introduced to evolve the configuration of C/I/R elements
attached to a junction. Second, a subtree-swapping operator is used to exchange
non-overlapping subtrees of the same individual (GP tree). In such operations,
two type-compatible nodes are randomly selected such that the two subtrees do
not overlap, and then a normal crossover operation is applied. This operator
does not add or remove components, but reconfiguring the connections among
existing components or subcomponents was found to enable better topology
search in our experiments. Next, an ERG mutation operator is developed to
evolve the parameter values for all C/I/R components. We found that our pa­
rameter search method had the benefit of reducing the sizes of high-performance
GP trees as one single parameter node replaces a numeric subtree of standard
GP. Finally, single individual elitism is used throughout the evolution process.
The running parameters are specified in Section 4.

4. Experiments and Results

Experimental Settings
Compared to the evolutionary synthesis of electrical circuits, a mechanical

vibration absorber usually has a much smaller number of components. So the
topological and parameter search space is thus greatly decreased. Most of the
experiments are finished in less than an hour. Some of them require only a
few minutes. Here we set the maximum number of components to be 7. Other
standard GP parameters are summarized in Table 18-1.

Table 18-1. Experimental parameters for vibration absorber synthesis
Parameter
No. of subpopulations
Sub population size
Maximum evaluation
Migration Interval
Migration Size
Init.MaxDepth
Init.MinDepth
StronglyTyped

Value
5
400
100000
5 gen
40
3
2
True

Parameter
Tournament Selection Size
pCrossover
pMutationStandard
MutateMaxDepth
pMutationParameter
pSwitchBit
pSwapSubtree
TreeMaxDepth

Value
7
0.4
0.05
3
0.3
0.2
0.05
7

286 GENETIC PROGRAMMING THEORY AND PRACTICE III

Results
Single-frequency vibration absorber. Figure 18-8 shows an evolved sin­
gle frequency vibration absorber and its frequency response compared to the
responses of the primary structure without any absorber and with the standard
passive absorber invented in 1912. It is very interesting that the frequency
response of the evolved vibration absorber has a very deep spike at the excita­
tion frequency to minimize the frequency response at that single frequency. If
the excitation frequency is relatively constant with little shifting, our evolved
absorber will achieve better performance at that specific frequency. Another
observation of the evolved design is that it does not contain any damper but
a single mass and four springs which can be reduced to 3 springs (C in the
figure). In practice, it is possible to implement such mechanical vibration ab­
sorbers. However, implementing an all-spring suspension of the absorber mass
has serious consequences outside the notch frequency as there is no dampers to
consume the energy.

hpUSignal R Q, _ , Q

I C C I ^

\ ^^^^^'\^^

; ;j

— GP-VA 1
Primary system

- - 1911 VA invention |

Figure 18-8. The evolved single-frequency vibration absorber and its performance compared
to standard vibration absorber.

hpUSgial R

I C

R

—:^o—p\n
Ob-C ^ i

C I

S-300

i
^350

;\;̂ "*̂ '̂̂ =̂ *̂ — i - r r r t r t—

- GP-VA
— Primary system

1911 VA invention

r-_-^

Figure 18-9. The evolved dual-frequency vibration absorber and its performance compared to
standard vibration absorber.

Dual-frequency vibration absorber. In this problem, the two excitation
frequencies are 25Hz and 75Hz, respectively. Very interestingly, the GP sys-

Domain Specificity of Genetic Programming Based Automated Synthesis 287

tern again evolved an absorber at 25Hz with greatly reduced response while
the frequency response at 75Hz is worse than the standard passive absorber
(Figure 18-9). In contrast to the solution in the previous problem, GPBG se­
lected a damper for inclusion in this dual-frequency vibration absorber. We
also checked the parameter values of the evolved solution. The mass value is
3.93 kg, the damper ratio is 1499.58, and both are in a very reasonable range.
The sizing values of the other three springs are also easy to realize. However,
the shortcoming of our evolved VA is that the frequency response at 75Hz is
not damped well, probably because of our (in hindsight, inadequate) defini­
tion of the fitness function, which simply minimizes the average the frequency
responses at these two frequencies. In this respect, our vibration absorber is
worse than the standard one.

Bandpass vibration absorber. Figures 18-6 and 18-10 show the evolved
bandpass vibration absorber. It consists of one damper, one mass and five
springs. The parameters of this VA are relatively easy to realize, although we
did not impose restrictive parameter constraints during the evolution. The mass
of the PVA is 10 kg, the damper ratio is 5994.39 kg/s. The spring parameters
are all within realizable range. In this problem, the target frequency band is
from 4.77Hz to 6.37Hz. As we can see from the figure, the evolved VA has
much lower frequency responses across the chosen band. Compared to the
standard passive absorber, our solution is significantly better, while also using
only passive components. However, we also find that this solution is not as good
as the active bandpass absorber proposed by Filipovic and Schroder (Filipovic
and Schroder, 1998). Their active VA is able to almost completely damp any
frequency response within the target band area. This discrepancy suggests the
necessity and promise of introducing synthesis of both controllers and passive
vibration absorbers simultaneously.

V# I -250

I JL I -300

hfx̂ agial I o - H 1 l - ^ C

Oh^C ^ /
R C OH^C

:c:r::^--

'

:b^>. .<: : :—^

- GP-VA
— Primary system

"—-••

Figure 18-10. The performance of the evolved bandpass vibration absorber compared to the
standard vibration absorber.

288 GENETIC PROGRAMMING THEORY AND PRACTICE III

5. Discussion and Conclusions
In this chapter, we present a GP-based method being developed for automated

synthesis of passive mechanical vibration absorbers. With three vibration ab­
sorber problems, we showed that GP can easily find designs with competitive
performance in terms of the fitness function. However, we find that many of
these evolved solutions are not practically useful, or are extremely difficult to
implement. It is found that genetic programming is able to exploit the loopholes
in the GP function set: it evolves a solution with springs attached in parallel
to a mass, which is not realizable by mechanical means. GP can also cheat
the fitness function by evolving a high value only at the sampling frequency
(problem 1), while introducing a worse response at a nearby frequency. We
also showed that seeking to introducing a more robust type of fitness function
(problem 3) can be healthy for evolving better results, as also suggested by
McConaghy and Gielen (McConaghy and Gielen, 2005).

As shown by many researchers (Yu and Bentley, 1998), domain-specific
knowledge can be incorporated in various GP components such as the fitness
function or the genetic operators. Penalty terms can be added to fitness functions
to bias the population toward legal phenotypes. However, our lesson is that it
may be more effective to constrain search within physically legal solutions
by incorporating domain-constraints within GP operators rather than adding
penalties in fitness functions as an a posteriori approach. This suggests that
exploiting domain- or problem-specific knowledge is strongly desirable for
successful GP applications to real-world problems, through which we may
significantly reduce the search space and avoid the evolution process being
misled by individuals without reasonable ways of physical implementation.

Currently, we are working to implement a physically realizable vibration-
absorber-specific GP function set. Human competitiveness is achieved only
when the evolved solutions can be implemented to solve real problems. Another
kind of work that we plan to do is to evolve active or semi-active vibration
absorbers, in which most contemporary progress in vibration design is being
made. Since both mechatronic system synthesis (Seo et al., 2003) and controller
synthesis (Koza et al., 2000) have been shown to be very successful, we are now
trying to combine these two system capabilities to rediscover delayed response
vibration absorbers, and perhaps to advance the state of the art.

References
Bruner, A. (1992). Active vibration absorber for the csi evolutionary model: de­

sign and experimental results. Journal of Guidance, Control and Dynamics,
15:1253-1257.

Fan, Zhun, Hu, Jianjun, Seo, Kisung, Goodman, Erik D., Rosenberg, Ronald C.,
and Zhang, Baihai (2001). Bond graph representation and GP for automated

Domain Specificity of Genetic Programming Based Automated Synthesis 289

analog filter design. In Goodman, Erik D., editor, 2007 Genetic and Evolu­
tionary Computation Conference Late Breaking Papers, pages 81-86, San
Francisco, California, USA.

Fan, Zhun, Seo, Kisung, Hu, Jianjun, Goodman, Erik D., and Rosenberg, Ronald C.
(2004). A novel evolutionary engineering design approach for mixed-domain
systems. Journal of Engineering Optimization, 36(2): 127-147.

Fan, Zhun, Seo, Kisung, Hu, Jianjun, Rosenberg, Ronald C., and Goodman,
Erik D. (2003). System-level synthesis of MEMS via genetic programming
and bond graphs. In Cantu-Paz, E., editor. Genetic and Evolutionary Compu­
tation - GECCO-2003, volume 2724 of LNCS, pages 2058-2071, Chicago.
Springer-Verlag.

Filipovic, D. and Schroder, D. (1998). Bandpass vibration absorber. Journal of
Sound and Vibration, 214(3):553-566.

Frahm, H. (1911). Device for damping vibrations of bodies, us patent 989 958.
Franchek, M. A., Ryan, W., M., and Bernhard, R. J. (1995). Adaptive-passive

vibration control. /. Sound Vib.,, 189(5):565-585.
Hirata, T., Koizumi, S., and Takahashi., R. (1995). H control of railroad vehicle

active suspension. Automatica, 31:13-24.
Hu, J., Goodman, E., and Rosenberg., R. (2004). Topological search in au­

tomated mechatronic system synthesis using bond graphs and genetic pro­
gramming. In Proc, of American Control Conference ACC 2004, Boston.

Hu, Jianjun, Goodman, Erik, and Rosenberg, Ronald (2005). Topologically
open-ended synthesis of dynamic systems with high robustness using genetic
programming: a case study of analog filter synthesis. IEEE Transactions on
Evolutionary Computation (forthcoming).

Jalili, Nader (2002). A comparative study and analysis of semi-active vibration
control systems. Journal of Vibration and Acoustics, 124(4):593-605.

JR, B.F. Spencer, s.J.Dyke, and Deoskar, H.S. (1997). Benchmark problems
in structural control-part i: active mass driver. In Proceedings of the ASCE
Structures Congress, Portland, OR.

Kamopp, D (1995). Active and semi-active vibration isolation. ASMEJ, Manuf.
Sei. Eng., 117:177-185.

Kamopp, D.C., Margolis, D. L., and Rosenberg., R. C. (2000). System Dynam­
ics: Modeling and Simulation of Mechatronic Systems,Third Edition. John
Wiley & Sons, Inc., New York.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and
Dunlap, Frank (1997). Automated synthesis of analog electrical circuits by
means of genetic programming. IEEE Transactions on Evolutionary Com­
putation, 1(2): 109-128.

290 GENETIC PROGRAMMING THEORY AND PRACTICE III

Koza, John R., Jones, Lee W., Keane, Martin A., and Streeter, Matthew J.
(2004). Towards industrial strength automated design of analog electrical
circuits by means of genetic programming. In O'Reilly, Una-May, Yu, Tina,
Riolo, Rick L., and Worzel, Bill, editors. Genetic Programming Theory and
Practice II, chapter 8. Kluwer, Ann Arbor.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence, Kluwer Academic Publishers.

Koza, John R., Keane, Martin A., Yu, Jessen, Bennett III, Forrest H, and Myd­
lowec, William (2000). Automatic creation of human-competitive programs
and controllers by means of genetic programming. Genetic Programming
and Evolvable Machines, 1(1/2): 121-164.

Lipson, Hod (2004). How to draw a straight line using a GP: Benchmarking
evolutionary design against 19th century kinematic synthesis. In Keijzer,
Maarten, editor, Late Breaking Papers at the 2004 Genetic and Evolutionary
Computation Conference, Seattle, Washington, USA.

Lohn, J.D. and Colombano, S.P. (1999). A circuit representation technique for
automated circuit design. IEEE Transactions on Evolutionary Computation,
3(3):205-219.

McConaghy, Trent and Gielen, Georges (2005). Analog structural synthesis
challenges from an industrial cad perspective. In Riolo, Rick L. and Worzel,
Bill, editors. Genetic Programming Theory and Practice. Kluwer.

Nemir, D., Y, Lin, and Y, Lin (1994). Semi-active motion control using variable
stiffness. /. Struct Div, ASCE, 120(4): 1291-1306.

Olgac, N., Elmali, H., and S.Vijayan (1996). Introduction to the dual frequency
fixed delayed resonator. Journal of Sound and Vibration, 189(3):355-367.

Seo, Kisung, Fan, Zhun, Hu, Jianjun, Goodman, Erik D., and Rosenberg, Ronald C.
(2003). Toward an automated design method for multi-domain dynamic
systems using bond graphs and genetic programming. Mechatronics, 13(8-
9):851-885.

Seo, Kisung, Hu, Jianjun, Fan, Zhun, Goodman, Erik D., and Rosenberg, Ronald C.
(2002). Automated design approaches for multi-domain dynamic systems
using bond graphs and genetic programming. The International Journal of
Computers, Systems and Signals, 3(l):55-70.

Soong, TT. (1990). Active Structural Control Theory and Practice, John Wiley,
New York.

Yu, Tina and Bentley, Peter (1998). Methods to evolve legal phenotypes. In
Eiben, Agoston E., Back, Thomas, Schoenauer, Marc, and Schwefel, Hans-
Paul, editors, Fifih International Conference on Parallel Problem Solving
from Nature, volume 1498 of LNCS, pages 280-291, Amsterdam. Springer-
Verlag.

Chapter 19

GENETIC PROGRAMMING IN INDUSTRIAL
ANALOG CAD: APPLICATIONS
AND CHALLENGES

Trent McConaghy^ and Georges Gielen^
Katholieke Universiteit Leuven, Leuven, Belgium

Abstract This paper investigates the application of genetic programming to problems in
industrial analog computer-aided design (CAD). One CAD subdomain, analog
structural synthesis, is an often-cited success within the genetic programming
(GP) literature, yet industrial use remains elusive. We examine why this is, by
drawing upon our own experiences in bringing analog CAD tools into industrial
use. In sum, GP-synthesized designs need to be more robust in very specific
ways. When robustness is considered, a GP methodology of today on a reasonable
circuit problem would take 150 years on a 1,000-node 1-GHz cluster. Moore's
Law cannot help either, because the problem itself is 'Anti-Mooreware' - it
becomes more difficult as Moore's Law progresses. However, we believe the
problem is still approachable with GP; it will just take a significant amount of
' algorithm engineering.' We go on to describe the recent application of GP to two
other analog CAD subdomains: symbolic modeling and behavioral modeling. In
contrast to structural synthesis, they are easier from a GP perspective, but are
already at a level such that they can be exploited in industry. Not only is GP the
only approach that gives interpretable SPICE-accurate nonlinear models, it turns
out to outperform nine other popular blackbox approaches in a set of six circuit
modeling problems.

Keywords: analog, CAD, synthesis, industrial, genetic programming, robust, yield

1. Introduction
One of the flagship problems in Genetic Programming is that of analog

structural synthesis, where the aim is to automatically determine the circuit

292 GENETIC PROGRAMMING THEORY AND PRACTICE III

components, interconnections, and suggested component dimensions to meet
a set of circuit design goals. This is an industrially relevant problem and a
challenge to automated design techniques.

In this domain, GP has evolved several patent-quality circuits (Koza et al.,
2003), which is a remarkable success by almost any measure. It is an espe­
cially notable accomplishment from an artificial intelligence perspective be­
cause "patent-worthiness" is a good measure of success for testing techniques
in automated "creative" design.

Given such impressive results, a GP researcher might have expected GP to
be barnstorming the field of analog design. However, this is not the case; GP
is actually not in use at all for topology design in industry. In fact, industrial
analog engineers and CAD developers would be very surprised to hear that
analog synthesis is considered a success within the field of GP. In effect, the
bar of "GP success," even success on industrially relevant problems, is different
than the bar of "usefulness to industry." How can GP make the transition? In
this paper, we draw upon our experiences in industrial analog CAD, with the
aim to identify what would make GP useful to that field.

This chapter is organized as follows. We first describe analog CAD's context,
then how GP-based synthesis would fit in. We highhght industrial robustness
issues and tactics, which we use to reframe the problem of GP-based synthesis.
Then, we show two other analog CAD applications where GP is making inroads:
symbolic modeling and behavioral modeling.

2. The Problem Domain: Analog CAD
Context. Electronic Design Automation (EDA) is the field devoted to
building computer-aided design (CAD) tools for electrical engineers. Because
of the massive size of the semiconductor industry and the constant changes in
design constraints due to Moore's Law, EDA is an active industry, with billions
in revenue every year. Analog CAD (Gielen and Rutenbar, 2002) is a subfield
devoted to tools for analog circuit designers.

Design "Implementation". When researchers in GP read about GP for
analog synthesis, they're used to reading about "front-end design," in which the
problem input is circuit specifications {e.g. get power consumption < lOmW),
and the target output is a "nedist," which describes the synthesized circuit in
terms of components, interconnections, and component dimensions.

That's actually just one step in a much broader flow. Somehow, that netlist
has to get into the real world, /, e, as part of a discrete circuit, or as a "chip" (VLSI
circuit). The industrial value is in chips. The back-end flow is as follows: Once
the netlist is determined, it is converted into a "layout," which is essentially a
set of overlapping polygons, where specific shapes represent specific types of
components and interconnects. The layout is integrated into an overall system

GP and Industrial Analog CAD 293

layout, which is sent to a billion-dollar fabrication facility. The system layout
is used for creation of process masks, which are a sort of physical filter on
whether to dope / etch / etc, different parts of a silicon wafer. Process mask
generation can cost hundreds of thousands of dollars or more. Using the masks,
many chips at once are fabricated on a wafer. The chips are sliced apart from
each other, then packaged, and finally tested.

If a problem is detected after a step, then the process backtracks to the
previous step. The most expensive step is creation of the process masks, so
this is where it is most important to avoid backtracking. In a worst case, which
still often happens in practice, a fabricated chip does not work at all, and to
make it work one needs to go back to front-end design. This is known as a
"respin." Obviously, respins are to be avoided because of mask costs, but even
more importantly, loss of profitability in time-to-market.

A new analog topology significandy raises the chance of a respin due to lack
of experience with that topology; this makes adoption of an analog structural
synthesis tool a risky proposition (and costly to try). But, ultimately, GP would
need to demonstrate working chips.

3. GP Application: Analog Structural Synthesis, Part I

Designer Perspective
Since the late 1980's, analog designers have been presented with impressive-

sounding claims about "analog synthesis." Researchers have labeled "analog
synthesis" to mean many things, including global parameter optimization, au­
tomated conversion from netlist to layout, and automated topology design (the
version that GP targets). For a survey, see (Gielen and Rutenbar, 2002).

Our focus here is automated topology design. Most analog designers would
acknowledge that if such a technology actually worked, it would drastically
change the field. Their counterparts in digital design have already experienced
such a revolution: the mid 1980's introduction of digital circuit logic synthesis.

Unlike digital synthesis, few claims of analog synthesis have held true. The
analog synthesis techniques were typically too unscalable or brittle to be useful
in industry. Of the dozens of various types of analog synthesis technologies
reported over the last twenty years, just a few have found their way into industrial
use, and that was only recendy (Synopsys, 2005; Cadence, 2005b; Cadence,
2005a). None of these do automated topology design. Thus, when designers
hear about a new structural synthesis technology, from GP or elsewhere, they
immediately question them, and to a much stronger degree than automation-
friendly digital designers.

How do the claims of GP look, from a designer's perspective?
For starters, they're not shocked, even when they see the patent results.

With every other structural synthesis technology reported until now, something

294 GENETIC PROGRAMMING THEORY AND PRACTICE III

was missing, something that Hmited its widespread industrial use. Despite their
hmited understanding of GP, designers have no real reason to treat GP specially.
They simply believe that something's missing for GP too.

They're right. When an analog designer digs more deeply into the GP
methodology for automated topology design, he/she finds problems. Some
are obvious (to an electrical engineer), and some are subtle. But, whereas prior
analog structural synthesis approaches had showstopping problems of brittle-
ness and scalability, we believe that GP has no such problems. Instead, GP faces
''engineering-style'' challenges in problem setup, and especially in improving
GP's speed.

Current Industrial Practice
It is fruitful to look at what flow and automation tools that industry uses

which are closest to the analog structural synthesis problem.
Figure 19-1 illustrates the overall flow of front-end design for cell-level

circuits.

Setup

problem

description,

testbenches

Choose

topology

Setup

design space,

optimization

goals,

initial sizing

Auto-size

circuit with

performance

optimization

Choose

circuit from

tradeoff of

possible

circuits

A
T

Adjust

sizings

to improve

yield

Sized,

yield-robust

circuit

Figure 19-1. State of the Art Industrial Front End Analog Design Flow

The automation happening at the front end is in local / global optimization
tools (Synopsys, 2005; Cadence, 2005b), which take in a fixed topology, and
automatically determine the component values in order to best meet the de­
sign specifications. This step is often referred to as circuit sizing or circuit
optimization, rather than synthesis. The topology has been manually designed
beforehand. Yield improvement is typically manual, though there is a shift to
automation there too.

These tools need to make chips that meet certain performance measures
once they've been manufactured. Thus, the tools need a means for estimating
performance and taking robustness into account.

Performance Estimation and Robustness
In analog synthesis, robustness is strongly related to performance estima­

tion. A performance estimator takes in a candidate design {i,e. a topology and
component values in our case), and estimates the performances of the circuit.

GP and Industrial Analog CAD 295

To achieve a robust design, one has to estimate performance as accurately as
possible.

The ideal performance estimator would predict with 100% accuracy how
a design performs after layout, manufacturing, and testing without actually
fabricating it. It would run quickly enough to be invoked thousands or millions
of times throughout optimization, to allow automated exploration of designs.
SPICE is the most accurate and general estimator, but there are also faster, less
general, less accurate ones.

Layout issues. "Layout parasitics" are effects that were not accounted for
prior to layout. An example layout parasitic is when the material between two
wires acts like a circuit component {e,g, a capacitor) which is supposed to be
an open circuit.

Environmental conditions. The manufactured chip will need to work at the
desired performance level, even as temperatures change, power supply changes,
and load changes. These are conditions of the circuit's operating environment.

Manufacturing variations. When manufacturing a VLSI circuit, random
variations get introduced into the implementation of the designs as an inherent
effect of the fabrication process. The automated tool must model this and handle
it.

The simplest model is so-called "Fast/Slow comers," which in effect try to
capture the 3-sigma extremes in each type of transistor's operating speed due
to manufacturing variations. This approach is popular for its simplicity and
availability. However, comers do not model the problem well because they do
not bracket the variations in analog design goals (they are really only suitable
for digital design).

Some approaches build empirically-based statistical models to estimate a
probability density function, such as (Power et al., 1994). These models almost
always make assumptions that render them inaccurate, for example, assuming
that certain random variables are independent when they are not, or ignoring
local statistical variations as in (Alpaydin et al, 2003).

One approach (Drennan and McAndrew, 2003) uses a more physical basis
for randomness modeling and is quite accurate, though an implication is that
for every transistor, 8 random variables are introduced; thus, a medium sized
circuit could have hundreds of random variables.

Analog Structural Synthesis Problem
The problem of analog structural synthesis is the same as the sizing prob­

lem, except the design space is broadened drastically, to include choice of the
topology (devices and connections among devices, in addition to device sizes).

296 GENETIC PROGRAMMING THEORY AND PRACTICE III

Synthesis cannot make assumptions about the topology; this has big implica­
tions, which we will discuss later.

Current Industrial Practice: Details
We are now ready to ask how the industrial tools account for robustness.
For environmental variations, they use a set of user-defined "comers," with

each comer specifying a temperature, power supply, etc. SPICE is used to
estimate performance for each comer, and the worst-case value is taken.

For layout, they can ignore it for a first-pass design. Then, after layout has
been done, if layout parasitics degrade the performance too much, the most
important parasitics can be inserted into the design and a local optimization
performed.

For manufacturing variations, they (Synopsys, 2005; Cadence, 2005b) use
model comers, which as mentioned, is less accurate. There are many other
approaches in the literature (Phelps et al., 2000; Schenkel et al., 2001; Smedt
and Gielen, 2003), but each is forced to trade oif accuracy for feasible mntime,
or pessimistic design. GP tactics such as (Teller and Andre, 1997; Hu and
Goodman, 2004b) are too expensive for refining designs.

4. Analog Design for Robustness (on a Fixed Topology)
This section highlights how a fixed topology implicitly brings robustness, or

conversely, what other robustness issues must be considered when evolving a
topology.

Robustness in Manual Topology Design
By definition, optimization approaches operate on manually designed topolo­

gies. For VLSI circuits, and perhaps as a surprise to GPers, manually-designed
topologies are almost always designed with robustness in mind.

We now examine what analog designers do to make topologies more robust.
We will refer to a well-known circuit shown in Figure 19-2.

Topologies Are Designed For Process Variations. The effect of "local"
or "mismatch" variations within a chip ("mismatch") has always been smaller
than "global" variations which are between chips and between runs (1-2% vs.
10-20%).

The main tactic to deal with global variations is to design structures in which
performance is a function of ratios ofsizings, rather than absolute values. For
example, in common-source gain stages, a load resistor would have variation
of 10-20%. So, designers use a PMOS load instead, matched up to an NMOS
gain transistor, and gain is dependent on the ratios (e,g. in Figure 19-2, M5a is
a resistive load for M3a).

GP and Industrial Analog CAD 297

nvb3Q

nvb20-

%w]
O-ip M1a M1b UUo

I
^

M2b

n
vss
n2b

Figure 19-2. "High-speed operational transconductance amplifier (OTA)" analog circuit

Differential design is another tactic to move away from "absolute" values.
Here, "mirrors of structures" are created, and the circuit operates on a difference
between two voltages, rather than one voltage and ground. The Figure 19-2
OTA is symmetrical about a vertical axis centered on M5 and M7; the output is
a function of the difference between the positive and negative inputs, nin_p and
nin_n.

A precise current is expensive to generate; it's a much better idea to generate
one or a few reference currents and copy them throughout the circuit with
"current mirrors." The OTA does this: the three transistors on the left are the
"biasing" circuitry to generate currents, which are then copied throughout the
circuit. Sometimes a single current can be shared, rather than trying to match
two separate currents. The OTA's differential pair (Mia and Mlb) does this:
instead of having different "tail" currents, they share the same current which
goes through M6 and M7.

Negative feedback is a well-known general engineering technique for com­
promising some performance in the interest of precision. Analog circuits often
do this too, such as for improving common-mode rejection ratio of a differential
amplifier or for reducing variation of an amplifier's gain (Razavi, 2000).

Trust and Re-Use. The topology is trusted because it has been created and
characterized by expert analog designer(s), and has been fabricated and tested in
many process generations. Topology re-use is widespread because past success
means more confidence that the topology will work. A new topology is typically
a derivative of an existing topology, because similarity maintains trust.

298 GENETIC PROGRAMMING THEORY AND PRACTICE III

SPICE can lie. SPICE can lie due to problems in its device models, conver­
gence, and perhaps inadequate models of parasitics. SPICE transistor models
seem to be in a continually inadequate state, with known deficiencies {e.g. non-
smooth transitions from one operating region to another). Part of the difficulty
is that the models have to work for several processes, typically require hundreds
of parameters that should be easy to extract, and strive to have as good a phys­
ical basis as possible. Because of this, designers consciously avoid transistor
operating regions where the models are known to be inadequate.

Whitebox Constraints. Topologies have whitebox constraints based on the
strategy underlying the topology's design. Every transistor in a circuit has been
designed with the assumption that it will be operating in a specific operating
region; there is a good chance that the assumptions break down outside those
constraints.

Clear Path To Layout. The designer knows that, for manually-designed
topologies, there is a clear path to layout; to a large extent, the designer has
already anticipated the parasitics. Layout designers also have tactics to improve
robustness, such as: folding transistors, guard rings, and careful routing to avoid
cross-coupling between sensitive wires (Hastings, 2000; Lampaert et al., 1999).
Analog layout synthesis is another analog CAD subproblem (Rutenbar and
Cohn, 2000); it is difficult to model and solve well, as illustrated by continued
research activity. When layout parasitics are more pronounced, such as in RF
design, there are ways to tighten the coupling between sizing and layout design
(DeSmedt and Gielen, 2003; Zhang et al., 2004; Bhattacharya et al., 2004).

To properly account for layout effects in synthesis, one possibility is to unite
the front-end design space (topology and circuit sizes) with the back- end space
(layout), and approach the whole problem at once, as in Section 5.2 of (Koza
et al., 2003). Unfortunately, runtime was 1.5 orders of magnitude slower, and
that work drastically simplified the layout synthesis problem - it didn't even
extract the parasitics from the layout before simulating the netlist.

Synthesis Exaggerates "Cheating" of Search Algorithms. We say a
"cheat" occurs when design has good measured performances, but which upon
inspection is useless {e.g. not physically realizable). An example is too many
long, narrow transistors; the solution is to add more constraints on width/length
ratios. Each added constraint takes time to detect, correct, and re-run. There
is more opportunity for structural synthesis to cheat compared to optimization,
because synthesis design space is drastically larger, and SPICE can cheat more
readily. Evolvable hardware research is filled with examples of odd designs;
however, in non-reprogrammable analog VLSI, one cannot embrace odd designs
because of the high cost of fabrication.

GP and Industrial Analog CAD 299

5. GP Application: Analog Structural Synthesis, Part II

An Updated Model of the Analog Synthesis Problem
Most earlier GP structural synthesis work such as (Koza et al, 1999; Lohn

and Colombano, 1998; Zebulum et al., 2002; Sripramong and C.Toumazou,
2002; Koza et al., 2003) did not have a very thorough model of the problem
compared to analog CAD optimization, but is has been getting better recently.
In (Koza et al., 2004a), comers have been added to account for environmental
and (very roughly) manufacturing variations. And, they employ testbenches
directly from an industrial CAD vendor (Synopsys, 2005). Though some recent
research has not yet acknowledged the need for more robustness (Dastidar et al.,
2005).

GP does not have whitebox constraints, because it does not make assump­
tions about what region each transistor will operate in. GP actually has stronger
performance measures in one regard: it also tries to match waveforms of be­
havior.

Compared to analog CAD optimization work, GP's biggest deficiency in
problem modeling is its lack of a good model of manufacturing variations. The
closest, robust HFC (Hu and Goodman, 2004a), did have Monte Carlo sampling,
but the randomness model is not suitable for VLSI circuits.

Beyond analog CAD optimization, GP-evolved circuits must somehow get
the same advantages as a manually-designed topology. Such circuits must get
designer trust, including an explanation and formulae for behavior; ultimately,
successful fabrication and testing. On the way, there are the hurdles of SPICE
(mis)behavior, layout parasitics, search space cheats, and extra challenges from
first-order process variations.

New Computational Challenges
Ultimately, the only way to accurately model manufacturing variations is via

simulation on good statistical models. Let us examine the runtime of a typical
structural synthesis run that uses brute force Monte Carlo sampling. Except
for layout, we will temporarily ignore all the extra challenges wrought by a
non-fixed topology.

Let us say: 8 comers (for environmental variations), 10 Monte Carlo sam­
ples (for manufacturing variations, 10 is optimistic), and simulation time of 1
minute for a circuit at one comer and one sample on all testbenches on a 1 GHz
machine. Parasitic-extracted layouts might mean lOx longer. Larger designs
and/or longer-than-transient analyses could easily take 6x, 60x, or even 600x
longer to simulate.

300 GENETIC PROGRAMMING THEORY AND PRACTICE III

It is typical for a GP run to explore 100 million designs for more challenging
problems. 1 billion or even 10 billion would not be unreasonable (Koza et al ,
2003). But let us have 1,000 1-Ghz machines in parallel.

Then, total run time = 152 years! And it's even longer for tougher problems,
where simulation time is 6x-600x longer and number of individuals is lOx-lOOx
more. One might ask if Moore's Law can ease this challenge.

The Impact of Moore's Law
Mooreware vs. Anti-Mooreware. GP is considered an example of "Moore-
ware" (Koza et al., 1999), where an algorithm becomes more effective with more
computational power, and therefore with the march of Moore's Law over time.

However, Moore's Law, when attacking VLSI design problems, is a double-
edged sword. Each new technology generation also requires more modeling
effort, and therefore more compute time! For example, the need for substrate
noise modeling is growing; to model this takes 30 minutes on four modem
processors (Soens et al., 2005), i.e, 120x more computational effort.

Thus, analog synthesis is an "Anti-Mooreware" problem: it gets more diffi­
cult as Moore's Law progresses. So, we cannot rely on the "Mooreware" aspect
of GP to eventually be fast enough.

Design
/

Topologies
breaking

Faster
CPUs

Cancel each
other out?

Challenge

\f

^ ^ ^ ^ ^ ^ ^ ^ ^ Synthesis

More Complex Runtime

Modeling

Figure 19-3. Effects of Moore's Law on Analog Structural Synthesis

Moore's Law Breaks Topologies. Topologies are getting constrained in
new ways due to Moore' Law. Here is an example. Supply voltages and
threshold voltages are steadily decreasing, but threshold voltages cannot scale
as quickly because of fundamental physical constants. At some point, "cascode"
configurations, which stack two transistors on top of each other, are unusable

GP and Industrial Analog CAD 301

Table 19-1. GP-generated symbolic circuit models with < 10% train and test error.

Perf. Char.

ALF

fu

PM

voffset

SRp

SRn

Expression

-10.3 + 7.08e-5 / idl + 1.87 * ln(-1.95e-f9 + l.OOe+10 / (vsgl*vsg3)
+ 1.42e+9 *(vds2*vsd5) / (vsgl*vgs2*vsg5*id2))

10(5.68 - 0.03 * vsgl / vds2 - 55.43 * idl+ 5.63e-6 / idl)

90.5 + 190.6 * idl / vsgl + 22.2 * id2 / vds2

- 2.00e-3

2.36e+7 + 1.95e+4 * id2 / idl - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * idl

- 5.72e+7 - 2.50e+l 1 * (idl*id2) / vgs2 + 5.53e4-6 * vds2 / vgs2 + 109.72 / idl

{e.g, M4b and M5b in figure 19-2 are in cascode). The alternatives are less
ideal: folded cascodes mean larger power consumption, and extra stages mean
slower speed and instability risk. Figure 19-3 summarizes.

The Road Ahead for GP and Structural Synthesis
GP has come a long way along the road of analog structural synthesis and

the milestones have been remarkable, but a full industrial-strength version is
orders of magnitude away.

Speeding up GP sufficiently may actually be possible because there are so
many facets to the problem and the algorithms. It comes down to an "algo­
rithm engineering" problem. There are possible speedups at (1) the general EA
level, for example in population management, handling modularity / hierarchy,
exploiting advances in theory, reuse of run information, in representation and
operators, parallelism; (2) at the robustness level, for example exploiting the
transparency in manufacturing variations, environmental variations, and simu­
lation analyses; and (3) at the domain-specific level of cell-level analog circuits,
for example to guide design of representation, operators and building blocks,
special constraints, faster performance estimators. Koza has elaborated on some
possibilities (Koza et al., 2004b).

6. GP Application: Symbolic Modeling
Given the overall goal of finding ways to aid analog engineers in the design

process, we can ask ourselves what other problems GP might help in. That's a
question that we asked in the last year, and so far we've demonstrated two other
industrially-relevant applications. Let's examine each, starting with symbolic
modeling.

302 GENETIC PROGRAMMING THEORY AND PRACTICE III

In all designs that an engineer does, the more he or she understands a circuit,
the more he will be able to improve it (in terms of performance and yield),
and the more productive he or she will be. This is independent of whether the
tools are automated or manual. Equations are a very useful tool for helping
designers improve understanding, e.g. equations that map design variables
{e.g. component values) to circuit performances {e.g. power consumption).
Such equations have traditionally been created by hand, but they are so useful
that since the early 90s, there has been considerable research effort to devise
algorithms to automate this (Gielen, 2002). This subfield of of analog CAD
is called "symbolic analysis" when the equations are directly extracted from
the topology, or "symbolic modeling" when the equations come from SPICE
simulations. The ideal approach would produce SPICE-accurate, interpretable
equations of arbitrary nonlinear circuits. So far, no approach could do all those
things at once.

Interestingly (and almost surprisingly), no one had yet used OF in symbolic
regression mode on SPICE-generated training data. So, we applied it, with a few
modifications to GP to keep the expressions readily interpetable (McConaghy
et al., 2005). Table 19-1 gives models for each of six different performance
expressions, for the circuit previously examined (Figure 19-2).

18% -1

16% \

14%

12%

10% -I

8% -I
6%

4% -I

2%

0%

•fu
• ofTsetn
Dsrp
Dsrn
• Ifgain
Dpm

.<^ ' . ^ <^ ^^
.^

J^

Figure 19-4. Comparison of prediction error for several state-of-the-art modeling approaches.

GP turned out to predict remarkably well. In a separate study on six circuit
datasets (McConaghy and Gielen, 2005a), we found that GP could generate
nonlinear expressions that outperformed several state-of-the-art approaches, as
shown in Figure 19-4.

GP and Industrial Analog CAD 303

Table 19-2. GP-generated behavioral models for a latch circuit.

Train error

15.11%

6.25%

3.32%

Expression

dxl/dt = nBit
dx2/dt = Bit*xl

dxl/dt = - 21.3 - 9.28e-03 * bufclk * xl + l.Oe+04 * nBit * bufclk

dxl/dt = 2.21e-02 - 3.72e-02 * xl - 21.8 * Bit*nBit * bufclk
dx2/dt = nBit * bufclk * xl
dx6/dt = xl

1. GP Application: Behavioral Modeling
Another challenge in circuit design is how to manage system-level design.

One of its sub-problems is how to simulate a whole system in a feasible time,
ideally fast enough to optimize with. A good approach is behavioral models,
which approximate the dynamic behavior of each of the system's sub-blocks.
Automatically devising behavioral models is very difficult: it's common for a
student to spend his whole Ph.D on (manually) designing a good behavioral
model for one building block! There's a long history of attempts to automated
approaches as well, starting from linear, progressing to weakly nonlinear, and
finally recent successes in strongly nonlinear behavioral models. But those
approaches are, once again, black box. With behavioral modeling, even more
than symbolic analysis, trustworthiness of a model is very important, and black-
box models compromise that because there is no guarantee how the model will
perform under other input stimuli.

Once again, we saw opportunity. We adapted our GP system to build dy­
namic models, and tested it on a strongly nonlinear circuit (McConaghy and
Gielen, 2005b). It successfully built interpretable behavioral models with good
prediction ability. Table 19-2 gives some of the behavioral models generated,
at different levels of complexity and accuracy.

8. Conclusions
While GPers have considered analog synthesis a success story for GP, and

with good reason from an AI perspective, it still remains for GP to be put into
industrial analog design practice.

To understand why, we examined the problem context and the details of how
a design is implemented. It comes down to achieving more robust designs, with
the main aim of reducing risk of costly manufacturing respins. Furthermore, it
needs to be trusted by the designer. To address this, the GP computational effort
goes up drastically, and Moore's Law cannot be relied upon to help because the

304 GENETIC PROGRAMMING THEORY AND PRACTICE III

problem is "Anti-Mooreware." Thus, we have a grand "algorithm engineering"
challenge for clever GP researchers.

Structural synthesis is not the only opportunity for GP in analog CAD. We
demonstrated GP as applied to two other applications, symbolic modeling and
behavioral modeling, where the barrier to entry was far lower, and the industrial
payoff much sooner.

GP is not barnstorming the field of analog design... yet. But it is slowly
gaining ground in multiple aspects of analog CAD.

9. Acknowledgements
The first author would like to thank John Koza, Matthew Streeter, Sameer

Al-Sakran, Lee Jones, and Martin Keane for the invigorating discussions which
motivated the writing of this paper.

References
Alpaydin, G., Balkir, S., and Dundar, G. (2003). An evolutionary approach to

automatic synthesis of high-performance analog integrated circuits. IEEE
Transactions on Evolutionary Computation, 7(3):240-252.

Bhattacharya, Sambuddha, Jangkrajamg, Nuttorn, Hartono, Roy, and Shi, Richard
(2004). Correct-by-construction layout-centric retargeting of large analog
designs. In Proceedings of the Design Automation Conference.

Cadence (2005a). Neocell product. Website of Cadence Design Systems Inc.
Cadence (2005b). Neocircuit product. Website of Cadence Design Systems Inc.
Dastidar, TR., Chakrabarti, P.P., and Ray, P. (2005). A synthesis system for

analog circuits based on evolutionary search and topological reuse. IEEE
Transactions on Evolutionary Computation, 9(2):211-224.

DeSmedt, B. and Gielen, Georges G.E. (2003). Watson : Design space boundary
exploration and model generation for analog and rf ic design. IEEE Trans­
actions on Computer-Aided Design, 22(2):213-223.

Drennan, PC. and McAndrew, C.C. (2003). Understanding mosfet mismatch
for analog design. IEEE Journal of Solid State Circuits, 38(3):450-456.

Gielen, G.E. (2002). Techniques and applications of symbolic analysis for ana­
log integrated circuits: A tutorial overview. In Rutenbar, R.A., Gielen, G.E.,
, and Antao, B.A., editors. Computer Aided Design of Analog Integrated
Circuits and Systems, pages 245-261. IEEE Press, Piscataway, NJ.

Gielen, G.E. and Rutenbar, R.A. (2002). Computer-aided design of analog and
mixed-signal integrated circuits. In Rutenbar, R. A., Gielen, G.E.,, and Antao,
B.A., editors. Computer Aided Design of Analog Integrated Circuits and
Systems, chapter 1, pages 3-30. IEEE Press, Piscataway, NJ.

Hastings, Alan (2000). The Art of Analog Layout. Prentice-Hall.

GP and Industrial Analog CAD 305

Hu, J. and Goodman, E. (2004a). Robust and efficient genetic algorithms with
hierarchical niching and sustainable evolutionary computation model. In Pro­
ceedings of the Genetic and Evolutionary Computing Conference.

Hu, Jianjun and Goodman, Erik (2004b). Topological synthesis of robust dy­
namic systems by sustainable genetic programming. In O'Reilly, Una-May,
Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors. Genetic Programming
Theory and Practice II, chapter 9. Kluwer, Ann Arbor.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Koza, John R., Jones, Lee W., Keane, Martin A., and Streeter, Matthew J.
(2004a). Towards industrial strength automated design of analog electrical
circuits by means of genetic programming. In O'Reilly, Una-May, Yu, Tina,
Riolo, Rick L., and Worzel, Bill, editors. Genetic Programming Theory and
Practice II, chapter 8. Kluwer, Ann Arbor.

Koza, John R., Keane, Martin A., and Streeter, Matthew J. (2004b). Routine
high-return human-competitive evolvable hardware. In Zebulum, Ricardo S.,
Gwaltney, David, Horbny, Gregory, Keymeulen, Didier, Lohn, Jason, and
Stoica, Adrian, editors. Proceedings of the 2004 NASA/DoD Conference on
Evolvable Hardware, pages 3-17, Seattle. IEEE Press.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003). Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Lampaert, Koen, Gielen, Georges G.E., and Sansen, Willy (1999). Analog Lay­
out Generation for Performance and Manufacturability. Kluwer Academic
Publishers.

Lohn, J.D. and Colombano, S.P. (1998). Automated analog circuit synthesis
using a linear representation. In Proceedings of the Second International
Conference on Evolvable Systems: From Biology To Hardware, pages 125-
133. Springer-Verlag.

McConaghy, Trent, Eeckelaert, Tom, and Gielen, Georges G. E. (2005). Caf­
feine: Template-free symbolic model generation of analog circuits via canon­
ical form functions and genetic programming. In Proceedings of the Design
Automation and Test Europe Conference.

McConaghy, Trent and Gielen, Georges G. E. (2005a). Analysis of simulation-
driven numerical performance modeling techniques for application to analog
circuit optimization. In Proceedings of the International Symposium on Cir­
cuits and Systems.

McConaghy, Trent and Gielen, Georges G. E. (2005b). Ibmg: Interpretable
behavioral model generator for nonlinear analog circuits via canonical form
functions and genetic programming. In Proceedings of the International Sym­
posium on Circuits and Systems.

306 GENETIC PROGRAMMING THEORY AND PRACTICE III

Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, R., and Heliums, J.R. (2000).
Anaconda: Simulation-based synthesis of analog circuits via stochastic pat­
tern search. IEEE Transactions on Computer Aided Design.

Power, J.A., Donellan, B., Mathewson, A., and Lane, W.A. (1994). Relating
statistical mosfet model parameters to ic manufacturing process fluctuations
enabling realistic worst-case design. IEEE Transactions on Semiconductor
Manufacturing, 7:306-318.

Razavi, Behzad (2000). Design of Analog CMOS Integrated Circuits. McGraw-
Hill.

Rutenbar, Rob A. and Cohn, John M. (2000). Layout tools for analog ics and
mixed-signal socs: A survey. In Proceedings of the ACM International Sym­
posium on Physical Design, pages 76-83.

Schenkel, F., Pronath, M., Zizala, S., Schwencker, R., Graeb, H., and Antreich,
K. (2001). Mismatch analysis and direct yield optimization by spec-wise
linearization and feasibility-guided search. In Proceedings of the Design
Automation Conference.

Smedt, B. De and Gielen, Georges G.E. (2003). Holmes: Capturing the yield-
optimized design space boundaries of analog and rf integrated circuits. In
Proceedings of the Design Automation and Test Europe Conference, page
10256.

Soens, C , Wambacq, P., Pias, G. Van Der, and Donnay, S. (2005). Simulation
methodology for analysis of substrate noise impact on analog / rf circuits
including interconnect resistance. In Proceedings of the Design Automation
and Test Europe Conference.

Sripramong, T. and C.Toumazou (2002). The invention of cmos amplifiers us­
ing genetic programming and current-flow analysis. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems.

Synopsys (2005). Circuit explorer product. Website ofSynopsys Inc.
Teller, Astro and Andre, David (1997). Automatically choosing the number

of fitness cases: The rational allocation of trials. In Koza, John R., Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi,
and Riolo, Rick L., editors. Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 321-328, Stanford University, CA, USA.
Morgan Kaufmann.

Zebulum, R., Pacheco, M., and Vellasco, M. (2002). Evolutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Genetic Algorithms.
CRC Press.

Zhang, Gang, Dengi, E. Aykut, Rohrer, Ronald A., Rutenbar, Rob A., and
Carley, L. Richard (2004). A synthesis flow toward fast parasitic closure for
radio-frequency integrated circuits. In Proceedings of the Design Automation
Conference, pages 155-158.

Index

ACO, 17
ADFs, 146
Affinity, 198
Agent, 191
Agent-based, 16

biological modelling, 191
Agent optimization, 17
Almal A., 177
Al-SakranSameerH.,33
Amino acids, 195
Anomaly identification, 57
Anomaly Rankings, 61
ANOVA, 59
Ant colony optimization, 17
Antenna, 65
Applications, 255, 259
Artificial immune system, 205
Aspherical lenses, 35
Automated design, 33
Automated synthesis, 275
Automatic Defined Recursion, 107
Azad R. Muhanmiad Atif, 141
Backus Naur Form, 142
Backward-Chaining, 125

Evolutionary Algorithms, 126, 130
Genetic Programming, 131

Bacterium, 192
Banzhaf Wolfgang, 207
Battenhouse Tom, 49
Battlefield intelligence, 21
Beer can, 262
Behavioral Emulation and Extrapolation, 25
Bioinformatics, 191
Biomolecular system, 192
Bloat, 134,223-228
Bond graphs, 275
Boolean networks, 205
Boolean search problem, 208
Burleigh Ian, 191
Castillo Flor, 241
Chaos, 178-179
Chemical GP, 145
Circle Plot, 180
Classifier tool, 55

Closed grammar, 144, 154
Codon, 195
Compeütive advantage of GP, 241
Complexity threshold, 209
Computational complexity, 134
Content, 178-180, 186, 188
Context free grammar, 141, 145
Coupon collection problem, 127
Crane Ellery Fussell, 223
Cross-correlation, 59
Cross-validation, 60
Curse of Dimensionality, 80
Daida Jason, 259
Deletion, 159-160, 165
Demes, 109
Depth limits, 223-225, 228-238
Deschaine Larry M., 49
Design by GP, 261, 263, 273
Design of Experiments, 248-251
Design process, 262
Developmental process, 36
Digital Geophysical Mapping, 51
Digital pheromones, 20
Diploid chromosomes, 145, 147
Discovery, 259-260, 264, 267-273
DNA, 192
Domain knowledge, 275, 277
Dynamic Flies, 20, 24
Dynamic Flies system, 26
Dynamics, 178, 188
E.coli, 192
Ecological modelling, 159, 166
Effective crossover, 151
Efficient algorithms, 125
Emerge, 17
Emergence, 191, 207
Emergent dynamics, 22
Emulator, 244-246
Engineering design, 65
Epigenesis, 191
Escherichia coli, 192
EssamDaryl, 159
Even-parity, 95
Evolutionary robotics, 18

308 GENETIC PROGRAMMING THEORY AND PRACTICE III

Evolution of interaction rules, 204
Evolvability, 208
Evolving grammars, 141
Explore, 265-268,272
Feature selection, 59
Fibonacci Sequence, 103
Financial technical trading rules, 95
Fitness, 178, 186
Fitness inheritance, 87
Francone Frank D., 49
Function optimization, 17
Function set, 37
Galactose, 193
Galactosidase, 193
Gamma distributions, 225, 229, 236, 238
Gene regulation, 191-192, 205
Gene regulatory system, 191
Genetic algorithms, 262
Genetic Programming, 34, 259

Applications, 49, 79, 241, 254-256
Genotype, 208
Geography, 109
Geosoft Oasis-Montaj, 57
Ghost agent, 21,27
Gielen Georges, 291
Global climate change, 259-260
Glucose, 193
Goodman Erik D., 275
GPBG approach, 278
Grammar guided, 159-160
Grammars, 142
Grammatical ADFs, 146
Grammatical evolution, 141
Grammatical Evolution, 142
Haskell programming language, 98
Higher-order function, 94, 96-97, 191

filter, 98
foldr, 95, 103, 106
isPrefixOf, 98
map, 94
scanr, 98

Hoang Tuan Hao, 159
Hornby Gregory S., 65
Hu Jianjun, 275
Human-competitive result, 45
Human genome project, 259
Inferential sensor, 244, 246
Innovation, 260, 262, 269, 272-273
Insertion, 159-160, 165
Instructions, 209
Interaction programs, 204
Interaction rules, 194
Interactive evaluator, 203
Introns, 207
Invention, 260-261
Iterated coupon collection problem, 128
Jacob Christian, 191

Jones Lee W., 33
Jordaan Elsa, 79
Klein Jon, 109
Kordon Arthur, 79, 241
Kotanchek Mark, 79, 241
Koza John R., 33
Lactose, 191, 193
Lactose operon, 191
Lactose permease, 193
A abstraction, 96-97
Lambda switch, 205
Langdon William B., 125
Leier Andre, 207
Lens slitting operation, 41
Lightweight agents, 29
Linden Derek S., 65
Lindenmayer systems, 36, 154
Linear chromosomes, 142
Linear GP, 53
Linear GP, 209
Linear regression, 83
Linear structures, 224-226, 236-239
Locality, 109
Local search, 159, 165
Lohn Jason D., 65
Machine code GP, 54
MacLean C. D., 177
McConaghy Trent, 291
McKay RI (Bob), 159
McMaster problem solving, 259-260, 263-270, 272
McPhee Nicolas Freitag, 223
Memory, 24
Meta grammar, 145
Minority game, 20
Model designer, 203
Modular GP, 95
MRNA, 195
Multi-agent modeling, 17
Multiobjective fitness measure, 43
Multiple data types, 142
Multi-Run LGP, 54
Neutrality, 207-208
Neutral mutations, 207
Neutral networks, 207
Nguyen Xuan, 159
Non-effective code, 207
Non-Technical issues, 255-256
Nucleotide bases, 195
Numerical Electromagnetics Code, 70
One-then-zeros problem, 226-227, 235, 237, 239
Open-ended representation, 67-68
Open-ended topology search, 275
Operator, 193
Operon, 191-192
Opücal lens system, 33
Orbach Raymond, 259-260, 272
Pareto front GP, 248-251

INDEX 309

Pareto front GP Design of Experiments, 248-251
Pareto Genetic Programming, 84, 86
Parunak H. Van Dyke, 15
Passive vibration absorber, 275
Phenotype, 208
Pheromone flavors, 21
Physical implementation, 276
Poll Riccardo, 125
PolyGP system, 96
Polymerase, 195
Population-based, 16
Population dynamics, 208
Problem solving, 259-260, 262-263, 265,

267-269, 272-273
Problem solving strategy, 259-260, 263, 272
Promoter, 193
Pseudo-code, 131
Quantum computing, 109
Racing, 270
Random search, 102, 105
Real-time, 16
Recursion, 94, 106

nested recursion, 102
non-termination, 106
recursion pattern, 94-95, 103

Register machine language, 209
Replication of previously patented invention, 33
Representation, 207
Repressor, 193
Reuse, 106
Reverse engineering, 203
Ribosome, 198
Riolo Rick, 1
RNA polymerase, 195
Robustness, 208
Rosenberg Ronald C, 275
Ryan Conor, 141
Scalability, 106
Schema theory, 226, 237, 239
Search landscapes, 208
Self-organization, 191
Simulatability, 42

Simulation, 191
Size limits, 223-226, 228, 230, 232-238
Smits Guido, 79, 241
Space complexity, 132
Spacecraft, 65
Space Technology 5, 65
SpectorLee, 109
ST5 mission, 66
Strstr function, 98
Structure, 178-180, 186, 188
Structure optimization, 16
Swarm intelligence, 15, 191-192
Symbolic regression, 109, 135
Technical issues, 254-255
Testing data, 55
Time Complexity, 132
Time series, 159, 166
Toroidal mutation, 40
Tournament selection, 125
Training data, 55
Transacetylase, 193
Transcription, 195
Translation, 198
Tree Adjoining Grammar, 159, 161, 164
Tree shape, 223-225, 227, 233-237
Tree visualization, 234-235,239
Trivial geography, 109
Type system, 96

structure constraint, 100, 104
Unexploded Ordinance, 49
Unified grammar, 148
Uninhabited robotic vehicles, 20
UXO discrimination, 51
Validation data, 55
Vladislavleva Katherine, 79
Voltage standing wave ratio, 66
Warren Jeffry J.,49
Watson-Crick complementarity, 195
Wollesen E. A., 177
Worzel Bill, 1
WorzelW. P, 177
X-band antenna, 65
YuTina, 1,93

