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Preface 

The work described in this book was first presented at the Third Workshop 
on Genetic Programming, Theory and Practice, organized by the Center for the 
Study of Complex Systems at the University of Michigan, Ann Arbor, 12-14 
May 2005. The goal of this workshop series is to promote the exchange of 
research results and ideas between those who focus on Genetic Programming 
(GP) theory and those who focus on the application of GP to various real-
world problems. In order to facilitate these interactions, the number of talks 
and participants was small and the time for discussion was large. Further, 
participants were asked to review each other's chapters before the workshop. 
Those reviewer comments, as well as discussion at the workshop, are reflected in 
the chapters presented in this book. Additional information about the workshop, 
addendums to chapters, and a site for continuing discussions by participants and 
by others can be found at http://cscs.umich.edu:8000/GPTP-2005/. 

We thank all the workshop participants for making the workshop an exciting 
and productive three days. In particular we thank all the authors, without whose 
hard work and creative talents, neither the workshop nor the book would be 
possible. We also thank our keynote speakers Dr. H. Van Parunak of Altarum, 
Ann Arbor, Professor Michael Yams, Biology-MCD, University of Colorado, 
and Dr. Inman Harvey, CCNR (Centre for Computational Neuroscience and 
Robotics) and Evolutionary and Adaptive Systems Group Informatics Univer­
sity of Sussex, who delivered three thought-provoking speeches that inspired a 
great deal of discussion among the participants. 

The workshop received support from these sources: 

• The Center for the Study of Complex Systems (CSCS); 

• Third Millennium Venture Capital Limited; 

• State Street Global Advisors, Boston, MA; 

• Biocomputing and Developmental Systems Group, Computer Science 
and Information Systems, University of Limerick; 

• Christopher T. May, RedQueen Capital Management; 
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Business, for providing the Assembly Hall Board Room for the workshop. We 
thank all of our sponsors for their kind and generous support for the workshop 
and GP research in general. 

A number of people made key contributions to running the workshop and 
assisting the attendees while they were in Ann Arbor. Foremost among them 
was Howard Oishi, assisted by Mike Charters. After the workshop, many 
people provided invaluable assistance in producing this book. Special thanks 
go to Sarah Chemg, who stepped in and learned a lot of lATEXand other skills in 
a very short time, and who also did a wonderful job working with the authors, 
editors and publishers to get the book completed very quickly. In addition 
to thanking Bill Tozier for his extraordinary efforts reading and copy-editing 
chapters, we also thank Duncan MacClean and Eric Wollesen for helping with 
copy-editing. Melissa Fearon's editorial efforts were invaluable from the initial 
plans for the book through its final publication. Thanks also to Valerie Schofield 
and Deborah Doherty of Springer for helping with various technical publishing 
issues. Finally, we thank Carl Simon, Director of CSCS, for his support for this 
endeavor from its very inception. 

TINA YU, RICK RIOLO AND BILL WORZEL 



Foreword 

Enabled by relentless advances in computing power and the increasing avail­
ability of distributed computing, genetic programming (GP) has become suc­
cessful in solving a wide array of previously intractable industrial problems. 
However, as a relatively new kid on the block, this growing community of 
early-GP-adopter faces many obstacles, such as entrenched institutional resis­
tance and the competition of other existing technologies (decision forests, kernel 
learning methods, and support vector machines). Ultimately, the technique of 
GP will find a home in industry if and only if it is competitive. 

The Workshop of Genetic Programming Theory and Practice organized by 
the Center for the Study of Complex Systems and held at the University of 
Michigan, Ann Arbor, in May 2005, is a unique venue where applied and 
theoretical researchers focus on how theory and practice should interact and 
what they can learn from each other. Such exchange is essential in advancing 
GP to overcome its adversaries. 

I was very excited to receive an invitation to this workshop, since the appli­
cation of GP to industrial scale symbolic regression and classification problems 
is a timely topic in our enterprise. After attending the workshop, I was ec­
static. Many of the most respected and influential GP researchers as well as 
an impressive array of applied researchers from industrial sectors were in at­
tendance. They presented focused and topical papers and participated in the 
discussion. With their knowledge and experiences, the discussion was deep and 
enormously productive. We spent our days listening to workshop presentations, 
asking questions, and our evenings writing programs. We left the workshop 
with many practical issues resolved. 

I hope to attend this event next year. If we are to advance the application 
of GP in industry, it is critical to have a venue where applied and theoretical 
researchers can exchange ideas, critically review past efforts, and inspire future 
research directions. 

Michael Koms 
President and Chief Technologist, 
Koms Associates Nevada, USA 



Chapter 1 

GENETIC PROGRAMMING: 
THEORY AND PRACTICE 

An Introduction to Volume III 

Tina Yu/ Rick Riolo^ and Bill Worzel̂  
1 2 
Chevron Information Technology Company, Center for the Study of Complex Systems, UnU 

versify of Michigan, Genetics Squared, Inc. 

In theory, there is no difference between theory and practice. But, in practice, there is. 
—Jan L.a. Van De Snepscheut 

Keywords: genetic programming, theory, practice, continuous recurrent neural networks, 
evolving robots, swarm agents 

Close Encounter, the Third Time 
To leverage theoretical and practical works in the field of genetic program­

ming (GP), the Genetic Programming Theory and Practice (GPTP) Workshop 
series was conceived and launched in 2003. For the past two years, theoreti­
cians and practitioners have come to Ann Arbor to present their works and to 
listen to others' (Riolo and Worzel, 2003) (O'Reilly et al, 2004). Gathered 
in a friendly environment, they debated with enthusiasm, pondered in silence, 
and laughed in between. All of these interactions have paved the way to future 
integration of theory and practice. 

In this year's workshop, we are very pleased to see some signs of conver­
gence: 



2 GENETIC PROGRAMMING THEORY AND PRACTICE III 

• Papers developing techniques tested on small-scale problems include dis­
cussion of how to apply those techniques to real-world problems, while 
papers tackling real-world problems have employed techniques devel­
oped from theoretical work to gain insights. 

• Multiple papers addressed GP open challenges, such as industry funding, 
new opportunities and previously overlooked issues. During the open 
discussion on the last day of the workshop, considerable enthusiasm was 
generated regarding these topics. 

All those developments indicate that both theoreticians and practitioners ac­
knowledge that their approaches complement each other. Together, they ad­
vance GP technology. 

1. Three Challenging Keynote Talks 
As in the first two GPTP workshops, each day commences with a keynote talk 

from a distinguished researcher, one each with a strong background in the fields 
of evolutionary computation, biology and application of advanced technologies 
in real-world settings, respectively. For GPTP-2005 we were again fortunuate 
to have three enlightening, inspiring, challenging and sometimes controversial 
talks. 

On the first day of the workshop. Van Parunak, Chief Scientist of Altarum 
Institute, delivered a keynote on evolving "Swarms" of agents in real-time. As 
a practitioner of population-based search techniques, one of Van's challenges is 
mapping a real-world problem into an appropriate representation. Sometimes, 
each individual in the population is the entire solution while other times, an 
individual is one component (an agent) of a solution. In the later case, the 
collection of individuals (the "Swarm") which yields the desired global behavior 
is the solution. The art and craft of designing problem-specific representations 
mentioned by Van was a challenge echoed by other presenters throughout the 
workshop. 

One type of real-world problem that Van works on is to evolve swarms 
in real-time to meet a constantly changing environment. In Chapter 2, he 
discusses two such systems they have developed. The first one plans flight 
paths for uninhabited robotic vehicles (URVs). The path should lead URVs 
to the target while avoiding threats on the way. To detect moving threats, an 
URV generates many "ghost" agents which explore (in a virtual model of the 
world) possible paths by depositing digital pheromones. Each step in the path 
then is chosen based on information represented by the pheromone deposits, 
using a parameterized equation associated with the ghost agent. The Altarum 
group has explored several approaches to optimizing the parameters in real-time 
to guide URVs, including evolutionary algorithms and human designers. The 
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evolved parameters produce paths that are superior to those produced by human 
designed parameters by an order of magnitude. 

Using the ghost agent concept, they developed a second system to predict 
future behavior of soldiers in urban combat. A soldier's behaviors are influenced 
by his/her own personality, the behaviors of other soldiers and their surrounding 
environment. To extrapolate a soldier's possible future behavior, a stream of 
ghost agents are continuously generated. These ghost agents begin their lives 
in the past using a faster clock than the clock used by the soldier it represents. 
When the time reaches the present, the ghost agents whose behaviors match 
well with the past behaviors of the soldier it represents are assigned a high 
fitness. These ghost agents are allowed to bred offspring and to run past the 
present into the future, where their behaviors are observed to derive predictions. 

Modeling complex systems in real-time, with models that run and adapt 
faster than real-time in order to allow for prediction, is a non-trivial task. Van 
showed us one way to make it work. However, he acknowledged that their 
efforts were aimed at solving the problems at hand, and hence so far they 
have not focused on generating theoretical insights. However, he asserts that 
although the systems they have developed doesn't give "perfect" predictions, it 
outperforms the current systems in use. From the practical point of view, it is a 
success. This evaluation standard is also used in other lines of business, such as 
finance, chemical and oil companies, as confirmed by the work and comments 
of other workshop participants. 

The second day started with a keynote entitled "Evolution From Random 
Sequences" by Mike Yarns, Professor of Molecular Biology at University of 
Colorado, Boulder. This is not evolution by mutation of existing sequences with 
a fixed translation mechanism generating "solutions," he emphasized. Instead, 
it is a completely different process where both the genetic code (information) 
and the translation system (a "machine") are randomly generated, and evolution 
proceeds as selection acts upon this coupled pair. 

Their studies are based on the laboratory examination of the RNA-binding 
sites of eight biological amino acids, which show significant evidence that 
cognate codons and/or anticodons are unexpectedly frequent at these binding 
sites. Consequently, they proposed the Escaped triplet theory: The coding 
triplets began as parts of amino acid binding sites, then escaped to become 
codons and anticodons. In other words, at least part of the genetic code is 
stereo-chemical in origin-from chemical interactions between amino acids and 
RNA-like polymers. The code is not just Q. frozen accident as suggested by 
Watson and Crick. Instead, the code's mapping is a result of selection based on 
affinities between an amino acids and parts of random RNA sequences. 

Not only the genetic code is selected from random sequences, Yargus argued— 
so is the hardware for translation. He used the peptide transferase to support his 
argument. Their laboratory study shows that proteins are assembled by reaction 
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of the aa-RNAs within a cradle of RNA whose octamer can be selected from 
random sequence. Therefore, both coding triples and the peptidyl transferase 
emerge when random sequences are placed under selection. Put another way, 
they were originally made by selection from populations of RNAs of arbitrary 
sequence. 

The issues involved with the invention of a genetic code are generally not 
considered by the GP community, who usually assume the existence of a "code" 
and machinery to map from a "genome" to active agents (^.g., programs). How­
ever, as a field constantly looking to biological mechanisms and processes for 
inspiration, GP might due well to consider these issues in the future, perhaps 
leading to more "open-ended" evolutionary systems. 

Following a suggestion to be challenging and controversial, Inman Harvey 
delivered a keynote on "Evolutionary Robotics for Both Engineering and Sci­
ence" with comments on some aspects of GP and the interaction of human 
and evolution process. He started by describing their approach to evolve dy­
namic systems which interact with the environment in real-time. Formally, a 
standard dynamic system is a set of (continuous) variables with equations that 
determine how each variable changes over time as a function of all current 
values. These equations are represented in Continuous Time Recurrent Neural 
Networks (CTRNN) and are evolved using a steady-state GA with tournament 
selection. 

Inman was questioned about his decision to not use GP for the evolutionary 
component. He gave his reasons based on his observations of the early GP 
work. First, he thought GP-style evolution is wide and short, i.e. it consists of 
a large population evolving for just a few {e.g., hundreds or fewer) generations. 
But biological evolution is narrow and long, i.e. the number of generations 
is generally far more than the size of the population. Secondly, biological 
evolution is always an open-ended work in progress, not just an attempt to 
solve a single specific problem. It seemd likely that Inman has not been in 
touch with the GP field for a long time and thus he did not have much familiarity 
with recent progress and trends. Workshop participants quickly corrected his 
misconceptions, claiming that those ideas have been incorporated in some of the 
more current GP systems. However, Inman's basic point should still be seriously 
considered, i.e., while GP systems are run longer and are work toward more 
openedness than in the past, it is clear that the ratio of generations to population 
size is still far from that in biological systems, and that GP systems are still 
generally applied to solve specific problems. It then remains to be seen how 
important those differences are across the range of GP applications, given the 
different goals researchers have for GP systems. 

The subject then turned to the evolutionary robotics (ER) systems Inman's 
group has built for scientific purposes. The first one is an artificial ant that has to 
find its way back to its nest or hive with minimal noisy visual cues. Biologists 
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used the system to compare simulation behaviors with the real ant behaviors to 
disprove or to generalize hypothesis. For example, if the original hypothesis 
states that a behavior requires A and the evolved artificial ant show the behavior 
without A, a new hypotheses can be developed to explain this behavior. Another 
ER system they developed is for studying the human ability to adjust to a world 
turned upside-down. They incorporated some general homeostasis constraints 
to evolve a robot with normal eyes first. After that, they switched the eyes 
upside-down and ran the system again. A reasonable proportion (50%) of the 
evolved robots with normal eyes can adapt, after time, to visual inversion. These 
experiments allow generation of relatively unbiased models (Le., with minimal 
assumptions) to challenge existing hypotheses and to generate new ones. 

For engineering purposes, Inman and his group applied their ER technique 
to evolve control systems for robots. Two such examples are a hexapod walker 
for a robot for Mars exploration that is robust to damage and a humanoid biped 
walker. They used an incremental approach to evolve the system. Initially, a 
hand-designed system for a simple task is used at population 0. Once the evolved 
system is able to perform the simple task reasonably well, a new task (parameters 
and neurons) is added and starts a new evolutionary cycle. Evolution gradually 
learns to perform new tasks without forgetting how to do the old task. This style 
of incremental leaming through the interaction of human intervention and an 
evolutionary algorithm is a practical approach to tackle this engineering task. 
However, it seems to conflict with the work in progress evolutionary paradigm 
that Inman advocated previously, pointed out by a workshop participants. Inman 
agreed with this comment. Maybe devising an evolutionary system which 
can continuously learn, i.e. always in work-in-progress mode, without human 
intervention is a challenge for all who are interesting in evolutionary leaming, 
not just those using GR 

2. Real-World Application Success Stories 
Besides the successful applications of evolutionary approaches described by 

Van Parunak and Inman Harvey in their keynote addresses, clear-cut Genetic 
Programming success stories were told in four presentations. They either pro­
duced better results than the preexisting systems, made breakthroughs or opened 
a new frontier. These results cheered the spirits of all workshop participants. 

In Chapter 3, Lee Jones, Sameer H. Al-Sakran and John Koza present their 
success in delivering GP human-competitive results in a new domain: optical 
design. In this work, the simple forms of representation, genetic operations and 
fitness function were elaborated to work with this non-trivial domain, where 
finding a solution is an art or craft rather than science. Many pathological 
designs were identified and the system was adjusted accordingly to avoid gen­
erating such kinds of designs. As an invention machine, GP was able to create 
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lens designs that gives characteristics, e,g, spherical aberration and distortion, 
that are competitve with a lens design patented in 1996. Since the evolved 
design differs considerably from the patented design, it does not infringe the 
patent. Instead, it is considered as a new invention created by GR 

Chapter 4 also reports the success of a GP solution that improves over a 
preexisting technology. In this work, Frank Francone, Larry Deschaine, Tom 
Battenhouse and Jeffery Warren applied a linear GP system to discriminate 
unexploded Ordnance (UXO) from clutter (scrap metal that poses no danger to 
the public) in retired military fields. A higher quality solution allows UXO to 
be revealed by digging fewer holes, hence is more cost-effective. The project 
was conducted in two phases. The first phase used sensor data gathered from 
a military field where UXO and clutter locations are known. The quality of a 
solution is evaluated by the percentage of UXO and clutter correctly identified. 
They compared the GP-generated solution with solutions based on geophysics 
first principles and by other technologies, and showed that the GP-generated 
solution gives a significantly higher accuracy. In the second phase of the project, 
the sensor data was collected from a different field where UXO and clutter 
locations are unknown. In order to devise GP solutions, many more processing 
steps, such as anomaly identification and feature extraction for the identified 
targets, were conducted. Unlike the phase I study, the quality of a solution 
in this phase is judged by the number of holes that must be dug to uncover 
all UXO. They reported that their GP-generated solution improves over the 
preexisting technique with 62% fewer holes dug. Although the data set is noisy 
with only a small number of positive samples, a common dilemma in real-world 
applications, GP is able to overcome the difficulties and deliver good solutions. 

In last year's workshop, Lohn, Hornby and Linden presented their success 
in evolving two human-competitive antennas for NASA's Space Technology 
5 mission. While those antennas met the mission requirements at that time, 
new requirements were introduced as a result of an orbit change. In Chapter 5, 
they updated the project with two new antennas they evolved to meet the new 
mission requirements. Unlike the conventionally designed quadrifilar antenna 
which require several months to develop a new design and prototype it, their 
antennas were evolved (with slightly modifications of their evolutionary sys­
tem) and prototyped in four weeks. These two antennas have passed the flight 
testing and are expected to be launched into space in 2006, a "first" for systems 
designed by evolutionary algorithms. This story highlights an important advan­
tage of evolutionary design over human design: the ability to rapidly re-evolve 
new designs to meet changing requirements. It is an essential ingredient for 
successful real-world applications. 

Variable selection plays an important role in industrial data modeling, par­
ticularly in chemical process domain where the number of sensor readings is 
normally large. To generate robust models, a small number of important vari-
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ables must be identified. Unfortunately, preexisting linear variable selection 
methods, such as Principle Components Analysis (PCA) combined with Par­
tial Least Squared (PLS), fail to work on non-linear problems. In Chapter 
6, Guido Smits, Arthur Kordon, Katherine Vladishlavleva, Elsa Jordaan and 
Mark Kotanchek developed a non-linear variable selection method based on 
their Pareto GP system. This method assigns variable importance by evenly 
distributing an individual's fitness to all variables that appear in the individual. 
The accumulated importance of each variable in the population in the Pareto 
front archive is then used to rank their importance. 

They have applied this method on two inferential sensors problems. The first 
one (emission prediction) has 8 variables and GP selected 4 of them as highly 
important while PCA-PLS gives a different ranking. The final deployed mod­
els, which were evolved by GP using the 4 selected variables, give very high 
correlation coefficient values (0.93 and 0.94). This confirms that the 4 selected 
variables are indeed important, which PCA-PLS fails to recognize. The second 
inferential sensor (propylene concentration predication) has 23 variables. Four 
important variables were selected by GP whereas PCA-PLS suggests 12 impor­
tant variables, which included only 3 of the 4 GP selected variables. The final 
winning inferential model is an ensemble of 4 models, which included all 4 
GP-selected variables and 1 variable recommended by an expert's model. The 
GP solution also was more effective than the PCA-PLS solution in this case. 

In addition to providing demonstrably better performace, one prerequisite 
for "success" is acceptance by the people working in the problem domain. It 
is only when the solutions are accepted by the users in the domain that the 
technology will have a significant impact. Thus an important question is: Are 
those fields where GP has been applied inclined to accept the solutions? If not, 
how do we change their attitudes? 

The feeling of the GPTP Workshop participants was that in general, the 
more successful and mature a field is, the less likely it accepts new ideas. 
Lens and analog circuit designs are two fields that have longer histories and 
are considered more mature, said Koza. In contrast, antenna design engineers 
and geophysicists working on UXO communities are very accepting of new 
concepts as there is not solid theory and they don't know systematic approaches 
for finding solutions themselves, according to Lohn and Francone. In terms of 
enticing end-users to accept GP solutions, one critical step is to invite them 
to participate in the project from the very beginning, said Kordon. Otherwise, 
people tend to not accept any work that they have no part of. In corporate 
environments, it also is important to show management the advantages the 
technology can bring to them. If the success of a technology will lead to 
problems for them, e.g. losing their jobs, they will make every effort to assure 
the technology fails, commented by Goodman. 
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3. Techniques with Real-World Applications in Mind 
Although GP theory does not progress as rapidly as practice does, techniques 

to enhance GP capabilities and theoretical work to analyze GP processes are 
continually being developed. Four such papers were presented in the workshop. 
These works so far have been applied to small scale problems. Nevertheless, 
relevance to real-world applications was discussed. 

In Chapter 7, Tina Yu introduced a functional technique to evolve recursive 
programs. In functional programs, recursion is carried out by non-recursive 
application of a higher-order function. This chapter demonstrates one way to 
evolve this style of recursive programs by including higher-order functions in the 
GP function set. Two small-scale problems were studied using this approach. 
The first one is a challenge by Inman Harvey, STRSTR C library function, and 
the second one is the Fibonacci sequence. In both cases, problem-specific 
knowledge was used to design/select higher-order functions, and GP was able 
to evolve the recursive programs successfully by evaluating a small number of 
programs. 

Programs with higher-order functions naturally give the structure of code 
abstraction and reuse. For these two problems studied, the structures were 
defined by the given higher-order functions. With an appropriate set-up, GP 
can be used to discover the structure, Le, evolve the higher-order function. Such 
a GP would be particularly suitable for solving open-ended designs where no 
optimum is known and creativity is essential to problem solving. In this case, 
evolved higher-order functions might deliver interesting solutions. 

Lee Spector and Jon Kleinsold present their "trivial geography" technique 
in Chapter 8. Trivial geography structures the GP population in a simple ge­
ographically distributed manner. The location of an individual is taken into 
account when selection for competition and reproduction. This concept is not 
new. Many existing evolutionary computation systems divide their populations 
into discrete or overlapping sub-populations, often called demes, as a form of 
geography. However, their implementation is significantly simpler; only a few 
lines of programming code need to be added/modified, they argued. In their 
implementation, a population is structured as a ring. When producing a new 
generation, the location into which an offspring is going to be placed in the new 
population decides where its parents are from; Le,, only the individuals near to 
the location for the offspring are selected for tournament and thus are candi­
dates to be parents. This essentially gives overlapping sub-populations where 
independent evolution takes place. Despite being such small change, this trivial 
geographic bias in parent selection significantly improves performance for the 
two problems they tested. Although the generality of the method has not been 
studied yet, they recommended broader usage of the technique. "It is easy to 
implement and you might be surprised what you can gain from it," said Lee. 
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In Chapter 9, Riccardo Poll and Bill Langdon developed a backward chain­
ing technique to reduce GP computational efforts. This technique first reorders 
the typical create-select-evaluate evolutionary system cycle to construct the ge­
nealogy network for the entire evolutionary run. After that, the genetic makeup 
of the individuals are filled in a backward manner. This is done by tracing 
the genealogy of each individual in the last population back to generation 0. 
The "root individuals" are then initialized randomly and all their descendants 
are created using genetic operators subsequently. Since only individuals in the 
geneological network are created and evaluated, backward chaining GP is com­
putationally more effective than the traditional GP. However, there is trade-off 
of memory to store the genealogy network. Mathematically, they computed 
the time and space complexities to show the cost and saving. Experimentally, 
they tested this technique on symbolic regression problems and reported that 
using population size 10000 with tournament size 2, backward chaining GP 
gives computational saving of 19.9%. Once the tournament size is increased 
to 3, the saving is marginal. They recommend this method to GP systems with 
very large populations, short runs and relatively small tournament sizes. The 
computational saving for large scale real-world problem using this type of GP 
might be significant. 

Co-evolving grammar and the solutions defined by the grammar is an at­
tractive idea since the biases induced by the grammar are not always favorable 
throughout the evolutionary run. Conceptually, it seems that it should be pos­
sible to learn good bias from the evolved good solutions. In Chapter 10, R. 
Muhammad Atif Azad and Conor Ryan test the hypothesis by using a diploid 
genotype: one part for the grammar rule and the other for solution mapped. 
This approach is very similar to the co-evolution of genetic operation rates and 
the solutions generated by the operation. By encoding the rate as a part of 
the genotype, the rate is normally reduced as evolution progresses to provide 
appropriate exploration and exploitation. 

They added the diploid genotype to their Grammatical Evolution system and 
tested it on a set of small scale problems. While the results are not as good as 
expected—the system using static grammars finds better solutions—this talk 
stimulated much discussion at the workshop. Many recommendations were 
given to improve the system. 

Chapter 11 is a contribution by Tuan Hao, Xuan Nguyen, Bob McKay and 
Daryl Essam. This work applies their previously developed techniques to a 
real-world problem, which is an important step to transfer the technology for 
wider applications (Bob was not able to come to present the paper in person, 
so there was not discussion of it at the workshop). Their work is based on Tree 
Adjoining Grammar (TAG) GP which they have developed and used to study two 
local search operators: point insertion and deletion. Local search operators are 
generally useful to tune final solutions. While their previous study reported that 
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they are also effective search engines on small-scale problems, when applied to 
the larger scale ecological modeling problem described in Chapter 11, the results 
are not conclusive. On training data, GP with local search operators produces 
a better model than the model evolved by GP alone. However, on blind testing 
data, it is the other way around. This indicates that local search operators 
generate over-fitting solutions and reduce generality. They are continuing the 
study to produce more robust solutions. 

4. Visualization: A Practical Way to Understand GP 
Process 

Unlike the work describe by Mike Yarns in Section 1, which examines bio­
logical data to study evolution, A. Almal, W. P. Worzel, E. A. Wollesen and C. 
D. MacLean analyze biomedical data for diagnostics and prognostics purposes. 
One such project is modeling medical data to predict the stage of bladder can­
cer. Medical data is notorious in its small sample sets and large dimensionality, 
which makes the modeling task very difficult. In Chapter 12, they describe 
a tool to visualize the content diversity (the diversity of functions and termi­
nals) of GP populations and study its relationship to the fitness diversity of the 
solutions. 

They used the new tool they developed to plot population contents in gen­
eration 0, 10, 20 and 38, which show how diversity decreases as evolution 
progress. Fitness diversity, however, does not have such a trend. The fitness 
variance among individuals remained high throughout the runs, although high 
fitness bands became dominant when the content diversity became very low, L e,, 
the population's structures converged. This interesting relationship stimulated 
much discussion at the workshop. The relationship between structure, content 
and fitness in a population is a subject that always interests both theoreticians 
and practitioners. 

Visualization is a powerful and practical way to study many dynamical sys­
tems, including those generated by evolutionary processes. Thus, it may not 
be surprising that there were three other visualization papers presented at the 
workshop. 

The first one is by Christian Jacob and Ian Burleigh. In Chapter 13, they 
present an agent-based model that simulates lactose Operon gene regulatory 
system. Although this is one of the most extensively studied biological sys­
tems, there are still many unknowns. A visual simulation can help biologists 
to understand the complex system better. To develop such a model, they first 
incorporated biological data/rules to construct the system. The simulation be­
haviors are then presented to biologists, whose feedbacks are used to improve 
the model. This interactive evolution process led to parameters which give 
behaviors close to the known behaviors. It appears that GP can be used to 
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fine-tune the parameters. Furthermore, the mechanism of the gene regulatory 
system may serve as an inspirational platform to design GP systems suitable 
for complex systems modeling. 

Biological systems have always been inspiration to GP. Motivated by the 
research of neutral networks in biological systems, Wolfgang Banzhaf and An­
dre Leier investigate GP search behavior in a Boolean function space with the 
presence of neutral networks. In Chapter 14, they enumerated the problem 
search space and showed that the genotype to phenotype mapping is similar to 
the RNA folding landscape: there are many very uncommon phenotypes and 
few highly common phenotypes. This suggests that the neutral evolution the­
ory for biological systems might apply to this GP search space. They plotted 
the phenotype network of the search space, including neutral networks where 
the connected phenotypes having the same fitness. This visualization of the 
network provides a clear picture of phenotypes with different fitness and how 
they are connected. 

Another work which relies heavily on visualization for analysis is by Ellery 
Crane and Nie McPhee. In Chapter 15, they study the effects that size and depth 
limits have on the dynamics of tree-based GP. Based on a simple one-than-zero 
problem, many GP experiments were conducted using both tree-size and depth-
size limits. Visualization of the statistical results indicates that both kinds of 
limit have similar effects on the average tree size (number of nodes) in the 
population. However, depth limits effect program shapes more than size limits 
do. With depth limits, the program shape in the population has less diversity. 
They are investigating the generality of this phenomena by studying other type 
of problems under different selection and genetic operation conditions, and if 
practitioners adopt their recommendations for problem solving, we may leam 
even more about its generality and usefulness. 

5. Open Challenges 
In addition to the deep challenges presented by the keynote addresses, sev­

eral other chapters also described various kinds of open challenges that GP 
practitioners must overcome before GP will be easily and widely accepted in 
various industries and business. 

For example, in Chapter 16 Arthur Kordon, Flor Castillo, Guido Smits and 
Mark Kotanchek of Dow Chemical discuss many challenges faced by industrial 
research and development groups when applying GP technology. In addition 
to technical issues, such as data quality and extrapolation of the solutions, non­
technical issues are important to the success adoption of a new technology in 
corporate environment. They summarized how they address these non-technical 
issues: create a team to work on GP, link GP to proper corporate initiatives, 
secure management support, address skepticism and resistance and marketing 
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the technology continuously. Although GP has had good track record at Dow, 
the technical team still has to adapt to the fast changing environment and to 
produce profits to survive. They described a set of "10 commandments" of 
industrial R&D humorously to illustrate the challenges they are facing: 

• Thou shalt have no other thoughts before profit. 

• Thou shalt not serve consultants. 

• Thou shalt not take the research money for granted. 

• Remember the budget, to keep it holy. 

• Honour the cuts and the spending targets. 

• Thou shalt not explore. 

• Thou shalt not commit curiosity. 

• Thou shalt not create. 

• Thou shalt not develop anything before outsourcing it. 

• Thou shalt not covet thy professors, nor their students, nor their graduate 
students, nor their post-docs, nor their conferences and workshops. 

Open-ended problem solving has been a quintessentially human capability. 
Is it possible to equip GP to become the first machine capable of open-ended 
problem solving? In Chapter 17, Jason M. Daida argued that it would be very 
difficult, if not impossible, based on the MPS open-ended problem solving 
paradigm. In this widedly used problem solving paradigm, there are 6 stages of 
problem solving: engage, define stated problem, create internal idea of prob­
lem, plan a solution, carry out the plan and evaluate (check) and look back. 
Clearly, it would be very hard for GP to undertake some of the activities, e,g, 
engage and define stated problems. In fact, until now, GP has been partnered 
with human to carry out these problem solving activities. This is demonstrated 
in typical GP application work-flow, which includes pre-GP {e.g, data prepa­
ration) and post-GP {e.g. solution interpretation) process. Nevertheless, there 
are opportunities to make GP a more competent partner. One such area is 
tools to transform/analyze GP solutions so that they can be explained and in­
corporated into the evaluate, check and look back process. Visualization has 
been recommended as one great approach to achieve the goal. There are many 
other opportunities to strengthen GP which remains open for the community to 
explore. 

Jianjun Hu, Ronald Rosenberg and Erik Goodman have started exploring new 
application domains using their bound-graph representation GP system. Chap­
ter 18 reports their initial study on evolving mechanical vibration absorbers. 
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This is an area with a history of patents and it poses a great challenge for GP 
human-competitive results. To evolve single, dual and bandpass vibration ab­
sorber, they designed various domain-specific functions. They also devised 
different fitness functions to direct GP search. The evolved absorber, however, 
are not practically useful and extremely difficult to implement, although their 
fitness are high. They concluded that exploiting domain or problem-specific 
knowledge to embody physically meaningful building blocks is necessary for 
GP to be successful in real-world problems. Otherwise, the evolved solutions 
may not be physically realizable. How much domain knowledge to use so that 
GP has room for creativity and is able to deliver human-competitive results is 
an open challenge for the community. 

Pushing GP toward industrial success in the analog CAD domain, Trent Mc-
Conaghy and Georges Gielen outline new GP applications and challenges in 
Chapter 19. They started by distinguishing "success" in the GP research do­
main, which is demonstrated by the number of publications, and in the industrial 
success, which is measured by the number of different chip designs that have 
been sent to fabrication. With great research success in analog design, they 
suggested using GP to pursue industrial success in three application areas: au­
tomated topological design, symbolic modeling and behavioral modeling. They 
showed their recent work on these problems. The results are very encouraging 
and accepted well by the CAD design community. Although there are many 
obstacles to overcome, e,g, computational feasibility and earning CAD design­
ers' trust, these applications are great opportunities for GP to become industrial 
success in the analog CAD field. 

There was a lot of interest in discussing GP challenges throughout the work­
shop. On the last day, a list of open challenges was created by workshop 
participants: 

• Handling large data sets (10 millions). 

• Complexity of problems (k-complexity). 

• How weird can GP be and still be invited to GPTP? 

• The problems associated with analysis of GP systems. 

• Mapping GP to customer satisfaction. 

• How do we stack GP techniques (avoid "backdrop"). 

• GP integration with other techniques. 

• Theoretical tools for understanding large modular systems. 

• How do ADFs affect the GP system? 
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• Systematizing our understanding of GP: a taxonomy of GP; a GP Periodic 
Table; mathematical formulation of GP; a GP "Pattern" book; a dictionary 
of pathologies of GP behavior. 

• Understanding Solution Classes. 

• Using tools developed in other fields to enhance our understanding and 
use of GP; 

• How to make good use of pre- and post-processing. 

• How to move beyond dumping scalars? 

• Better infrastructure for visualization; probes to visualize the behavior of 
GP 

• More complicated fitness functions. 

• Looking toward AI, aiming at "real" AI goals (but don't promise too 
much). 

• Exploring alternative computing paradigms, beyond the microprocessor. 

• How to integrate domain knowledge? 

• GP as a Reinforcement Learning system. 

• Scalability and Dynamics. 

• Crossing the application chasm—how to make GP attractive to industry? 
What kind of marketing packages would be useful? 

This list provides a starting point and possible directions for contributions 
to next year's Genetic Programming Theory and Practice Workshop. We look 
forward to the continued progress of theory and practice integration. 
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Chapter 2 

EVOLVING SWARMING AGENTS IN REAL TIME 

H. Van Dyke Parunak^ 
Altarum Institute 

Abstract An important application for population search methods (such as particle swarm 
optimization and the several varieties of synthetic evolution) is the engineer­
ing problem of configuring individual agents to yield useful emergent behavior. 
While the biological antecedents of population-based search operate in real time, 
most engineered versions run off-line. For some applications, it is desirable to 
evolve agents as they are running in the system that they support. We describe two 
instances of such systems that we have developed and highlight lessons learned. 

Keywords: applications, real-time, emergence, agents, population-based search, evolution 

1. Introduction 
Research in the Emerging Markets Group of the Altarum Institute focuses on 

practical applications of swarm intelligence. Wê  exploit the emergent system-
level behavior exhibited by interacting populations of fairly simple agents to 
solve a wide range of real-world problems, including control of uninhabited 
air vehicles (Parunak et al, 2002; Sauter et al., 2005), sensor coordination 
(Parunak and Brueckner, 2003; Brueckner and Parunak, 2004), resource allo­
cation (Savit et al., 2002), information retrieval (Weinstein et al., 2004), and 
prediction (Parunak et al., 2005), among others. 

The central problem in engineering emergent behavior is determining the in­
dividual behaviors that will yield the required system-level behavior. The most 

T̂he results described in this paper reflect the creative ideas and implementation skill of my colleagues, 
including Rob Bisson, Steve Brophy, Sven Brueckner, Paul Chiusano, Jorge Goic, Bob Matthews, John 
Sauter, Peter Weinstein, and Andrew Yinger. 
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promising techniques that we have identified are those drawing on techniques 
such as particle swarm optimization and various forms of synthetic evolution. 
We describe these techniques collectively as population-based search (PBS), 
since they use interactions among a population of searchers to solve a problem. 
It is philosophically reinforcing to our basic approach, and perhaps not coinci­
dental, that these techniques themselves exemplify the emergent paradigm of 
deriving global results from local interactions. 

This paper emphasizes two aspects of this approach: the elements of the 
population are individual agents rather than representations of the whole system, 
and the evolution takes place in real time, while the system runs. The first 
aspect has antecedents in the literature, but should be more widely explored. 
The second appears to be novel. 

In Section 2, we summarize some other examples of agent-centered evolu­
tion in order to provide a context for our methods. Sections 3 and 4 discuss 
two examples from our work, using real-time agent-based evolution to solve 
a Configuration problem and a Fitting problem, respectively. Section 5 draws 
lessons from our experience and concludes. 

2. Background 
Evolutionary and particle swarm methods take their inspiration from natural 

agents that adapt in the same temporal space in which they are bom, live, and 
die. Yet applications of these techniques differ from their metaphorical roots 
in two ways. First, many applications have little to do with computational 
agents, and instead focus on optimization of structures or functions that cut 
across individual agents, even when the domain naturally lends itself to an 
agent-based model. Second, even when PBS is applied to individual agents, 
most applications execute in a temporal space distinct from that occupied by the 
agents. That is, the PBS is a planning or configuration process that determines 
agent parameters off-line, for later deployment. 

In this section we first distinguish agent-based applications from other ap­
proaches, then describe two broad uses of agent-based PBS, and consider some 
previous work on real-time agent-based PBS. 

Three Perspectives on PBS 
It is useful to distinguish three different applications of PBS: structure op­

timization, function optimization, and agent optimization. While the three 
categories can readily be mapped into one another, each suggests a particu­
lar perspective on the problem. For many engineering problems, the agent 
perspective offers particular benefits. 

Structure optimization includes spatial organization problems such as the 
traveling salesperson problem (TSP), layout of VLSI chips, or design of me-
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chanical mechanisms. It also includes problems of temporal organization such 
as factory scheduling. Population-based search is typically applied to these 
problems by constructing a population whose members are complete candidate 
structures, and taking this approach encourages the practitioner to view the 
structure holistically. Indeed, the value of PBS for such problems is largely in 
overcoming the tendency to local sub-optimization that results from traditional 
mechanisms such as greedy search. Symbolic regression may be considered an 
instance of structural optimization in which the structure being manipulated is 
an abstract mathematical expression. 

In function optimization, each member of the population is a vector that 
constitutes an argument to some mathematical function, and the objective of 
the search is to find a vector that yields a desired value for the function (such 
as an extreme or an inflection point). Effective application of PBS to such 
problems often requires adjustments to take advantage of the ordered nature of 
the domain of each allele (Come et al., 1999). Reduction of an engineering 
problem to a mathematical function that needs to be optimized is the utmost in 
abstraction. While such abstraction can help develop general solutions that are 
applicable across multiple domains, it also makes it difficult to take advantage 
of domain-specific heuristics, which may not readily be cast as closed-form 
mathematical expressions. 

Agent optimization is a natural way to apply PBS to domains that are effec­
tively modeled as sets of interacting autonomous agents. These domains may 
be engineered or natural. 

Engineered domains that lend themselves to multi-agent modeling include 
processing information from networks of sensors, coordinating the movement 
of multiple vehicles, retrieving information from large collections of docu­
ments, and managing extended communication networks. Agent architectures 
are particularly attractive for engineering problems when the domain consists 
of discrete elements that are distributed in some topology, where central control 
is difficult or impossible, and whose environment is changing dynamically (so 
that adaptiveness is more important than reaching a steady-state optimum). 

Natural domains that lend themselves to multi-agent modeling include many 
biological systems, ranging from predator-prey ecologies and insect colonies 
to human communities. 

In both cases, the behaviors of these systems emerge from the interactions 
of their parts, and a central problem in configuring them is determining the 
behavior of individuals that will yield the desired overall system behavior. In 
applying PBS from this perspective, each member of the population is a candi­
date for a single agent in the system. Taking an agent-centered perspective on 
PBS aligns well with the natural modularity of such system. 

Recently, agent-based mechanisms such as ant colony optimization (ACO) 
have been applied to structure optimization (e.g., TSP and scheduling); popu-
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lation search has been used to tune these mechanisms. It seems most natural 
to search over populations of individual agents (White et aL, 1998). However, 
these mechanisms include some system-wide parameters {e.g., the number of 
agents), so population members are sometimes defined at the level of the system 
rather than the individual agents (Botee and Bonabeau, 1998). 

This latter approach violates the distinction between the individual agents 
and their environment (Weyns et al., 2004), a distinction that is important from 
the point of view of engineering effectiveness. On the one hand, it is usually 
appropriate to consider issues such as the number of agents and the physics of 
pheromone evaporation as part of the environment. Though they may emerge 
from interactions among the agents, no single agent can change them. On the 
other hand, deposit rates and sensitivity to different pheromones clearly pertain 
to individual agents, and it makes sense to model them in the chromosomes 
of each agent. If one wishes to explore the total space of both agent and 
environmental variables, it would be cleaner to co-evolve the agents and the 
environment as two different populations. (The whole area of engineering 
environments for agents is quite new in the agent software community, and we 
do not know of anyone who has explored the pros and cons of these alternative 
ways of applying PBS to such systems). 

Varieties of the Agent Approach 
We are not by any means the first to apply PBS to individual agents in order 

to improve their collective behavior. Two areas where this approach has been 
widely applied are robotics and biology. 

Biologists use PBS (particularly its genetic varieties) retrospectively, in at 
least two distinct ways. Ethologists seek to discover possible processes by 
which various animal behaviors have evolved. The actual behavior of the agent 
is knownand provides the standard against which the fitness of an evolved 
agent is evaluated. Examples of work in this field include the development 
of communications (Quinn, 2001; Steels, 2000), the evolution of cooperation 
(Riolo et al., 2001), and the development of foraging (Panait and Luke, 2004), 
to name only a few. Ecologists are more concemed with the overall patterns of 
interactions among multiple agents {e.g., food webs and population dynamics), 
rather than the individual behaviors. These examples can be viewed as attempts 
to fit a model to observed agent and system behaviors, respectively. 

Roboticists have long used PBS prospectively, to find behaviors (equiva-
lently, control laws) that satisfy various functional requirements. A variety 
of representations have been adopted for programming the behavior of these 
agents, including GP-like higher-order operations (Brooks, 1992), tropistic ex­
ecution engines (Agah and Bekey, 1996), and neural networks (Harvey et al.. 
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1992). These examples can be viewed as configuration problems, seeking to 
configure the agent's behavioral engine to achieve desired outcomes. 

Most of these instances run "off-line." That is, the timeline within which the 
PBS operates is disjoint from the timeline within which the system being studied 
or designed operates. While ubiquitous among practitioners of PBS, off-line 
search is at variance with the natural processes that inspired these mechanisms. 
Our examples illustrate the potential of on-line search (conducted while the 
system itself operates). 

Examples of Real-Time PBS 
A few examples of PBS have been published^ in which evolution takes place 

as the system runs, and merit comparison with our approach. 
Nordin and Banzhaf (Nordin and Banzhaf, 1997) use GP to evolve the con­

troller for a Khepera robot to improve its ability to avoid obstacles. The evolu­
tion runs as the robot operates, but the objective is to evolve a single algorithm 
that can handle various inputs, not to vary the algorithm to accommodate envi­
ronmental changes. While the system is learning (40-60 minutes in one version, 
1.5 in another), the robot does not successfully avoid obstacles. Dadone and 
VanLandingham (Dadone and VanLandingham, 1999) take a similar approach 
in evolving a controller for a chemical plant. Each member of the population 
is given a chance to run the plant while its fitness is evaluated, and when every 
member of the population has been evaluated, a new population is generated. 
These systems deal only with a single entity (the robot or the controller), and are 
not concerned with developing appropriate emergent behavior from a system 
of agents. 

Spector and colleagues (Spector et al., 2005) evolve the behaviors of a popu­
lation of simulated mobile entities living in 3-d space, whose behavior evolves 
as they execute. They describe two systems. In one, the agents' behavior is a 
version of Reynolds' flocking behavior (Reynolds, 1987), and the genotype is 
a list of coefficients for the various vectors that are summed in that algorithm. 
In the other, it is a program that yields a flocking algorithm. This work exhibits 
emergent group behavior across the population of agents. However, that behav­
ior is achieved over the course of the run. The dynamics of the environment are 
handled by the adaptive capabilities of the flocking algorithm that is evolved, 
not the ongoing adaptation of that algorithm by evolution. 

These examples are robotics applications. They develop control instructions 
for robots, like the more common off-line applications of PBS, but do so fast 
enough to be deployed on the robot as it executes. They both rely on adaptive 

^We are grateful to participants in GPTP2005 and other reviewers for suggesting a number of examples, of 
which these are illustrative. 
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mechanisms in the evolved behavior to handle a changing environment, rather 
than using evolution itself as the main adaptive mechanism. 

Dynamic Flies (Boumaza and Louchet, 2001) is a vision processing algo­
rithm for obstacle avoidance. A population of points in three-space evolve to fit 
their coordinates in the robot's visual field to occupy the surfaces of obstacles. 
The fitness function is based on the observation that the pixels in the vicinity 
of a fly on a surface will vary relatively litde from two different vantage points, 
compared with the pixel neighborhoods of flies that are in free space. The flies 
influence one another, in that the fitness is adjusted to penalize grouping. The 
aggregate fitness of the flies in each cell of a square lattice that maps the robot's 
environment generates a repulsive field to guide the robot. This application is 
like ours in both dimensions. It is truly emergent, generating a system-level be­
havior (obstacle avoidance) from the evolution of individual flies. Also, it uses 
evolution as its adaptive engine. However, the individual flies, consisting only 
of the coordinates of a point in three-space and a fitness value, have no intrinsic 
behavior, and fall below the threshold of what most researchers would consider 
an agent. While the application as a whole is robotic, the actual adaptation of 
the flies to the surfaces of obstacles in the environment can be considered a 
retrospective or fitting application of real-time PBS, since the flies are evolving 
to provide a model of an exogenous feature of the environment. 

The evolving entities in classifier systems (Booker et al., 1989) and artificial 
immune systems (Forrest et al., 1997), unlike Dynamic Flies, do have (very sim­
ple) behaviors associated with them, and could be considered minimal agents. 
These systems exhibit real-time PBS. 

Li and colleagues (Li et al., 2000a; Li et al, 2000b) evolve the strategies of 
agents playing the minority game, a simple model of emergent market dynamics. 
The agents' fitnesses are evaluated as the game proceeds, but the population is 
updated all at once every 10,000 time steps, rather than permitting each agent 
to evolve asynchronously with respect to the others, as in nature. 

3. A Configuration Application 
The most direct application of PBS to swarming systems is finding configura­

tions of the individual agents so heir interactions yield the desired system-level 
behavior. We illustrate this in the context of ADAPTIV (Adaptive control 
of Distributed Agents through Pheromone Techniques and Interactive Visual­
ization), a system developed for planning flight paths for uninhabited robotic 
vehicles (URV's). This system uses a digital analog of insect pheromone mech­
anisms to guide vehicles around threats and toward targets. 

Our implementation of digital pheromones has four components: 

1 A distributed network of place agents maintains the pheromone field and 
performs aggregation, evaporation, and diffusion. Each place agent is 
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responsible for a region of the physical space. In our simulation, we 
tile the physical space with hexagons, each represented by a place agent 
with six neighbors, but both regular and irregular tiling schemes can be 
employed. Place agents ideally are situated physically in the environment 
using unattended ground sensors distributed over an area and connected 
to their nearby neighbors through a wireless network. They may also be 
located in a distributed network of command and control nodes. 

2 Avatars represent physical entities. Red avatars represent the enemy 
targets and threats, while blue represent friendly URVs. Blue avatars are 
normally located on the robot vehicle. The name "Avatar" is inspired by 
the incarnation of a Hindu deity, and by extension describes a temporary 
manifestation (a software agent) of a persistent entity (a robot vehicle). 

3 Blue avatars create Ghost agents that wander over the place agents looking 
for targets, and then continually building a path from the avatar to the 
target.Both of these entities deposit pheromones at their current locations. 

4 Different classes of agents deposit distinct pheromone flavors. Agents 
can sense pheromones in the place agent in whose sector they reside as 
well as the neighboring place agents. The underlying mathematics of 
the pheromone field, including critical stability theorems, is described in 
(Brueckner, 2000). 

Battlefield intelligence from sensors and reconnaissance activities causes the 
instantiation of red avatars representing known targets and threats. These agents 
deposit pheromones on the places representing their location in the battlespace. 
The field they generate is dynamic since targets and threats can move, new ones 
can.be identified, or old ones can disappear or be destroyed. A blue avatar 
representing a URV is associated with one place agent at any given time, the 
place agent within whose physical territory the URV is currently located. It 
follows the pheromone path created by its ghost agents. 

Ghosts initially wander through the network of place agents, attracted to 
pheromones deposited by targets and repelled by threat pheromones. Once 
they find a target, they return over the network of place agents to the avatar, 
depositing pheromones that contribute to building the shortest, safest path to 
the target. The basic pheromone flavors are RTarget (deposited by a Red target 
avatar, such as the Red headquarters), RThreat (deposited by a Red threat avatar, 
such as an air defense installation), GTarget (deposited by a ghost that has 
encountered a target and is returning to its blue avatar, forming the path to the 
target), and GNest (deposited by a ghost that has left the blue avatar and is 
seeking a target). 

A ghost agent chooses its next sector stochastically by spinning a roulette 
wheel with six weighted segments (one for each of its six neighbors). The size of 

http://can.be
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each segment is a function of the strength of the pheromones and is designed to 
guide the ghost according to the algorithm above. We experimented with several 
different forms of the function that generates the segment sizes. Evolution of 
such a form using genetic programming would in itself be a useful exercise. In 
our case, manual experimentation yielded the form (for outbound ghosts): 

e ' RTargetn + 7 • GTargetn + ß 
{pGNestn + ß){Distn + i^y-^ociRThreatn+l) _̂  ß 

Fn is the resultant attractive force exerted by neighbor n and Dist is the 
distance to the target if it is known. Table 2-1 lists the tunable parameters in 
the equation and the effect that increasing each parameter has on the ghost's 
behavior. Though this table provides general guidance to the practitioner, in 
practice, the emergent dynamics of the interaction of ghost agents with their 
environment makes it impossible to predict the behavior of the ghosts. Thus 
tuning the parameters of this or any pheromone equation becomes a daunting 
task. Even if a skilled practitioner were able to tune the equation by hand, the 
system would still be impractical for end users who don't think of their problem 
in terms of a, ß, and 7. This observation led us to investigate the possibility of 
using evolutionary methods to tune the parameters of the equation. 

a 
5 

7 
P 
0 

Table 2-1. Tunable Parameters and their Effects on Ghosts. 

Increases threat avoidance further from the target 
Increases probability of ghosts moving towards a known target in the absence of 
RTarget pheromone 
Increases sensitivity to other ghosts 
Increases ghost exploration (by avoiding GhostNest pheromone) 
Increases attraction to RTarget pheromone 
Avoids divison by zero 

We explored several PBS algorithms on the problem of defining ghost pa­
rameters, including three varieties of evolution strategies (ES) and a genetic 
algorithm (GA). Details on these approaches and the scenarios on which they 
were tested are described in our original paper (Sauter et al., 2002). In all cases, 
ghosts have a fixed lifetime. Within this lifetime they first execute a search, 
and then breed sexually until they die. Thus ghosts that complete their search 
faster have longer to breed, and generate more offspring. The GA and one ES 
approach took account of threats that the ghost encountered during its search, 
and the GA also rewarded the ghost for the value of the target that it discovered. 
In all cases, as each ghost returns to the URV, it is evaluated and selectively 
participates in generating subsequent generations of ghosts. Thus the ghosts 
being emitted by the avatar are evolved in real time, as the system runs. 
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One could envision evolving the parameters for the ghosts off-line. The 
success of this approach would depend on the stability of the environment. 
In the test examples reported here, the environment was static, and we were 
exploring the speed with which the evolutionary process converged, and the 
resulting performance achieved. However, on different runs we gave the system 
different scenarios, to which it developed distinct parameters. In a real-world 
application, scenarios are not static, and a set of parameters evolved for one 
scenario would not function well on another. By adapting the parameters in 
real time, we can accommodate dynamic changes in the environment. 

Figure 2-1 shows the performance of the system, measured by the strength 
of the GTarget pheromone adjacent to the avatar (and thus available to guide it). 
The left-hand plot shows two benchmarks. The "Hand Tuned" line shows the 
behavior of a set of parameters derived by manual experimentation. The "Ran­
dom" line shows the behavior when ghosts are generated with small random 
excursions around the hand tuned values. 
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Figure 2-1. Performance of PBS on path planning. Left: comparison of ES's on Two Target 
scenario. Right: comparison of Strength ES on various scenarios, and GA on Two Target 
scenario. 

The left-hand plot shows that all three versions of the ES outperformed the 
hand tuned and random configuration by an order of magnitude. The Strength 
ES takes into account the damage suffered by the ghost in simulated encounters 
with threats, and while it takes longer to converge, it outperforms the other ES 
approaches on a wider range of scenarios. The slight superiority of the random 
to the hand tuned configuration is an interesting illustration of the value of 
stochasticity in breaking symmetries among swarming agents and permitting 
more effective exploration of the environment. 

The right-hand plot compares the Strength ES on four different scenarios 
with the GA on one of them. 
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This system has striking similarities with the Dynamic Flies system, though 
each was developed without knowledge of the other. In both cases, interacting 
entities continuously evolve under the influence of the environment, and gen­
erate a field that guides the movement of a physical vehicle. Table 2-2 makes 
this comparison explicit. 

Table 2-2. Comparison of ADAPTIV and Dynamic Flies. 

Feature 
Entities 
Environmental Influences 
Generated Field 
Physical Agent 

ADAPTIV 
Ghosts 
Targets and Threats 
GTarget pheromone 
URV 

Dynamic Flies 
Flies 
Obstacles 
Aggregate Fly fitness 
Robot 

The systems differ in their specificity and their dynamics. Both of these 
differences reflect the distinction between ADAPTIV's ghosts (which are real, 
though simple agents with autonomous behaviors) and the flies (which are 
simply the coordinates of points in three-space). 

• Specificity.—Dynamic Flies specifically supports processing of stereo 
vision for obstacle detection. The only output from the flies to the rest 
of the system is their fitness, linking the evolutionary process directly 
to the obstacle avoidance behavior. In ADAPTIV, evolution adjusts the 
characteristics of the ghosts, whose impact on the rest of the system is 
through a digital pheromone that is part of a larger pheromone vocabulary. 
Thus a ghost has a richer set of inputs than a fly (including not only 
pheromones from targets and obstacles but also pheromones from other 
ghosts), and the system can reason about attractors as well as repellers. 

• Dynamics.—The Dynamic Flies system has no memory. A fly repels 
the vehicle only while it is actually at a location, and only in proportion 
to its current fitness. This feature is appropriate for the specific obstacle 
avoidance application for which the system is designed. The ADAPTIV 
architecture supports more general geospatial reasoning, including the 
need to maintain a memory of a threat or target that may not currently 
be visible. Because pheromones are distinct from the agents that deposit 
them, they can persist in a location after the agent has moved on, or 
they can vanish almost immediately, depending on the setting of the 
evaporation rate associated with a given pheromone flavor, 

4 A Behavior Fitting Application 
Our second example addresses the problem of predicting the future behavior 

of soldiers in urban combat, based solely on their observed past behavior. We 
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assume that an individual soldier's behavior is a function of his^ individual 
personality as well as his interactions with other soldiers and with the urban 
environment. Prediction in this highly nonlinear system merits comparison with 
prediction in nonlinear systems without the social and psychological aspects of 
combat (Kantz and Schreiber, 1997). The general approach in such systems is 
to extrapolate future behavior using functions fitted to the recent past. While 
the nonlinear nature of the systems may lead to divergence of trajectories over 
time, continuously refreshing the fit and limiting the distance of the projection 
into the future can yield useful predictions (Figure 2-2). 

Figure 2-2. By constantly updating a fit of the system's trajectory through state space on the 
basis of the recent past (a), one can generate useful predictions a short distnce into the future (b). 

Historically, this approach has been applied to systems that can be described 
analytically, permitting a functional form to be fit to recent behavior. We have 
extended this approach to entities, such as soldiers, whose behavior cannot 
readily be fit using analytical techniques. The basic approach is to represent 
the entity by a software agent whose behavioral parameters are fit using PBS. 
We call this approach "Behavioral Emulation and Extrapolation," or BEE. 

BEE must operate very rapidly, in order to keep pace with the ongoing 
evolution of the battle. Thus we use simple agents coordinated using pheromone 
mechanisms similar to those described in our configuration example. 

Figure 2-3 explains BEE further. Each active entity in the battlespace has an 
avatar that continuously generates a stream of ghost agents representing itself. 
The ghosts' behavioral parameters are selected from distributions to explore 
possible intentions of the entity they represent. Thus BEE mimics at the agent 
level the nonlinear track analysis outlined in Figure 2-2. 

Ghosts live on a timeline indexed by r that begins in the past at the insertion 
horizon and runs into the future to the prediction horizon. The avatar inserts 

^We use the masculine gender generically. 
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the ghosts at the insertion horizon. The ghosts representing different entities 
interact with one another and with the terrain. These interactions mean that their 
fitness depends not just on their own actions, but also on the behaviors of the 
rest of the population, which is also evolving. Because r advances faster than 
real time, eventually r = t (actual time). At this point, the ghosts are evaluated 
based on their locations compared with the entity represented by their avatar. 

The fittest ghosts have two functions. First, they are bred and their offspring 
are reintroduced at the insertion horizon to continue the fitting process. Second, 
they are allowed to run past the avatar's present into the future. Each ghost that is 
allowed to run into the future explores a different possible future of the battle, 
analogous to how some people plan ahead by mentally simulating different 
ways that a situation might unfold. Analysis of the behaviors of these different 
possible futures yields predictions. 

This entire process runs continuously, in real time, as the system monitors 
the environment. Ghosts are evolving against the world as its state changes. 
As in the Dynamic Flies system, the evolution of the swarming agents is what 
enables them to track a dynamic environment. Unlike the Dynamic Flies, 
but like ADAPTIV, the output of the ghosts in BEE is not an immediate by­
product of the evolutionary process (the fitness of the agents), but a second-order 
phenomenon produced by the agents (their behavior as they run into the future). 

Insertion Horizon 
Measure Gtiost fitness 

o 

II 

Prediction Horizon 
Observe Gtiost prediction 

Gtiost time x 

Figure 2-3. Behavioral Emulation and Extrapolation. Each avatar generates a stream of ghosts 
that sample the personality space of the entity it represents. They are evolved against the observed 
behavior of the entity in the recent past, and the fittest ghosts then run into the future to generate 
predictions. 
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The personality of each ghost includes four categories of information, all 
represented as scalars (Parunak et al., 2005): 

1 Desires are anticipated future state of the world toward which the agent is 
positively disposed. We have defined a basic set of desires relevant to the 
combat scenario. An agent's goals are considered to be stable over the 
time horizon that we are considering. They may be mutually exclusive, 
since they have no effect on an agent's actions until they are instantiated 
as goals in the face of environmental information. A desire might be 
"occupy key sites." 

2 Goals are selected by the agent from among its desires based on its 
current state and recent history, and it chooses its actions in an effort to 
accomplish the goals. Unlike desires, the set of goals held by an agent at a 
given time are believed by the agent to be consistent with one another, and 
may change over the time horizon of the battle. A goal instantiated from 
the "key sites" desire might be "occupy building 34 by time = 1520." The 
agent continually reviews its goals to ensure their consistency with the 
current state of the world. If it discovers that two goals are inconsistent 
with one another, it will drop at least one of them. 

3 Emotions are defined following the OCC model (Ortony et al., 1988) as 
"valenced reactions to events, agents, or objects." Emotions vary based 
on the events, agents, or objects that the agent experiences, and modulate 
its analysis of which goals to instantiate over time. For example, an event 
of being attacked will raise the level of an agent's fear emotion. 

4 Dispositions reflect an agent's tendency to adapt a given emotion. For 
example, an agent with a high level of the "cowardice" disposition will 
experience a faster rate of increase of fear in the presence of an attack than 
an agent with a low level of this disposition. Dispositions are assumed 
to be constant over the time horizon in question. 

Figure 2-4 shows how these four personality elements interact with one 
another and with environmental stimuli to generate the agent's behavior. 

This system has been tested in a series of realistic wargaming experiments 
in which the actions of the red and blue fighters were directed by experienced 
military commanders. While the results of these experiments have not yet been 
released for publication, BEE was successful in detecting which units were 
being played to exhibit specified dispositions. 

5. Discussion and Conclusion 
These applications are both instances of agent-centered PBS. The configura­

tion problem is directly comparable to the many applications of PBS to robotic 
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Figure 2-4. Desires, beliefs, dispositions, and emotions generate an agent's basic behaviors in 
response to environmental stimuli. 

configuration, while the fitting problem can be compared to biological studies 
that seek to understand existing behavior in the natural world. 

What sets these applications apart from most others is their real-time nature. 
In many instances of PBS, the entire population is synchronized. Even when 
the focus of search is the single agent rather than the system as a whole, it is 
common to update all agents at the same time, replacing the entire population 
at each generation. In our approach, breeding occurs in parallel with the eval­
uation of the ghosts. In the configuration example, only 1% of the population 
is replaced in each generation. Since the evaluation of an individual can take 
100 - 300 time steps (the round trip distance with room for wandering), forcing 
a complete evaluation cycle before breeding would have slowed down the al­
gorithm considerably. Similarly, in the fitting example, ghosts are continually 
compared with the behavior of the entities they represent as the battle unfolds, 
and breeding affects only a small fraction (about 3%) of the ghosts at each time 
step. By changing only a fraction of the population at each time step, we leave 
the bulk of the agents to carry on the work that the system is intended to do 
and avoid catastrophic shifts due to maladaptive individuals. At the same time, 
we limit the ability of the system to respond rapidly to catastrophic exogenous 
events, a weakness to which natural real-time evolution is not immune. 

It is common in agent-centered PBS to evaluate the fitness of an individual 
in isolation, or in a tournament where individuals from separate populations 
compete with each other. In our examples, the ghosts are part of a mixed 
population. Each of them is depositing pheromones and reacting to pheromones 
in a common environment. Thus, unfit individuals are depositing pheromones 
in the same environment being sensed by fit individuals, potentially causing 
the fit individuals to score lower than they would otherwise. This fact initially 
concerned us. We weren't sure whether PBS would even work under those 
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circumstances. However, this particular problem appears to have a number of 
reasonable solutions, so the effect of having a mixed population did not prevent 
the algorithms from identifying and rewarding the better individuals. 

Three details of our approach make it possible to apply PBS in real time: 

1 Real-time PBS is facilitated by an agent-centric approach so that some 
components of the system can be modified while others carry on the 
system's work. 

2 This approach is realistic only with populous systems, so that the effect 
of a change in a single agent do not discontinuously change the dynamics 
of the whole system. We know empirically that the systems described in 
this paper can function with populations on the order of 100 and more, 
but we have not systematically explored the lower bound. 

3 Agents should be light-weight, so that multiple copies can be executed 
fast enough to keep up with the real world. We have found that the digital 
pheromone model, using simple functions to combine the pheromones 
sensed by the agent in its environment, is efficient enough to support tens 
of thousands of agents concurrently, thus providing both the population 
sizes and repeated cycles needed for effective evolution while keeping 
pace with real time. 

Our experiments show that it is feasible to evolve a complex system in real 
time, element by element, rather than in a planning step that is temporally dis­
continuous with the system's operation. This approach opens new opportunities 
for applying PBS to dynamically changing systems that do not lend themselves 
to lengthy planning cycles. 
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AUTOMATED DESIGN OF A PREVIOUSLY 
PATENTED ASPHERICAL OPTICAL LENS 
SYSTEM BY MEANS OF GENETIC 
PROGRAMMING 

Lee W. Jones^, Sameer H. Al-Sakran^ and John R. Koza^ 
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fornia 

Abstract This chapter describes how genetic programming was used as an invention ma­
chine to automatically synthesize a complete design for an aspherical optical 
lens system (a type of lens system that is especially difficult to design and that 
offers advantages in terms of cost, weight, size, and performance over traditional 
spherical systems). The genetically evolved aspherical lens system duplicated 
the functionality of a recently patented aspherical system. The automatic synthe­
sis was open-ended — that is, the process did not start from a pre-existing good 
design and did not pre-specify the number of lenses, which lenses (if any) should 
be spherical or aspherical, the topological arrangement of the lenses, the numer­
ical parameters of the lenses, or the non-numerical parameters of the lenses. The 
genetically evolved design is an instance of human-competitive results produced 
by genetic programming in the field of optical design. 

Keywords: automated design, optical lens system, aspherical lenses, developmental pro­
cess, genetic programming, replication of previously patented invention, human-
competitive result 

1. Introduction 
An optical lens system is an arrangement of refractive or reflective materials 

that manipulate light (Smith, 1992; Smith, 2000). Their design is more of an 
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art than a science. As Warren J. Smith states in Modem Optical Engineering 
(Smith, 2000): 

"There is no 'direct' method of optical design for original systems; that is, there 
is no sure procedure that will lead (without foreknowledge) from a set of perfor­
mance specifications to a suitable design." 

Lens systems have historically been composed of lenses with spherical sur­
faces. Recently, it has been economically feasible to manufacture lenses with 
aspherical surfaces. The use of aspherical lenses can potentially reduce the 
total number of lenses, thereby reducing the costs of manufacturing and assem­
bling the optical system. Moreover, an aspherical lens is often thinner than the 
replaced spherical lens, thereby further reducing the system's weight and cost. 

A complete design for an optical lens system encompasses numerous de­
cisions, including the choice of the system's topology (that is, the number of 
lenses and their topological arrangement), choices for numerical parameters, 
and choices for non-numerical parameters. 

The topological decisions required to define a lens system include the se­
quential arrangement of lenses between the object and the image, decisions as 
to whether consecutive lenses touch or are separated by air, the nature of the 
mathematical expressions defining the curvature of each lens surface (tradition­
ally spherical, but nowadays often aspherical), and the locations and sizes of 
the field and aperture stops that determine the field of view and the maximum 
illumination of the image, respectively. 

The numerical choices include the thickness of each lens and the separation 
(if any) between lens surfaces, the numerical coefficients for the mathematical 
expressions defining the curvature of each surface (which, in turn, implies 
whether each is concave, convex, flat, or aspheric), and the aperture (semi-
diameter) of each surface. 

The non-numerical choices include the type of material {e,g. glass, polymer) 
for each lens. Each type of material has various properties of interest to optical 
designers, notably including the index of refraction, n (which varies by wave­
length); the Abbe number, V\ and the cost. Choices of material are typically 
drawn from a standard catalog. 

This paper describes how genetic programming (Koza, 1990; Koza, 1992; 
Koza, 1993; Koza, 1994; Koza et al., 1999; Koza et al., 2003; Banzhaf et al., 
1998; Langdon and Poli, 2002) was used to create a complete design for an 
optical lens system that satisfies the inventors' requirements specified in U.S. 
Patent 5,568,319 (Kaneko and Ueno, 1996). The automatic synthesis is open-
ended-that is, the process did not start from a pre-existing good design and 
did not pre-specify the number of lenses, which lenses should be spherical or 
aspherical, the topological arrangement of the lenses, the numerical parameters 
of the lenses,or the non-numerical parameters of the lenses. 
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Section 2 provides background on the design of optical lens systems. Section 
3 discusses the developmental representation used to apply genetic program­
ming to optical systems. Section 4 discusses five domain-specific adjustments 
to standard genetic programming that we use in problems of optical design. 
Section 5 presents the results. Section 6 is the conclusion. 

2. Design of Optical Lens Systems 
A classical lens system is conventionally specified by a table called a pre­

scription (or, if the system is being analyzed by modem-day optical simulation 
software, a lens file). In 1996, Masanobu Kaneko and Yasunori Ueno received 
U.S. Patent 5,568,319 entitled "Aspherical Eyepiece." Figure 3-1 shows the 
patented Kaneko-Ueno lens system. This system has three groups of lenses 
containing a total of four lenses. 

Ob jec t E n t r y P u p i l Image 

Figure 3-L Kaneko-Ueno patent. 

Table 3-1 shows a prescription for the patented Kaneko-Ueno lens system of 
Figure 3-1. Because of space limitations here, the reader is referred to a general 
textbook on optics (Smith, 2000; Fischer and Tadic-Galeb, 2000) for a detailed 
explanation of this widely used representation. Surface 6 in the patented system 
is aspherical. The value in column 6 represents the coefficient C4 of the ^4 term 
in the general aspherical expression: 

X = 
Cy' 

+ E^2iy'' 1 + V l - (fc + l)C2y2 .^^ 

In this expression, y is the height from the system's main axis (line b in figure 
1), C is the curvature of the underlying spherical surface, the C2i are coefficients 
of the even-numbered polynomial terms, and k is the conic constant. If the conic 
constant k = 0, the system is spherical; if - 1 < /c < 0, the system is ellipsoid; 
if k < —1, the system is hyperboloid; and if fc = 1, the system is parabaloid). 
In the expression, x is the distance between the Y-axis to the three-dimensional 
surface (of which we only see the projection lying on the plane of the paper). 
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Table 3-1. Lens file for the Kaneko-Ueno patent. 

Surface 

Object 
Entry pupil 
1 
2 
3 
4 
5 
6 
7 
Image 

Distance 

10^^ 
1.091668 
0.333334 
0.016667 
0.500001 
0.166667 

0.125 
0.125 

0.317441 

Radius 

Flat 
Flat 

40.07506 
-1.01667 
1.083335 
-1.08334 
11.66668 

Flat 
Flat 
Flat 

Material 

Air 
Air 

SK55 
Air 
SK5 
SFL6 
Air 
KIO 
Air 

Aperture 

0.125 
0.634053 
0.727958 
0.728162 
0.607429 
0.583186 
0.555395 
0.536884 
0.466308 

CA 

0.0 
0.0 
0.0 
0.0 
0.0 

-0.3715184 
0.0 

The genetic algorithm (Holland, 1992) has been extensively used for optimiz­
ing the choices of parameters of optical systems having a pre-specified number 
of lenses and a pre-specified topological arrangement, as listed in Jarmo Alan-
der's voluminous An Indexed Bibliography of Genetic Algorithms in Optics and 
Image Processing (Alander, 2000). 

Beaulieu, Gagne, and Parizeau (Beaulieu et al., 2002) used GP to "re-
engineer" the design of a four-lens monochromatic system (produced by a run 
of the genetic algorithm) and thereby created an improvement over the best 
design produced by 11 human teams in a design competition held at the 1990 
International Lens Design Conference. Their approach used functions that in­
crementally adjusted (additively or multiplicatively) the distance between lens 
surfaces, radius of curvature of lens surfaces, and stop location values. 

It has been demonstrated that genetic programming can be used to automati­
cally synthesize a complete design for spherical optical lens systems (Al-Sakran 
et al., 2005), including six previously patented systems (Koza et al., 2005). 

3. Developmental Representation Used for Optical Design 
Pioneering work on developmental representations for use with genetic algo­

rithms and genetic programming was done by Wilson (Wilson, 1987), Kitano 
(Kitano, 1990), and Gruau (Gruau, 1992). In 1993, Koza (Koza, 1993) used ge­
netic programming to evolve developmental rewrite rules (Lindenmayer system 
rules) using a turtle to create shapes such as the quadratic Koch island. In 1996, 
Koza, Bennett, Andre, and Keane (Koza et al., 1996a) used developmental ge­
netic programming to automatically synthesize a variety of analog electrical 
circuits, including several previously patented circuits and human-competitive 
results and provided for reuse of portions of circuits (by means of subroutines 
and iterations), parameterized reuse, and hierarchical reuse of substructures in 
evolving circuits (Koza et al., 1996b). In 1996, Brave (Brave, 1996) used de-
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velopmental genetic programming to evolve finite automata. In 1996, Spector 
and Stoffel (Spector and Stoffel, 1996) extended the notion of development to 
genetic programming. 

The widely-used and well-established format for optical prescriptions (and 
lens files for optical analysis software) suggests a developmental process suit­
able for representing optical lens systems. This developmental representation 
employs a turtle similar to that used in the Lindenmayer systems (Lindenmayer, 
1968), (Prusinkiewicz and Lindenmayer, 1990), in our previous work in syn­
thesizing geometric patterns (such as the Koch island) where we used develop­
mental genetic programming and a turtle (Koza, 1993). These two techniques 
were also used in our other works in synthesizing antennas (Comisky et al., 
2000), (Koza et al, 2003). 

The function set, F, contains two functions: 

F = {AS4, PR0GN2} 

The two-argument PR0GN2 function is a connective function that first exe­
cutes its first argument and then executes its second argument. 

The four-argument AS4 ("aspherical surface") function causes the turtle to 
do three things at its starting point (and each subsequent point to which the 
turtle moves). First, it inserts an aspherical surface with a specified radius of 
curvature (second argument of the AS4 function) and specified coefficient C4 
(fourth argument) at the turtle's present location. Second, the AS4 function 
moves the turtle to the right by a specified distance (first argument) along the 
system's main axis. Third, the AS4 function fills the space to the right of the 
just-added surface with a specified type of material (third argument). 

Values for radius of curvature (second argument of the AS4 function), dis­
tance (first argument), and the coefficient C4 (fourth argument) are each es­
tablished by a value-setting subtree of the AS4 function consisting of a single 
perturbable numerical value. The material (third argument of the AS4 func­
tion) is established by a value-setting subtree of the AS4 function consisting of 
a single terminal identifying the type of material. 

The following LISP S-expression represents the optical lens system of Figure 
3-1 and Table 3-1: 

(PR0GN2 (PR0GN2 (PR0GN2 (AS4 0.333334 40.07506 SK55 0.0) 

(AS4 0.016667 -1.01667 Air 0,0)) 

(PR0GN2 (AS4 0.500001 1.083335 SK5 0.0) 

(AS4 0.166667 -1.08334 SFL6 0.0)) 

(PR0GN2 (PR0GN2 (AS4 0.125 11.66668 Air 0.0) 

(AS4 0.125 lElO KIO -0.3715184)) 

(AS4 0.317441 lElO Air 0.0))) 
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In the previous expression, a radius of curvature of IE 10 corresponds to a 
flat surface. 

Figures 3-2, 3-3, 3-4, 3-5, and 3-6 show selected steps in the developmental 
process for the Kaneko-Ueno lens system of Figure 3-1 and Table 3-1. 

In our developmental representation, the turtle starts at point g of Figure 3-2. 
For the Kaneko-Ueno lens system, point g is at a distance of 1.09 mm from 
point e (where the entry pupil surface intersects the system's main axis b). This 
distance comes from the row labeled "entry pupil" in Table 3-1 and defines the 
eye relief of the Kaneko-Ueno system. 

Figure 3-3 shows the result of the insertion of surface 1 with a radius of 
curvature of 40.07506 and a coefficient C4 of 0 (as shown in the row labeled 
"1" in Table 3-1). A coefficient C4 of 0 indicates that this surface is spherical. 
After inserting this (nearly flat) surface, the turtle moves 0.333334 mm from its 
starting point g to point h along axis line b. Glass of type "SK55" will fill the 
space between g and the surface that will be subsequently inserted at h (by the 
turtle's next step). 

Figure 3-4 shows the result of the insertion by the turtle of surface 2 with 
a radius of curvature of -1.01667 and a coefficient C4 of 0 (as shown in the 
row labeled "2" in Table 3-1). After inserting this surface, the turtle moves 
0.016667 mm from point h to i. Surfaces 1 and 2 together define a lens of 
thickness 0.333334 of SK55 glass. Because air fills the space between h and 
the surface that will be subsequently inserted at i (by the turtle's next step), this 
lens is a singlet (stand-alone) lens. 

Figure 3-5 shows the lens of SK5 glass resulting from the insertion of surfaces 
3 and 4 corresponding to the rows labeled "3" and "4" in Table 3-1. 

Figure 3-6 shows the result of the insertion by the turtle of surface 5 with 
a radius of curvature of 11.66668 and a coefficient C4 of 0 (as shown in the 
row labeled "5" in Table 3-1). Because SFL6 glass fills the space to the right 
of surface 4, a doublet is formed by the insertion of surface 5. The doublet 
consists of a lens of SK5 glass and a lens of SFL6 glass. 

Finally, surfaces 6 and 7 are inserted (corresponding to the rows labeled "6" 
and "7" in Table 3-1). Surfaces 6 and 7 together define a lens of thickness 
0.125 of KIO glass. This final lens is shown at the right end of Figure 3-1. 
Surfaces 6 and 7 both have an infinite radius of curvature. Surface 7 is totally 
flat because its aspherical coefficient C4 is 0. However, surface 6 has a non-zero 
aspherical adjustment (a coefficient C4 of-0.3715184). Thus, in the patented 
Kaneko-Ueno lens systems, the first three lenses shape the image and the final 
lens serves as an aspherical correction plate. 
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Object Entry Pupil ima'ge 

Figure 3-2. Turtle starts at point g along main axis b. 
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Figure 3-3. Turtle inserts surface 1 
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Figure 3-4. Turtle inserts surface 2 thereby completing the first singlet lens. 

Object Entry Pupil 
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Figure 3-5. Turtle inserts surfaces 3 and 4 thereby completing the second singlet lens. 

Object Entry Pupil Image 

Figure 3-6. Turtle inserts surfaces 5 thereby completing the doublet. 
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4. Five Domain-Specific Adjustments 
Five domain-specific adjustments are necessary (or advantageous) in order 

to apply genetic programming to the field of optical design. 

Glass Mutation Operation 
In the field of optical design, the numerical parameter values for distance 

and the radius of curvature of a lens can each be established using the standard 
technique of perturbable numerical values. However, the choice of materials 
is limited, in real-world situations, to one of a relatively small number of com­
mercially available types of materials (such as the types of glass found in the 
Schott catalog). Accordingly, our mutation operation for materials changes one 
type of material to another type of material in the chosen catalog (the offspring 
being nearby in the multidimensional space of properties for the materials as 
shown in Figure 3-7). 
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Figure 3-7. Glass map for the 199 types of glass in the Schott catalog. 

Practical Limitations on Numerical Values 
Practical considerations dictate certain limitations on the numeric values 

that are allowed for distance and radius of curvature. The minimum radius of 
curvature is -15 and the maximum is +15. The maximum thickness (for glass 
or air) is 1.0. The minimum thickness for air is 0.01 and the minimum thickness 
for glass is 0.1. The minimum aperture is 0.1 (where an opaque mounting is 
added to cradle a lens that would otherwise be hovering in air). The aspheric 
coefficient terms have a range from -10 to +10 for optical systems normalized 
to a focal length of 1. 

Toroidal Mutation Operation for the Radius of Curvature 
However, a slight modification of the standard method for numerical param­

eter mutation is advantageous when perturbing the radius of curvature. The 
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reason is that a flat surface can be viewed as a spherical surface with a very 
large positive or negative radius of curvature. That is, a very large positive or 
negative radius represents the same thing. Accordingly, our numerical parame­
ter mutation operation for curvatures operates in a toroidal way (wrapping +15 
to -15) when it is applied to a terminal representing the radius of curvature. 

Lens Splitting Operation 
A lens-splitting operation appears to be useful for the field of optical design. 

The lens-splitting operation is performed on a single parent selected probabilis­
tically from the population based on its fitness. The lens-splitting operation 
replaces one randomly picked lens with two new lenses. Figure 3-8 shows an 
illustrative lens system and Figure 3-9 shows the result of applying the lens-
splitting operation. 
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Figure 3-8. Lens system before lens-splitting operation. 
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Figure 3-9. Lens system after lens-splitting operation. 

The thickness of each of the two new lenses is half of the thickness of the 
original lens. The radius of curvature of the first surface of the first new lens is 
set equal to the radius of curvature of the first surface of the original lens. The 
radius of curvature of the second surface of the second new lens is set equal 
to the radius of curvature of the second surface of the original lens. The new 
second surface of the first lens also serves as the new first surface of the second 
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lens. This new common surface is flat. When the original lens is a single lens 
(as is the case in Figure 3-8), the result of the lens splitting operation is a doublet 
lens (as shown in Figure 3-9). The lens-splitting operation is intended to be 
optically neutral {Le,, it ordinarily does not change the fitness of the lens system 
involved). The only exception is that if half of the thickness of the original lens 
is less than the minimum permissible lens thickness, the thickness of each new 
lens is set to the minimum lens thickness (and the overall length of the lens 
system is slightly increased accordingly). Note that because of the toroidal 
behavior of the numerical parameter mutation operation, the newly created flat 
surface has an equal probability of being perturbed to a negative or positive 
radius of curvature when it is first mutated. 

The motivation for the lens-splitting operation is that the insertion of ad­
ditional surfaces or lenses by means of crossover rarely yields an improved 
individual. This operation creates a child that almost always has the same 
(reasonably good) fitness as its parent. It thus introduces topological diversity 
without changing fitness. Subsequent glass mutations or numerical mutations 
of the distance or radius of curvature can then be done gradually. 

Simulatability of Initial Random Generation 
The run of genetic programming described in this paper starts with an initial 

population that is randomly created from the available functions and terminals. 
About 94.6% of the randomly created individuals are pathological in some way 
and cannot be simulated. If we retained these individuals in the population 
for generation 0 (say, penalizing them heavily because of their unsimulata-
bility), the genetic material generally available for crossovers would be only 
about 1/20 of what it otherwise might be. Thus, in creating generation 0, we 
replace unsimulatable individuals with newly created simulatable individual 
until 100% of generation 0 is simulatable. Because simulatable individuals 
tend to breed simulatable offspring (an observation applicable to the design of 
optical lens systems as well as the design of analog electrical circuits, antenna, 
and controllers), this issue is not a concern for later generations. Note that this 
improvement is also applicable and advantageous to the automatic synthesis of 
non-optical designs. 

5, Fitness 
Once a classical optical system is specified by means of its prescription (lens 

file), its optical properties can be calculated by tracing the path of light rays 
of various wavelengths through the system. Ray-tracing analysis by hand is 
extremely time-consuming. Ray tracing is typically performed nowadays by 
optical simulation software {e,g,, OSLO, Zemax, Code V, KOJAC). The ray 
tracing analysis yields a set of characteristics of interest to optical designers. 
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including distortion, astigmatism, and chromatic aberration. In addition to ray 
tracing for the ascertainment of aberrations, an optical lens systems is also 
evaluated in terms of the system's image-forming quality. To do this, a 17x17 
grid is overlaid on the entry pupil and a ray is shot through the comer defining 
each grid position contained inside the entry pupil. A three-color spot diagram 
is then formed and evaluated. Several other system metrics are derived from 
this ddata, including modulation transfer functions and point spread functions. 

A multiobjective fitness measure involving numerous elements is required for 
optical design. The fitness measure and other preparatory steps are substantially 
the same as those used in our recent work on the automatic synthesis of optical 
lens systems by means of genetic programming (Al-Sakran et al., 2005; Koza 
et al, 2005). 

6. Results 
This run of genetic programming starts with an initial population (generation 

0) that is randomly created from the available functions and terminals. In gener­
ation 0, we continued to replace unsimulatable individuals with new randomly 
created individuals until the entire initial population consisted of simulatable 
individuals. For non-trivial problems, even the simulatable individuals in the 
population at generation 0 of a run of genetic programming are invariably poor 
in terms of satisfying the problem's requirements. This was the case here. The 
best-of-generation individual from the initial random population (generation 0) 
consisted of a lens system with one lens (Figure 3-10). 

Object Entry Pupil .Image 

Figure 3-10. Best of generation 0 for the Kaneko-Ueno problem 

Although the best-of-generation individual from generation 0 is poor in terms 
of satisfying the problem's requirements, the single lens provides a toehold that 
enables the evolutionary process to proceed. Figure 3-11 shows the best-of-run 
lens system from generation 746. This lens system has five lenses (arranged in 
four groups). 

Table 3-2 shows the prescription (lens file) for the best-of-run individual. 
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Object Entry Pupil Image 

Figure 3-11. Best-of-run lens system from generation 746 for the Kaneko-Ueno problem. 

Table 3-2. Lens file for best-of-run lens system from generation 746. 

Surface 

Object 
Entry pupil 
1 
2 
3 
4 
5 
6 
7 
8 
9 
Image 

Distance 

10^0 
1.091668 
0.352192 

0.01 
0.100694 
0.170295 

0.01 
0.39326 
0.125374 
0.517407 
0.206743 

Flat 

Radius 

Flat 
Flat 

10.35241 
-1.38146 
6.911665 
1.693854 
-8.47601 
1.776476 
-7.75645 
-7.50353 
6.893007 

Material 

Air 
Air 

LAKN12 
Air 

SF59 
LAFN28 

Air 
LAKIO 

Air 
SFL4A 

Air 
0.462102 

Aperture 

0.123873 
0.632926 
0.722105 
0.72281 
0.721309 
0.725851 
0.725661 
0.654089 
0.607231 
0.515071 

C4 

0.0271156 
0.0271156 
0.0271156 
0.0271156 
0.0271156 
0.0271156 
0.0271156 
-0.180589 
0.0271156 

Notice that both surfaces of the last lens in the best-of-run lens system from 
generation 746 (/. e., surfaces 8 and 9 in Figure 3-11 and Table 3-2) are almost flat 
and that the only large aspherical coefficient (namely -0.180589) is associated 
with the left surface of this last lens (i.e., surface 8). Both surfaces of the last 
lens of the patented system (i.e., surfaces 6 and 7 of Figure 3-1 and Table 3-1) 
are flat and the only non-zero aspherical coefficient (namely -0.3715184) is 
associated with the left surface of the last lens (i.e., surface 6). 

Table 3-3 compares characteristics of the best-of-run individual from gener­
ation 746 with those of the patented lens system for the Kaneko-Ueno problem. 
In this table, lower values are better, with the exception of the except for the 
last three entries. As seen in the table, the evolved individual is superior to 
the lens system in the Kaneko-Ueno patent for each characteristic in the table 
(except for slight differences in two characteristics, coma and astigmatism, that 
are not listed among the inventors' design goals, as stated in the patent). Note 
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that there is an order of magnitude reduction in distortion (the inventors' major 
goal as stated in the patent). 

Table 3-3. Comparison of the Kaneko-Ueno systems and the genetically evolved system 

Coma 
Astigmatism 
Petzval 
Distortion 
Distortion Percentage 
Max Distortion Percentage 
Axial Chromatic 
Lateral Chromatic 
Spot RMS Axial Error 
Spot RMS 70% FOV Error 
Spot RMS Full Field Error 
MTF Axial Tangential 
MTF Axial Sagittal 
MTF 70% Tangential 
MTF 70% Sagittal 
MTF Full Tangential 
MTF Full Sagittal 
Peak-Valley OPD Axial 
RMS OPD Axial 
Peak-Valley OPD 70% 
RMS OPD 70% 
Peak-Valley OPD Full 
RMS OPD Full 
Peak PSF Axial 
Peak PSF 70% Field 
Peak PSF Full Field 
Spherical Aberration 

Kaneko-Ueno 

-0.001933 
0.003879 
-0.008434 
-0.012582 
0.82 
0.82 
-0.000695 
-0.003290 
0.0 
0.308779 
0.462908 
0 
0 
0 
0 
0 
0 
0.07581 
0.02322 
0.484 
0.09556 
0.8392 
0.1664 
0.956 
0.5975 
0.29875 
-0.001403 

Evolved 

-0.002084 
0.004130 
-0.007911 
-0.000239 
0.074 
0.083 
0.000067269 
-0.002854 
0.0 
0.308562 
0.456778 
0 
0 
0 
0 
0 
0 
0.06772 
0.02075 
0.398 
0.07959 
0.5497 
0.1197 0 
0.9830 
0.6150 
0.369 
-0.001268 

Note that the last nine lines of Table 3-3 are measured quantities that are not 
part of the fitness measure. The best-of-run individual from generation 746 for 
the Kaneko-Ueno problem differs considerably from Kaneko-Ueno's patented 
invention (Kaneko and Ueno, 1996) and therefore does not infringe the patent. 
However, as shown in Table 3-4, the inventors' design goals, as stated in the 
patent, are achieved. 

Thus, the best-of-run lens individual from generation 746 has performance 
superior to that of the lens system in the Kaneko-Ueno patent and accomplishes 
the inventors' major design goals. Therefore, the best-of-run lens individual is 
a non-infringing novel design that duplicates (and indeed improves upon) the 
performance specifications for the invention-that is, the evolved lens system 
can be considered as a new invention. 
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Table 3-4. Design goals of the Kaneko-Ueno patent. 

Kaneko-Ueno Patent Genetically evolved 

Wide field of view (50 degrees) Wide field of view (50 degrees) 
Reduced distortion across the field Lens system has an order of magnitude reduction 

in distortion versus the patented system 
Reduced lens count and size usable for Evolved solution has 5 lenses has a 22% larger 
binoculars (4 lenses) footprint 
Utilizes aspherical members Utilizes aspherical members 

One of the eight criteria presented in (Koza et al., 2003) for saying that an 
automatically created result is "human-competitive" is that: 

"The result was patented as an invention in the past, is an improvement over a 
patented invention, or would qualify today as a patentable new invention." 

Based on our results and this definition, we claim that the genetically evolved 
design in this paper is an instance of a "human-competitive" result produced by 
genetic programming in the field of optical design. 

7. Conclusions 
This chapter describes how genetic programming was used as an invention 

machine to automatically synthesize a complete design for an aspherical optical 
lens system (a type of lens system that is especially difficult to design and that 
offers advantages in terms of cost, weight, size, and performance over traditional 
spherical systems). The genetically evolved aspherical lens system duplicated 
the functionality of a recently patented aspherical system. The automatic syn­
thesis was open-ended-that is, the process did not start from a pre-existing 
good design and did not pre-specify the number of lenses, which lenses (if any) 
should be spherical or aspherical, the topological arrangement of the lenses, 
the numerical parameters of the lenses, or the non-numerical parameters of the 
lenses. The genetically evolved design is an instance of human-competitive 
results produced by genetic programming in the field of optical design. 
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Abstract We used Linear Genetic Programming (LGP) to study the extent to which 
automated learning techniques may be used to improve Unexploded 
Ordinance (UXO) discrimination from Protem-47 and Geonics EM61 non­
invasive electromagnetic sensors. We conclude that: (1) Even after 
geophysicists have analyzed the EM61 signals and ranked anomalies in order 
of the likelihood that each comprises UXO, our LGP tool was able to 
substantially improve the discrimination of UXO from scrap—preexisting 
techniques require digging 62% more holes to locate all UXO on a range than 
do LGP derived models; (2) LGP can improve discrimination even though 
trained on a very small number of examples of UXO; and (3) LGP can 
improve UXO discrimination on data sets that contain a high-level of noise 
and little preprocessing. 

Keywords; genetic programming, unexploded ordnance, UXO discrimination. 

1. Introduction 

The Department of Defense (DoD) recently stated: "The UXO cleanup 
problem is a very large-scale undertaking involving 10 million acres of land 
at some 1400 sites (Report 2003)." One of the key problems is, according to 
DoD, ". . . instruments that can detect the buried UXO's also detect numer­
ous scrap metal objects and other artifacts, which leads to an enormous 
amount of expensive digging. Typically 100 holes may be dug before a real 
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UXO is unearthed (Report 2003)!" Buried UXO poses a hazard to life-and-
limb and further prevents huge tracts of land—frequently urban—from be­
ing returned to civilian use. 

Digital Geophysical Mapping 

Geophysicists have recently begun gathering magnetic and electro­
magnetic data about potential UXO sites using non-invasive, above-ground 
sensors. They gather UXO data by pulling various active and passive sen­
sors across a UXO site and record the sensor readings. This process is called 
Digital Geophysical Mapping ('DGM'). Unfortunately, the digital signal for 
UXO frequently resembles the signal from clutter (scrap metal that poses no 
danger to the public) and OE fragments (pieces of UXO that have sheared-
off during impact). Figure 4-1 illustrates the difficulty of distinguishing 
UXO from clutter. Currently, most UXO discrimination from DGM is made 
by human experts analyzing the DGM signal. 

The UXO Discrimination Process 

This paper reports the successful application of a process we refer to as 
UXO/MineFinder'̂ ^ service to the problem of UXO discrimination on two 
data-sets acquired from DoD UXO test-beds. This is a multi-step process 
that includes five high-level tasks: 

1. Acquisition of DGM data by geophysicists; We studied DGM data from 
the Jefferson Proving Grounds IV (Advanced 2000) and V (Cespedes 
2001) test-plots (JPG-IV and JGP-V, respectively) for the two different 
phases of this study. For this study, DGM data acquisition (Step 1) was 
performed by third-party contractors engaged by the DoD. In particular, 
we used data acquired by NAVEA on a Protem-47 from JPG-IV (Geonics 
2004) and by the National Research Laboratory (NRL) on an EM61 for 
JPG-V (Geonics 2004). 
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Anomaly Number 137 
EM61 Upper Coil Output (millivolts) 

Anomaly Number 131 
EM61 Upper Coil Output (millivolts) 

:3 

Figure 4-1, Signature of buried UXO (top) versus clutter (bottom) 

2. Anomaly Identification by geophysicists of physical locations where the 
DGM indicates there may be potential UXO; 

3. Extraction of relevant features pertaining to each anomaly by 
geophysicists; 

4. Ranking of anomalies by the likelihood that the anomalies are UXO 
using the Linear Genetic Programming (Banzhaf 2003; Francone 2004) 
software, Discipulus'̂ '̂  (Francone 2002), and; 

5. Characterization of UXO (such as ordnance type, depth, and 
orientation). 
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Paper Organization 

This paper focuses on Step 4 of the UXO discrimination process, and is 
organized as follows. 

First, Linear Genetic Programming is at the heart of our process. We 
will briefly describe the LGP algorithm and software used in this study in 
Section 2 below. 

Second, Phase I of this study was a prove-out of the discrimination 
portion of our process on the Jefferson Proving Grounds IV data from 
NAVEA. Section 3 will discuss the methodology we used for this Phase I, 
the results obtained, and compare those results with the results obtained by 
other contractors. 

Third, Phase II of this study was completed in February of 2004. Phase 
II tested Steps 2-4 above—anomaly identification, feature extraction and 
LGP ranking of anomalies on the Jefferson Proving Grounds V data from 
the NRL. Section 4, below, discusses the methodology we used for Phase II, 
our results, and compares them with the best-known results from other 
contractors. 

2. Linear Genetic Programming 

Linear Genetic Programming ('LGP') is at the core of our process. We 
used Discipulus^" ,̂ which is a Machine-Code-Based, Multi-Run, Linear GP 
system. This automated learning software distinguishes our process from 
other UXO discrimination techniques, which are based mostly on human 
engineering expertise. 

Genetic Programming 

Genetic Programming (GP) is the automatic, computerized creation of 
computer programs to perform a selected task using Darwinian natural 
selection. GP developers give their computers examples of how they want 
the computer to perform a task. Here, the 'examples' would be paired inputs 
and outputs—the inputs being features of the DGM and the output 
representing ground-truth: that is. Is the anomaly a UXO? From these 
examples, GP software then writes a computer program that performs the 
task described by the examples. Good overall treatments of Genetic 
Programming may be found in (Banzhaf 1998) and (Koza 1999). 
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LGP represents the evolving population of programs as linear ge­
nomes—that is, a linear string of executable instructions to the computer 
(Nordin 1998). The LGP algorithm is surprisingly simple. A detailed 
description of it is available in (Francone 2002) and (Francone 2004). 

Machine-code-based, LGP is the direct evolution of binary machine code 
through GP techniques (Nordi 1998; Nordin 1994). Here, an evolved LGP 
program is a sequence of binary machine instructions. While LGP programs 
are apparently very simple, it is actually possible to evolve functions of 
great complexity using only simple arithmetic functions on a register 
machine (Nordin 1998; Nordin 1995; Fukunaga 1998). The machine-code 
approach to GP has been documented to be between 60 and 200 times faster 
than comparable interpreting systems (Nordin 1998; Nordin 1994; Fukunaga 
1998). 

Multi-Run LGP is based on our observation that, if one performs many 
runs with the same parameters, varying only the random seed, a histogram 
of best performance found in many different runs will tend to describe a 
normal-like distribution, with a long tail of good solutions (Fukunaga 1998; 
Francone 1996). To know that the full extent of the distribution of runs has 
been discovered, it is necessary to perform multiple LGP runs until a stable 
distribution is achieved. The LGP software we used performs this process 
automatically (Francone 2002). 

After completing a multi-run LGP project, the LGP software decompiles 
the best evolved models from machine code into Java, ANSI C, or Intel 
Assembler programs (Francone 2002). The resulting decompiled code may 
be linked to other code and compiled or it may be compiled into a DLL or 
COM object. 

Having now described the LGP software used, we will now turn to 
describing, in order, the two phases of this applied LGP project. 

3. Phase I: Proof-Of-Concept Study of JPG-IV, 
PROTEM-47 UXO DGM Signatures 

Phase I of this investigation was a proof-of-concept phase that applied 
LGP to the JPG-IV test-bed data. JPG-IV is a research quality test-bed. 
UXO and clutter were buried at known locations and depths. Contractors 
with sensors were invited to measure the geophysical signatures at these 
known locations (Advanced 2000). Altogether, sensor readings for 50 UXO 
and 110 clutter items were available from the JPG-IV site. 
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This technique of gathering data is significantly different than is typical 
on an actual UXO site. On an actual UXO site, there is no preexisting 
knowledge of where to look for UXO. Accordingly, DGM must often be 
conducted for the entire site. Thus, the JPG-IV data is very high-quality data 
gathered from known anomalies and using sensors in a stationary mode, 
rather than being pulled across the site. 

From the DGM, contractors attempted to discriminate between UXO and 
clutter (Advanced 2000). The DGM acquired by the various sensors at the 
JPG-IV locations were then made available to other contractors to test their 
ability to discriminate between UXO and clutter and it is these data that 
were used in Phase 1. Data was collected by NAEVA on the JPG-IV site 
using a Protem-47 transmitter and receiver, configured with 20 time-gates 
(Geonics 2004). The data from all twenty time-gates were made available 
as inputs to the LGP algorithm. 

The data were randomly split into training and validation sets, which 
were used, respectively to train the LGP algorithm and to select the best 
programs for testing on unseen data. A portion of the data was held back 
from the training and validation sets. LGP was run until a stable distribution 
of results was produced. At that point, the best program produced by LGP 
on the training and validation data sets was selected as the best program 
from the project. 

Once a best-program was produced by LGP, it was tested on the held out 
data. All results reported here are on the unseen, held-out data. 

The LGP software produced excellent results on the NAEVA data 
(Deschaine 2002). As noted above, out of ten contractors, only one 
produced results that were better than random guessing (Advanced 200). 
Their results are shown as small black points on Figure 4-2. Our results are 
shown as a large black point in the upper right-hand-comer of Figure 4-2. 
The arrow represents the amount by which our approach improved the 
discrimination results obtained by NAEVA using the same data we used. 
The difference between our results and those of the next best contractor, 
Geophex, Ltd., were statistically significant at the 95% level. 

This test established that using LGP as a classifier tool for UXO 
discrimination was very promising. Accordingly, further testing was 
required to prove-out our process as an integrated production service. The 
next section details our findings in that regard. 
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Figure 4-2. Comparison of UXO/MineFinder UXO Discrimination Results and Other 
Vendor's Discrimination Results on JPG-IV Test-Bed Data 

4. Phase II: Production Prove-Out on The JPG-V, 
EM61 UXO DGM Signatures 

Our Phase II prove-out was performed to test our process on production-
grade data where it was necessary to integrate data-cleansing, anomaly-
identification, feature-extraction and selection and UXO-discrimination into 
a single package. This section reports our methodology and results for that 
prove-out. 

Data Used in Production Prove-Out 

We selected the NRL data from Jefferson Proving Grounds V, Area 3 
(Cespedes 2001) as being most suitable to the goals of this project because: 
• The JPG-V project was designed to mimic an actual impact area. The 

DoD's JPG IV project failed to do so in several regards (Advanced 
2000); 

• The JPG-V data was from production-quality instruments and 
collection techniques, rather than research-quality; 

• The JPG-V data was gathered by contractors in a manner consistent 
with data acquisition in the field—trailers bearing sensors were pulled 
across the JPG-V site. 
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• The NRL data appeared to be the cleanest data available. 
From the various data feeds collected by the NRL, we chose the NRL's 

single time-channel time-domain electromagnetic induction sensor data 
(MTADS), collected in Area 3 of the JPG V demonstration survey. The 
instrument used to collect the data was an EM61 (Geonics 2004). 

Preprocessing Applied to NRL Data 

While the NRL data appeared to be the highest-quality data amongst the 
three contractors, no calibration data was available from the NRL to iron out 
inconsistencies. On examination of the NRL data, there appeared to be 
substantial calibration problems as among tracks. In addition, the 
background level of geomagnetic noise varies substantially within single 
tracks of data. We elected not to try to correct the calibration problems and 
background noise level problems; rather, we decided to allow the LGP 
classifier to model the calibration and background noise along with the 
target signals. 

Our preprocessing was, therefore, limited to gridding the data using 
standard procedures recommended by the Geosoft Oasis-Montaj 
geophysical software (an industry standard for geophysical surveying) for 
target identification using the default parameters. 

Anomaly Identification 

Anomaly selection represents the first critical UXO screening step. 
Advanced geophysical data processing attempts to balance target area 
selection of UXO with weak observed signals (because background clutter 
or nearby UXO create a complex signal) with the selection of a 
disproportionate number of target areas containing no UXO. 

We used Geosoft Oasis-Montaj to select potential targets in the JPG-V, 
Area 3 field. The procedure was straightforward. We set a threshold of six 
millivolts as the smallest anomaly that should be identified as a target. 
Given that threshold, Geosoft located three-hundred forty-two anomalies 
that we thereafter treated as our targets for classification. 

Feature Extraction for the Identified Targets 

The JPG-V Area 3 data from NRL was transformed into a set of ID 
(point statistics) and 2D (spatial statistics) features. Only physically mean-
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ingful features were generated so that the physical interpretation of evolved 
prediction algorithms was not prohibitively difficult. 

The ID features used were the Geosoft created values for Upper and 
Lower Coil readings for each identified target. 

Generation of 2D features included analysis of both the gridded data and 
the raw data. 2D analyses of gridded data utilized standard image 
processing algorithms. Techniques, such as subsampling, morphological 
processing, and 2D filtering, were used to preprocess the gridded data. An 
example of extracted 2D features are the major and minor axes of an 
anomaly at a point 50% of the way up the anomaly and at a point located 
95% of the way toward the bottom of the anomaly from the top. 

Methodology for Creating LGP Target Rankings 

In UXO cleanup, the primary tool used to guide engineers is called a 
'dig-list.' It identifies each anomaly and its coordinates. A dig-list is often 
prioritized. That is, it includes instructions where to dig first, where to dig 
next and so forth. 

This project was posed to create an efficient prioritization for the JPG-V 
site dig list. Efficiency is tested by how many holes must be dug (starting 
with the highest ranked hole and proceeding down the list) until all UXO 
have been located. The fewer holes dug before all UXO are located, the 
lower the cost of the project (Francone 2004). This measure of performance 
is preferred over a more classic machine learning classification confusion 
matrix approach because this methodology was used by the DoD in 
assessing contractor's performance on the JGP-V test bed (Cespedes 2001). 

Our principal concern about the JPG-V, Area 3 data we used was that 
Geosoft located only nineteen UXO and thirty-three OE fragments.̂  This is 
a very small number of positive examples of UXO. Many of our decisions in 
configuring LGP for this project were intended to minimize overfitting 
arising from such a small data set. 

There were several sub-tasks performed in deriving anomaly rankings 
using LGP. They were: (1) Feature selection; (2) LGP Configuration; (3) 
Creating multiple data sets; (4) Setting LGP parameters; and (6) Converting 
LGP outputs into Rankings. Each of these steps is discussed below. 

' Altogether, there were twenty UXOs on site. But Geosoft failed to identify one of them as a 
target. So information about that UXO was never presented to the LGP algorithm. 
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Feature Selection 

We started with thirty-six features for each anomaly. Given the small 
number of UXO and fragment signatures, we were confident that we would 
not be successful with LGP using all of these features as inputs because of 
overfitting problems. Thus, we went through a three-step winnowing 
process to select the most promising features. 

The first step of the winnowing process involved statistical analysis of 
the various features to select those features with the most significant 
relationship with the classification task and with the lowest cross-correlation 
amongst the inputs themselves^ .̂ We used primarily correlation analysis and 
ANOVA for this step. 

The second step involved using the feature set in traditional modeling 
tools such as logistic regression and classification trees, for two purposes: 
(1) To determine which features provided the most UXO discrimination 
ability, and (2) to determine whether either of these traditional tools 
produced satisfactory discrimination results. There were no surprises from 
this process in terms of feature selection—it merely confirmed our earlier 
statistical analysis. This step also made clear that these traditional modeling 
tools did not perform particularly well in discriminating UXO from clutter. 
Accordingly, we determined that a more powerful modeling tool, such as 
LGP, was required. 

The third step involved further narrowing the number of features used by 
conducting multiple LGP runs and examining the "Input Impacts" report 
generated by the LGP software. That report tells which inputs to LGP were 
actually used by LGP in a significant way to solve the problem"̂ . For 
example, this "Input Impacts" report shows how frequently each input 
appears in the thirty best programs of a Discipulus'̂ '̂  project and the effect 
on fitness of those thirty best programs of replacing each input with a series 
containing only the average value of that input. From this information, it is 
quite simple to determine which inputs are contributing least to solving the 
problem and to eliminate those inputs in subsequent projects. We iterated 
thru this process three times, each time removing some inputs from the 
project until removal of further inputs began to effect the quality of the 
solutions. 

When these three winnowing steps were concluded, we selected eight 
inputs to use in LGP for the remainder of our runs. 
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LGP Configuration 

Based on an input-by-input statistical analysis, we determined that it 
might be possible to use the OE Fragment data points as "quasi-positive" 
examples of UXO. ANOVA for many of the extracted features revealed that 
the mean of their values for OE Fragments was between the mean values for 
UXO and Clutter. Furthermore, the mean value of those features for 
fragments was considerably closer to the mean UXO value than the mean 
clutter value. This raised the possibility that the OE Fragment anomalies 
contained useful information about what UXO looked like. Because of the 
small data set size, this possibility was very attractive because it increased 
the amount of information available to the LGP algorithm about the 
characteristics of a UXO as opposed to clutter. 

Of course, to use OE Fragments in this manner required that we 
configure LGP for regression and assign different, but sensible, target values 
for UXO, OE Fragments and clutter. 

Based on these observations, we configured LGP for regression and 
assigned the following values to as the target output to be approximated: For 
clutter, we assigned a regression target output value of 0. For OE Fragments, 
we assigned a regression target output of 0.75. Finally for UXO, we 
assigned a regression target output of 1.0. These values reflected the reahty 
that OE Fragment feature values tended to fall between UXO values and 
clutter feature values but were closer to the UXO feature value than to the 
clutter value. 

We interpreted the LGP output as a ranking. That is, higher output 
values were ranked higher than lower output values. Thus, the highest 
output was ranked as the most likely to be UXO. 

Multiple Data Sets 

Because there were a total of fifty-two UXO and OE Fragment items, we 
created fifty-two separate data-sets. Each of those data-sets held out as 
unseen data only one of the UXO or Fragment items together with 145 
clutter points for model validation. The clutter points were chosen randomly 
for each of the 52 data sets. After creating the held-out data set, the 
remaining data points were used for model creation. 

Thus, we performed in effect 5 5-fold cross-validation, with the stipula­
tion that each cross-validation data set contained one—and only one— 
example of a UXO or fragment. Because of our scheme, the clutter points 
appeared in multiple cross-validation data sets. To obtain a single prediction 
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for a particular data point, we averaged the rankings across all 55 cross-
validation sets. 

LGP Parameter Settings 

Several runs were performed on several of the data sets to come up with 
a parameterization of LGP that provided enough robustness and 
generalization to solve the problem, but not so much as to overfit the data. 
Based on this, we started all runs using the default parameters of 
Discipulus''''^ except for the setting for run termination, which we reduced to 
10 generations without improvement. This decision was made based on 
preliminary runs which indicated that seldom was more time needed to 
derive a good quality model from the data, and that additional time in the 
run sometimes lead to overfitting. 

LGP was then run separately on all 52 data sets using the base parameter 
settings derived above. Each run was observed while in progress for 
overfitting—sampling noise makes it unlikely that the same parameters will 
be optimal for reducing overfitting for all data sets. In checking for 
overfitting, we watched for situations in which the fitness of the targets for 
training LGP was negatively correlated with the fitness on the held-out 
targets. 

Fewer than half of the runs showed signs of overfitting. For those runs, 
we progressively changed the LGP parameters so as to reduce the 
computational power available to the LGP algorithm until observed 
overfitting was minimized. At that point, we inserted a new random seed 
into the LGP algorithm and ran it at those parameters. The resulting run was 
then accepted as the production run. 

Converting LGP Outputs into Anomaly Rankings 

We converted LGP outputs on unseen data points into anomaly rankings 
as follows: for each of the fifty-two data sets, the anomalies held out as 
unseen data were ranked so that the anomaly with the highest LGP output 
was ranked number 1, the next highest ranked as number 2, and so forth. 
Then those rankings were averaged for each anomaly over each of the data 
sets in which the anomaly appeared as an unseen data point. That average 
ranking was the ranking assigned to a particular anomaly for our simulated 
prioritized dig hst. 
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Evaluation of LGP Prioritized Dig-List 
61 

The LGP produced rankings of the 342 anomahes in JPG-V, Area 3 were 
evaluated against UXO predictions on these same data derived from best-
known conventional methods. Those best-known results are reported in the 
DoD's JPG-V final report for Area 3 (Cespedes 2001). The results of the 
comparison may be stated simply: The previous best UXO discrimination 
results on these data were reported by the geophysicists at NRL. NRL's 
rankings of anomalies required that ninety-six holes be dug before the last 
UXO was located. The LGP prioritized dig list required that only sixty-four 
holes be dug before the last UXO was located. Thus, the NRL ranking 
required digging 62% more holes than did the LGP based ranking. Figure 4-
3 shows the results of our rankings in a pseudo-ROC format. 
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Figure 4-3. Ranked Anomalies for JPG-V, Area 3. Comparison of LGP Based 
Rankings and Rankings by Previous Best Results for JPG-V, Area 3. 

Thus, if the order of digging were determined entirely by prioritization, 
and digging ceased when the last UXO was uncovered, the LGP based 
rankings would have required digging forty-five empty holes (that is, holes 
not containing a UXO) and the NRL rankings would have dug seventy-
seven empty holes. 

Digging up OE fragments is a secondary goal in UXO cleanup. Forty-
five of the top sixty-four targets identified by our process contained OE 
fragments. In a field project, those fragments would be recovered in the 
process of digging up the UXOs. In fact, only nineteen truly empty 
anomalies were prioritized by LGP above the lowest priority UXO. 
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S. Future Work 

In Francone (Francone 2004), we described an information theoretic op­
timal method to apply machine learning techniques to UXO discrimination 
across an entire site, even though no ground-truth is available at the start of 
the site cleanup. This technique permits site-specific discrimination that 
takes into account factors such as soil conditions and peculiarities of UXO 
distribution, munition type and depth on a particular site. Our next step will 
be to apply LGP in the site-specific manner outlined in that work. 

6. Conclusion 

We used Linear Genetic Programming (LGP) to study the extent to 
which automated learning techniques may be used to improve Unexploded 
Ordinance (UXO) discrimination from Protem-47 and Geonics EM61 non­
invasive electromagnetic sensors. We conclude that: (1) Even after geo-
physicists have analyzed the EM61 signals and ranked anomalies in order of 
the likelihood that each comprises UXO, our LGP tool was able to improve 
the discrimination of UXO from scrap—preexisting techniques require dig­
ging 62% more holes to locate all UXO on a range than do LGP derived 
models; (2) LGP can improve discrimination even if trained on a very small 
number of examples of UXO; and (3) LGP can improve UXO discrimina­
tion on data sets that contain a high-level of noise and little preprocessing. 
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Chapter 5 

RAPID RE-EVOLUTION OF AN X-BAND 
ANTENNA FOR NASA'S SPACE 
TECHNOLOGY 5 MISSION 

Jason D. Lohn^, Gregory S. Hornby^ and Derek S. Linden^ 
NASA Ames Research Center; QSS Group Inc.; JEM Engineering 

Abstract One of the challenges in engineering design is adapting a set of created designs 
to a change in requirements. Previously we presented two four-arm, symmet­
ric, evolved antennas for NASA's Space Technology 5 mission. However, the 
mission's orbital vehicle was changed, putting it into a much lower earth orbit, 
changing the specifications for the mission. With minimal changes to our evolu­
tionary system, mostly in the fitness function, we were able to evolve antennas 
for the new mission requirements and, within one month of this change, two new 
antennas were designed and prototyped. Both antennas were tested and both 
had acceptable performance compared with the new specifications. This rapid 
response shows that evolutionary design processes are able to accommodate new 
requirements quickly and with minimal human effort. 

Keywords: design, computational design, evolutionary design, antenna, spacecraft 

!• Introduction 
One of the challenges in engineering design is adapting a set of created 

designs to a change in requirements. Previously we presented our work in 
using evolutionary algorithms to automatically design an X-band antenna for 
NASA's Space Technology 5 (ST5) spacecraft (Lohn et al., 2004). Since our 
original evolutionary runs and the fabrication and testing of antennas ST5-3-
10 and ST5-4W-03, the launch vehicle for the ST5 spacecraft has changed 
resulting in a lower orbit and different antenna requirements. With traditional 
engineering design, such a change in requirements would necessitate redoing 
much of the design work with a near doubling of design costs. In contrast, 
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Property 

Table 5-1. Key ST5 Antenna Requirements 

Specification 
Transmit Frequency 
Receive Frequency 
VSWR 

Original Gain Pattern 
Additional Gain Pattern Requirement 
Input Impedance 
Diameter 
Height 
Antenna Mass 

8470 MHz 
7209.125 MHz 
< 1.2 : 1 at Transmit Freq 
< 1.5 : 1 at Receive Freq 
>0dBic,40° <6><80°, 
>-5dBic, 0° <6> <40°, 
50 n 
< 15.24 cm 
< 15.24 cm 
< 165 g 

0° < 0 < 360° 
0° < 0 < 360° 

with an evolutionary design system for automatically creating antennas, once 
the software has been developed, modifying it to produce antennas for a similar 
design problem requires only a minimal amount of human effort to implement 
the change with minimal additional cost. 

The ST5 mission consists of three spacecrafts which will orbit at close separa­
tions in a highly elliptical geosynchronous transfer orbit, and will communicate 
with a 34 meter ground-based dish antenna.̂  Initially, the spacecrafts were to 
fly approximately 35,000 km above Earth and the requirements for the commu­
nications antenna were for a gain pattern of >0 dBic from 40° - 80° from zenith, 
a voltage standing wave ratio (VSWR) of under 1.2 at the transmit frequency 
(8470 MHz) and under 1.5 at the receive frequency (7209.125 MHz), and fit 
inside a 6" cylinder.-̂  

With the change in launch vehicle and the new lower orbit, this necessitated 
the addition of a new requirement on the gain pattern of >-5 dBic from 0° -
40° from zenith. The complete set of requirements for the antennas on the ST5 
Mission are summarized in Table 5-1. 

In the rest of this chapter we describe the two evolutionary design systems we 
used for evolving the initial antennas for this mission and the changes we made 
to them to address the change in mission requirements. We then present the 
results of new antenna designs, both from simulation and from fabricated units. 
Finally we close with an overview of the challenges we experienced in taking 
our basic research in evolutionary antenna design all the way to fabricating 
and testing flight units that have successfully passed flight testing and will be 
launched in 2006. 

'Space Technology 5 Mission: http://nmp.jpl.nasa.gov/st5/ 
V̂SWR is a way to quantify reflected-wave interference, and thus the amount of impedance mismatch at 

the junction. 

http://nmp.jpl.nasa.gov/st5/
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2. Evolutionary Antenna Design Systems 
The new mission requirements required us to change both the type of antenna 

we were evolving and the fitness function. The original antennas we evolved 
for the ST5 mission were constrained to a monopole wire antenna consisting 
of four identical arms, with each arm rotated 90° from its neighbors. There, 
the EA evolved genotypes that specified the geometry for one arm and the 
phenotype consisted of four copies of the evolved arm. Because of symmetry, 
the previous four-arm design has a null at zenith that is built into the design and 
is unacceptable for the revised mission. To achieve an antenna that meets the 
new mission requirements, designs were configured to produce a single arm. 
In addition, because of the difficulties we experienced in fabricating branching 
antennas to the required precision, we constrained our antenna designs to non-
branching antennas. Finally, because the satellite is spinning at about 40 RPM, 
it is important that the antennas have a uniform gain pattern in azimuth. This is 
difficult to meet with a single-arm antenna, because it is inherently asymmetric. 

In the remainder of this section, we describe the two evolutionary algorithms 
we used to evolve antennas for the ST5 mission and how we changed them to 
address the new requirements. The first algorithm was used in our previous work 
in evolutionary antenna design (Linden and Altshuler, 1996) and it is a standard 
genetic algorithm (GA) that evolves non-branching wire forms using a vector of 
real-valued parameters as its representation. The second algorithm is based on 
our previous work evolving rod-structured, robot morphologies (Hornby et al., 
2003) and uses an open-ended representation which contains operations for 
constructing an antenna. In addition, the two evolutionary algorithms (EAs) 
use different fitness functions. 

Parameterized EA 
With the Parameterized EA, the design space consisted of a vector of real-

valued triplets that specify the X, Y and Z locations of segment end-points. The 
fitness function for this EA used pattern quality scores at 7.2 GHz and 8.47 GHz. 
Unlike the second EA, VSWR was not explicitly used in this fitness calculation, 
rather it was included implicitly by how it affects the gain pattern. To quantify 
the pattem quality at a single frequency, PQ/, the following formula was used: 

0° < 0 < 360° 
0° < 6> < 80° 

where gain^^ is the gain of the antenna in dBic (right-hand polarization) at a 
particular angle, T is the target gain (3 dBic was used in this case), 0 is the 
azimuth, and 9 is the elevation. To compute the overall fitness of an antenna 
design, the pattem quality measures at the transmit and receive frequencies 
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were summed, lower values corresponding to better antennas: 

F - P Q 7 . 2 + PQ8.47 

Modifying this evolutionary design system to produce antennas for the new 
orbit consisted of changing the fitness function to check angles 0° < Ö < 40° 
as well the original range of 40° < Ö < 80°. 

Open-Ended, Constructive EA 
The second EA uses an open-ended representation in which the nodes of the 

genotype specify how to construct the antenna. Each node in the open-ended 
representation is an antenna-construction operator and an antenna is created by 
executing the operators at each node in the representation, starting with the root 
node. In constructing an antenna the current state (location and orientation) is 
maintained and operators add wires or change the current state. The operators 
are as follows: 

• forward ( l e n g t h , r a d i u s ) - add a wire with the given length and 
radius extending from the current location and then change the current 
state location to the end of the new wire. 

• r o t a t e-x (angle) - change the orientation by rotating it by the specified 
amount (in radians) about the x-axis. 

• r o t a t e~y (angle) - change the orientation by rotating it by the specified 
amount (in radians) about the y-axis. 

• r o t a t e-z (angle) - change the orientation by rotating it by the specified 
amount (in radians) about the z-axis. 

Since we constrained antennas to a single bent wire with no branching, each 
node in the genotype has at most one child. This open-ended representation 
for encoding antennas is an extension of our previous work in using a linear-
representation for encoding rod-based robots (Hornby et al., 2003). 

Aside from restricting antennas to not having branches, the only other change 
made to this evolutionary design system to address the new mission require­
ments was the fitness function. The fitness function used to evaluate antennas 
is a function of the VSWR and gain values on the transmit and receive frequen­
cies. The VSWR component of the fitness function is intended to put strong 
pressure to evolving antennas with receive and transmit VSWR values below 
the required amounts of 1.2 and 1.5, reduced pressure at a value below these 
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requirements (1.15 and 1.25) and then no pressure to go below 1.1: 

Vr = VSWR at receive frequency 

( Vr + 2,0{Vr - 1.25) ifVr > 1.25 
Vr =' I Vr if 1.25 > 'i;̂  > 1.1 

[ 1.1 if'i;^ < 1.1 
vt = VSWR at transmit frequency 

r vt-^2.0{vt-1.15) ifvt> 1.15 
v[ = I Vt i f l . l5>i ; t > 1.1 

[ 1.1 if ;̂t < 1.1 

vswr = v'^v[ 

The gain-penalty component of the fitness function uses the gain (in dBic) 
in 5° increments about the angles of interest: from 0° < Ö < 90° and 
0° < 0 < 360°. For each angle, the calculated gain score from simulation 
is compared against the target gain for that elevation and the outlier gain, which 
is the minimum gain value beyond which lower gain values receive a greater 
penalty. Gain penalty values are further adjusted based on the importance of 
the elevation: 

gain penalty (i,j): 
gain = calculated gain at Ö = 5°i, 0 = 5° j ; 
if{ gain > target[i]) { 

penalty := 0.0; 
} else //"((targetli] > gain) and ( gain > outlier[i])) { 

penalty := (target[i] - gain); 
} else { /* outlier[i] > gain */ 

penalty := (target[i]-outlier[i]) + 3.0 * (outlier[i] - gain)); 
} 
return penalty * weight[i]; 

Target gain values at a given elevation are stored in the array target [] and 
are 2.0 dBic for i equal from 0 to 16 and are -3.0 dBic for i equal to 17 and 18. 
Outlier gain values for each elevation are stored in the array ou t l i e r [] and 
are 0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i equal to 17 and 18. 
Each gain penalty is scaled by values scored in the array weight [] . For the 
low band the values of weight [] are 0.1 for i equal to 0 through 7; values 1.0 
for I equal to 8 through 16; and 0.05 for i equal to 17 and 18. For the high band 
the values of weight [] are 0.4 for i equal to 0 through 7; values 3.0 for i equal 
to 8 through 12; 3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to 15; 
3.0 for i equal to 16; and 0.2 for i equal to 17 and 18. The final gain component 
of the fitness score of an antenna is the sum of gain penalties for all angles. 

To put evolutionary pressure on producing antennas with smooth gain pat­
terns around each elevation, the third component in scoring an antenna is based 
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on the standard deviation of gain values. This score is a weighted sum of the 
standard deviation of the gain values for each elevation 9, The weight value 
used for a given elevation is the same as is used in calculating the gain penalty. 

These three components are multiplied together to produce the overall fitness 
score of an antenna design: 

F •= vswr X gain x standard deviation 

The objective of the EA is to produce antenna designs that minimize F . 
This fitness function differs from the one we used previously (Lohn et al., 

2004) in the fidelity to which the desired gain pattern can be specified and in 
explicitly rewarding for a smooth pattern. Our previous fitness function with 
the constructive EA had one target gain value for all elevations and weighted all 
elevations equally. With the new fitness function, different target gain values 
can be set for different elevation angles and also the importance of achieving 
the desired gain at a given angle is specified through setting the weight value 
for a given elevation. The other difference with this fitness function is that 
previously there was a separate penalty for "outlier" gain values whereas in the 
new fitness function, this is included in the gain component of the fitness score 
and a new component that measures pattern smoothness is also present. As 
described in the following section, these changes resulted in the evolution of 
antennas that had noticeably smoother pattems and acceptable gain. 

3. Evolved Antennas 
To re-evolve antennas for the new ST5 mission requirements, we used the 

same EA setup as in our initial set of evolutionary runs. For the parameterized 
EA, a population of fifty individuals was used, 50% of which are kept from 
generation to generation. The mutation rate was 1 %, with the Gaussian mutation 
standard deviation of 10% of the value range. The parameterized EA was 
halted after one hundred generations had been completed, the EAs best score 
was stagnant for forty generations, or the EA's average score was stagnant for 
ten generations. For the open-ended EA, a population size of two hundred 
individuals was evolved using generational evolution. Parents were selected 
with remainder stochastic sampling based on rank, using exponential scaling 
(Michalewicz, 1992). New individuals were created with an equal probability 
of using mutation or recombination. 

The Numerical Electromagnetics Code, Version 4 (NEC4) (Burke and Pog-
gio, 1981) was used to evaluate all antenna designs. Antennas were simulated 
on an infinite ground plane to reduce simulation time: for these runs a single 
antenna evaluation took a few seconds of wall-clock time to simulate and an 
entire run took approximately six to ten hours. In contrast, evaluating a single 
antenna using a wire mesh of the 6" ground plane on the spacecraft requires 
two to three minutes to simulate. 
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The best antennas evolved by the two EAs were then evaluated on a second 
antenna simulation package, WIPL-D, with the addition of a 6" ground plane 
to determine which designs to fabricate and test on the ST5 mock-up. Based 
on these simulations the best antenna design from each EA was selected for 
fabrication and these are shown in Figure 5-1. A sequence of evolved antennas 
that produced antenna ST5-33.142.7 is shown in Figure 5-2. 

Simulated Results 
Both antenna designs have excellent simulated RHCP patterns, as shown in 

Figure 5-3 for the transmit frequency. The antennas also have good circular 
polarization purity across a wide range of angles, as shown in Figure 5-4 for 
ST5-104.33. To the best of our knowledge, this quality has never been seen 
before in this form of antenna. 

Measured Results 
The antennas were measured on the ST5 mock-up (Figure 5-5), and the results 

are shown in Figure 5-6. The evolved antennas were arrayed with a Quadrafilar 
Helix Antenna (QHA) developed by New Mexico State University's Physical 
Science Laboratory (the original antenna for this mission). This figure shows 
plots of two QHA antennas together, a QHA, and an ST5-104.33 antenna. 
Results are similar for ST5-33.142.7. Compared to using two QHAs together, 
the evolved antennas have much greater gain across the angles of interest. 

4. Discussion: From a Proof-of-Concept to Flight 
Hardware 

Perhaps, just as interesting and useful as the science that went on in producing 
an evolutionary design system capable of evolving human-competitive antennas 
for a NASA space mission, are the steps taken in going from a simple proof-of-
concept study to producing deployable flight hardware. Here we touch briefly 
on the highlights of this process. 

Our work began as a series of proof-of-concept studies, using deployed an­
tennas on NASA missions, for example, the quadrifilar UHF antenna on Mars 
Odyssey (Lohn et al., 2002). The results of that study were encouraging and 
lent us some credibility within the space communications community. Through 
a series of meetings, we learned of the ST5 mission. Our intent was to do an­
other proof-of-concept study, mainly because we did not feel we were ready to 
build prototypes and we were entering the mission development so late, or so 
we thought at the time, that there was no chance to produce hardware for ST5. 

We later learned that there were a series of delays in the ST5 schedule, 
which gave us enough time to fabricate our designs and field test them. Around 
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Figure 5-1, Evolved antenna designs: (a) evolved using a vector of parameters, named ST5-
104.33; and (b) evolved using the open-ended, constructive representation, named ST5-33.142.7. 
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Figure 5-2. Sequence of evolved antennas leading up to antenna ST5-33.142.7. 

this time, the conventionally designed quadrifilar antenna was going through 
prototype testing. We met the quadrifilar design team and they were intrigued 
with our approach and were receptive to working with us. Surprisingly, the only 
two designs that we prototyped in hardware worked on the test range as well as 
in simulation. Consequently, we stuck with these two designs for the baseline 
antennas that we later intended to fly on the ST5 mission (Lohn et al., 2004). 
When the ST5 mission managers saw the field patterns for the evolved antennas 
they informed us that they met the mission requirements and encouraged us to 
build space-qualified hardware. 

Over the next year, we experienced a rollercoaster ride of hope and despair 
as we worked through space-hardware development and qualification. As we 
neared the end of this tumultuous twelve months, we were disheartened to leam 
of the change in orbit of the ST5 mission. This came with the resultant change 
in antenna requirements since our original pair of antennas did not meet the 
new mission requirements. 

This change in requirements turned out to be a blessing in disguise because 
it showed the advantages of the evolutionary design process. Whereas the 
quadrifilar design team would likely have needed several months to develop a 
new antenna design and prototype it, we were able to re-evolve and prototype 
new antennas in four weeks. As we described in this paper, this was done by 
simply changing the fitness function to match the new antenna requirements 
and constraining designs to non-branching antennas. 

The first set of ST5 evolved antenna flight units were delivered to Goddard 
Space Flight Center (GSFC) on February 25, 2005 (Figure 5-7) to undergo 
environmental tests. On April 8, 2005 the last test was completed. This process 
consisted of a thermal vacuum testing in which the antenna performed the above 
requirements during one survival cycle (-80°C to +80°C) and through each of 
eight qualification cycles (-70° C to +50° C). Having passed all tests, the current 
baseline plan is to fly at least three evolved antennas when the mission launches 
in 2006. 
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Figure 5-3. Simulated 3D patterns for ST5-104.33 and ST5-33.142.7 on 6" ground plane at 
8470 MHz for RHCP polarization. Simulation performed by WIPL-D. Patterns are similar for 
7209 MHz. 
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Figure 5-4, RHCP vs LHCP performance of ST5-104.33. Plot has 2 dB/division. 

5, Conclusion 
Previously, we reported our work on evolving two X-band antennas for po­

tential use on NASA's upcoming ST5 mission to study the magnetosphere. 
While those antennas were mission compliant, a change in launch vehicle re­
sulted in a change in orbit for the ST5 spacecraft and a change in requirements 
for their communication antennas. In response to this change in requirements, 
we reconfigured our evolutionary design systems and in under four weeks, we 
were able to evolve new antenna designs that were acceptable to ST5 mission 
planners. One of the evolved antennas, ST5-33.142.7, has passed all of the 
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Figure 5-5. Photograph of the ST5 mock-up with antennas mounted (only the antenna on the 
top deck is visible). 
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Figure 5-6. Measured patterns on ST-5 mock-up of QHA antenna and ST5-104.33 plus QHA 
antenna. Phi 1 = 0 deg., Phi 2 = 90 deg. 

flight tests and the current plan is to fly at least three evolved antennas when 
these spacecraft are launched in 2006. Our ability to rapidly re-evolve new 
antenna designs shows that the evolutionary design process lends itself to rapid 
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Figure 5-7. Three images of a flight antenna; the evolved wire configuration for the radiator sits 
on top of a 6" diameter ground plane and is encased inside a radome 

response to changing requirements, not only for automated antenna design but 
for automated design in general. 
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Appendix: Genotype of ST5-33.142J 
Listed below is the evolved genotype of antenna ST5-33.142.7. The format for this tree-

structured genotype consists of the operator followed by a number stating how many children 
this operator has, followed by square brackets which start ' [ ' and end ' ] ' the list of the node's 
children. For example the format for a node which is operator 1 and has two subtrees is written: 
o p e r a t o r l 2 [ s u b t r e e - 1 s u b t r e e - 2 ] . For the ST5 mission, antennas were constrained 
to be non-branching so each node in this genotype has at most one child, the only exception is the 
leaf node. The different operators in the antenna-constructing language are given in section 2.0. 
r o t a t e - z ( 0 . 7 2 3 5 3 6 ) 1 [ r o t a t e - x ( 2 . 6 2 8 7 8 7 ) 1 [ r o t a t e - z ( l . 1 4 5 4 1 5 ) 1 [ 
r o t a t e - x ( l . 9 3 0 8 1 0 ) 1 [ r o t a t e - z ( 2 . 0 6 9 4 9 7 ) 1 [ r o t a t e - x ( l . 8 2 2 5 3 7 ) 1 [ 
forward(0.007343,0.000406) 1 [ r o t a t e - z ( l . 9 0 1 5 0 7 ) 1 [ 

forward(0.013581,0 .000406) 1 [ r o t a t e - x ( l . 9 0 9 8 5 1 ) 1 [ r o t a t e - y ( 2 . 3 4 5 3 1 6 ) 
1 [ r o t a t e - y ( 0 . 3 0 8 0 4 3 ) 1 [ r o t a t e - y ( 2 . 8 9 0 2 6 5 ) 1 [ r o t a t e - x ( 0 . 4 0 9 7 4 2 ) 1 
[ r o t a t e - y ( 2 . 3 9 7 5 0 7 ) 1 [ forward(0.011671,0.000406) 1 [ 
r o t a t e - x ( 2 . 1 8 7 2 9 8 ) 1 [ r o t a t e - y ( 2 . 4 9 7 9 7 4 ) 1 [ r o t a t e - y ( 0 . 2 3 5 6 1 9 ) 1 [ 
r o t a t e - x ( 0 . 6 1 1 5 0 8 ) 1 [ r o t a t e - y ( 2 . 7 1 3 4 4 7 ) 1 [ r o t a t e - y ( 2 . 6 3 1 1 4 1 ) 1 [ 
forward(0.011597,0 .000406) 1 [ r o t a t e - y ( 1 . 5 7 3 3 6 7 ) 1 [ 
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forwardCO.007000,0.000406) 1 [ rotate-x(-0.974118) 1 [ 
rotate-y(2.890265) 1 [ rotate-z(l.482916) 1 [ forward(0.019955,0.000406) 
] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] 
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Chapter 6 

VARIABLE SELECTION IN INDUSTRIAL 
DATASETS USING PARETO GENETIC 
PROGRAMMING 
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Abstract This chapter gives an overview, based on the experience from the Dow 
Chemical Company, of the importance of variable selection to build robust 
models from industrial datasets. A quick review of variable selection schemes 
based on linear techniques is given. A relatively simple fitness inheritance 
scheme is proposed to do nonlinear sensitivity analysis that is especially effec­
tive when combined with Pareto GP. The method is applied to two industrial 
datasets with good results. 

Key words: Genetic programming, symbolic regression, variable selection, pareto GP 

1. Introduction 

Many industrial applications are based on high-dimensional multivariate 
data. The dominant approach for data analysis in this case is dimensionality 
reduction by Principal Component Analysis (PCA) and building linear mod­
els with projections to latent structures by means of Partial Least Squares 
(PLS) (Eriksonn et al, 2001). This approach, however, has two key issues: 
(1) the model interpretation is difficult and (2) it is limited to linear systems. 
One approach to extend this to nonlinear systems is to use neural networks. 
The variable selection algorithm in this case is based on gradually reducing 
the number of inputs until an optimal structure is obtained (Saltelli et al. 
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2001). However, this process is coupled with the hidden layer structure se­
lection and requires high quality data sets. One of the unique features of 
Genetic Programming (GP) is its built-in mechanism to select the variables 
that are related to the problem during the simulated evolution and to gradu­
ally ignore variables that are not. In this way, a different type of nonlinear 
variable selection can be used for dimensionality reduction that could be ap­
propriate for industrial data analysis. This idea was explored in (Gilbert et al, 
1998) for variable selection from a spectral data set with 150 variables. Only 
between 6 and 9 variables were selected in the GP-derived predictive rules. 
Other applications can be found in (Francone et al, 2004, RML Technolo­
gies, 2002 and Johnson et al, 2000) 

An approach for GP-based variable selection with emphasis on multi-
objective Pareto-front GP will be described in the chapter. The organization 
is as follows. The generic issue of dealing with high-dimensional spaces is 
addressed in Section 2. Section 3 gives a short overview of the linear tech­
niques for variable selection. The proposed method for variable selection 
using Pareto GP is discussed and illustrated with synthesized data for re­
discovering of Newton's Law of gravity in Section 4. The method is demon­
strated with two successful industrial applications, described in Section 5. 

2. The Curse of Dimensionality 

In modeling projects, the assumption is implicitly made that we know the 
"true" inputs to a given problem and that the reference data set feature vec­
tors are defined in the space of these "true" inputs. In practice, many times 
one has to select the relevant inputs from a possibly large set of candidate 
inputs: input selection is an integral part of the modeling problem. All too 
often, people don't worry enough about this input selection problem. They 
build models using all the available inputs thinking that, in a magical way, 
the modeling system will figure out which inputs are relevant and which are 
not. To build robust models it is essential to limit the number of inputs to an 
absolute minimum for a number of reasons, all of which all have to do with 
the so-called "curse of dimensionality". 

The goal of a data-driven modeling problem is to estimate an unknown 
function based on a finite number of samples. Because we only have a finite 
number of samples available, there will always be an infinite number of pos­
sible functions that can be selected and that will interpolate the data equally 
well. To come up with a unique solution it is necessary to impose some kind 
of constraints on possible solutions. In the absence of first-principle con­
straints that can be obtained from a understanding of the physics behind the 
problem, these constraints are often defined in terms of the smoothness of 
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the function in a given neighborhood around a data point. The accuracy of 
the function estimation obviously depends on having enough samples within 
that neighborhood. If the dimensionality of the problem is increased, there 
are basically two routes to obtain sufficient data points within such a local 
neighborhood. First, one can try to collect sufficient samples to get this high 
density, something which is very often not possible. Second, one can in­
crease the size of this "local" neighborhood, but this is at the expense of im­
posing stronger (possible incorrect) constraints on the problem solution. 
This is the essence of the "curse of dimensionality." 

The properties of high-dimensional spaces often appear counter-intuitive 
because our experience is limited to low-dimensional spaces (Cherkassky, 
1998). For example, objects like a hypercube have an increasing ratio of sur­
face area to volume with increasing dimensionality. Following are four 
properties of high-dimensional spaces that contribute to the problem: 
• Samples sizes with the same data density increase exponentially with 

dimensionality. If p is the reference data density in one dimension p"̂  is 
the equivalent density in d dimensions. 

• An increasingly large radius is needed to enclose a given fraction of 
data points in higher dimensional space. For example, the edge length 
of a hypercube which encloses a given fraction of samples p is given by: 

elä(P) = P Yä 

Figure 6-1 shows the corresponding graph for up to dimensionality 20 
for fractions of 5, 10 and 20 %. Notice that high edge lengths (>0.75) 
are needed very quickly. An edge length of 1 would result in a hypercube 
that covers the entire space. 
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Figure 6-1. Edge length needed for a hypercube to include 5%, 10% and 20% of the data. 

In higher dimensional spaces, almost every point is closer to an edge 
than to another point. Or, in other words, in higher dimensional spaces 
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extrapolation is the norm rather than the exception. For a sample size n, 
the expected distance between data points sampled from a uniform 
distribution in the unit hypercube is given by: 

D{d,n) = - \ -

• Almost every point is an outlier in its own projection on the line defined 
by the prediction point and the origin. The expected location of this 

prediction point is yid-1/2. The remaining points will follow a 
standard normal distribution with mean zero and standard deviation one 
since the other points are unrelated to the direction of the projection. 
For example when d=10, the expected value of the prediction point is 
3.1 standard deviations away from the center of the training data. In this 
sense this point can be considered to be an outlier of the training data. 

These properties of high-dimensional spaces have serious consequences for 
building models based on a limited number of samples. The higher the di­
mensionality of the space the more likely it is that we will not have the data 
points we need to make a local estimate. Also, the higher the dimensionality, 
the more we have to resort to extrapolation instead of interpolation to make 
predictions. For these reasons, it is essential to limit the number of inputs to 
a data driven model to an absolute minimum. In the next sections we will 
describe how this can be done using linear techniques but also how this can 
be done effectively using genetic programming. 

3. Variable Selection Using Linear Techniques 

Before we discuss the reduction of input dimensionality using genetic 
programming we will quickly review how this can be achieved for linear 
models. Suppose we try to build a model of the form: Y = X.b + e where X 
and Y are matrices with the inputs and the observations, b is a vector of 
parameters and e is the vector of errors. The least squares solution of b that 
minimizes e'. e is obtained from b = (X'X)~* X^Y irrespective of any 
distribution properties of the errors. A large number of statistical procedures 
are available to select the best subset of inputs to use in the linear regression 
equation (Draper and Smith, 1981). Examples of these procedures are: (1) 
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all possible regressions, (2) best subset regressions, (3) backward 
elimination, (4) stepwise regression, (5) ridge regression, (6) principal 
components regression, (7) latent root regression, (8) stagewise regression 
etc. Some of these procedures, like principal components and latent root 
regression, are specific to linear methods and do not have an immediate 
analogue to apply in non-linear modelling. Most of the other procedures 
rely on some sort of significance test (e.g. the partial F-test) to decide which 
variable to keep or to discard depending on the specific procedure. The use 
of these significance tests automatically implies an assumption about the 
underlying distribution of the errors. Frequently these are assumed to be 
normally distributed. The preferred procedures are either or a combination 
of the backward elimination and stepwise regression procedures. Although 
theoretically the all possible regression procedure would be the best, in 
practice this is only feasible for a limited number of possible inputs. 

The backward elimination method starts from a regression equation 
containing all variables. At each iteration the variable with the lowest partial 
F-test value is compared to a preselected significance level and is eliminated 
whenever the significance is lower than the preselected value. The 
procedure stops when no more variables can be found that meet this 
criterion. The stepwise regression method attempts to achieve the same 
result by working in the other direction, i.e. to insert variables into the 
equation as long as they meet certain significance criteria; see (Draper and 
Smith, 1981) for more details on these procedures. These procedures usually 
work fine within a linear framework but one has to realize that there are 
many possibilities for any variable selection scheme to go wrong whenever 
the data set being used is not balanced (in the sense that not all input 
dimensions are properly represented), or some of the variables are related to 
other unmeasured latent variables. 

4. Variable Selection Using Pareto Genetic Program­
ming 

Fitness Inheritance in the Total Population 

As mentioned earlier, one of the potential applications of symbolic re­
gression via genetic programming is sensitivity analysis of nonlinear prob­
lems with a potentially large set of candidate input variables. These kinds of 
problems are frequently encountered in the chemical processing industry. 
Sensitivity analysis is also called the "problem of feature selection" in ma­
chine learning terminology. Many problems in the chemical industry are of 
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this type. There usually are a large number of measurements available at a 
plant, many of which are redundant or not relevant to the problem that one 
tries to solve. 

Engineering knowledge about the problem is usually the first step to try 
and narrow down the number of inputs. Sensitivity analysis generates a rank­
ing of all the input variables in terms of how important they are in modeling 
a certain unknown process. In linear problems the sensitivity of an input 
variable is related to the derivative of the output with respect to that variable. 
In nonlinear problems, however, the derivative becomes a local property and 
has to be integrated over the entire input domain to qualify as a sensitivity. 
Since this approach is not really practical in a genetic programming context, 
we've opted to relate the sensitivity of a given input variable to its fitness in 
the population of equations. The reasoning is that important input variables 
will be used in equations that have a relatively high fitness. So the fitness of 
input variables is related to the fitness of the equations they are used in. 
There is, however, a question with respect to credit assignment, i.e, what 
portion of the fitness goes to what variable in the equation. The easiest ap­
proach is to distribute the credit (the fitness of the equation) equally over all 
variables present. A complicating factor is that probably not every variable is 
equally important in a given equation. In addition, most equations in a ge­
netic programming population are not parsimonious and possess chunks of 
inactive code (a good description of the problem of 'bloat' can be found in 
Bmzhaf et al, 1998). 

Variables that are present in these chunks of inactive code do not contrib­
ute to the final fitness of the equation but still obtain some credit for being 
part of that equation. There is no direct solution for this problem on the indi­
vidual equation level but still reliable answers can be obtained provided we 
evaluate a large number of equations. Again the reasoning is simple, if a 
given input variable is absolutely essential to solve the problem, it must be 
present in the high fitness equations. Other nonessential variables will be 
present in both low-fitness and high-fitness equations so their fitness will be 
closer to the average fitness over all equations. More important variables 
will obtain more credit and will have a fitness that exceeds this average 
value. So provided the population size is large enough, we can take the fit­
ness of each equation in the population, distribute this fitness in equal 
amounts over the input variables present in that equation and sum all these 
contributions for each input variable over the entire population. An im­
proved version of this, at the expense of a little bit of extra computation, is 
doing the same but instead of just using the equations in the population also 
include every sub-equation in each of these equations. The extra computa­
tional step will considerably improve the statistics of the input variable fit­
nesses since now the number of equations is equal to the total number of 



Variable Selection in Industrial Datasets Using Pareto GP 85 

nodes in every equation-tree in the population rather than the population size 
itself. 

A Simple Example 

As a simple example we'll try to rediscover Newton's Law of gravita­
tion. This states that any two objects attract one another gravitationally. The 
attractive force depends linearly on the mass of each object (doubling the 
mass doubles the force) and inversely on the square of the distance between 
the two objects: 

r-. Wi .1712 

g is the gravitational constant which is just a number to match up the re­
sults of the equation with our system of measurement. The minus sign ( - ) 
indicates that the force is attractive. A synthetic dataset with 50 patterns was 
generated where the two masses are random numbers in the range [0,1] and 
the radius is a real number in the range [1,2]. An additional 50 inputs with 
random numbers in the range [0,1] were added. These extra inputs are just 
"noise" variables and make the task of discovering Newton's law progres­
sively harder since part of the problem now is to discover the "true" vari­
ables Xi, X2 and X3 in the total set. 

From Figure 6-2, which shows the correlation coefficient from each of 
the input variables to the force, the output variable that needs to be pre­
dicted, we see that the masses (variables 1 and 2) have a relatively high ab­
solute correlation to the force but the others (the distance and the random 
variables) cannot be easily distinguished from each other. 

Next we'll apply genetic programming to do a nonlinear sensitivity 
analysis. The particular version of Genetic Programming we use is called 
Pareto GP and is described in (Smits and Kotanchek, 2004). In Pareto GP an 
archive is used to store equations that are at or near the Pareto border of fit­
ness versus some equation complexity measure. This archive is maintained 
during a run. All the equations in the next generation are obtained either by 
mutation of existing equations in the archive or by crossover between mem­
bers of the archive and the previous population. A typical run consists of a 
number of different cascades. At the start of a new cascade a new population 
is generated from scratch but, since the archive is maintained, good solutions 
appear very quickly again in the population. A cascade usually has a fixed 
number of generations. The final result is the set of the equations in the ar­
chive, which represents the Pareto front of fitness versus complexity. When 
we apply genetic programming to do a nonlinear sensitivity analysis to the 
augmented Newton dataset as described earlier, the picture shown in Figure 
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6-3 emerges. The important variables are identified very quickly and then 
stabilize in sensitivity. The unimportant variables die out relatively fast after 
an initial period and final fitness values become very small. 
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Figure 6-2. Correlation coefficients of inputs relative to the output for Newton's problem 

Newton + 50 extra variables 

300 60 

Generations Variables 

Figure 6-3. Evolution of fitness for all variables in the Newton problem. Notice that the im­
portant variables on the right-hand side are identified very quickly 
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Fitness Inheritance in the Pareto Front Only 

We already mentioned that when variables accumulate fitness from the 
entire population there is a chance that we get somewhat of a distorted pic­
ture because unimportant variables that happen to be part of equations with a 
relatively high fitness will also pick up fitness from those. To compensate 
for this we introduced a modification where variables only accumulate fit­
ness from equations that reside in the archive. Since the archive contains the 
Pareto front of all of the high fitness equations relative to their complexity 
this modifications is expected to make the variable selection more robust. In 
the next section with two industrial applications we will show that this is 
indeed the case. 

5, Applications 

Variable selection and dimensionality reduction are critical for develop­
ing parsimonious empirical models from industrial data sets. One of the key 
application areas for symbolic regression models generated by GP is inferen­
tial sensors (Kordon at al, 2003). This type of empirical model predicts dif-
ficult-to-measure process variables (outputs), such as NOx emissions, poly­
mer properties, biomass, etc, with easy-to-measure sensors such as tempera­
tures, flows, and pressures (inputs). Usually model development begins with 
the broadest possible selection of input sensors that process engineers think 
may influence the output. 

The proposed method for variable selection will be illustrated in two ap­
plications of inferential sensors development on (1) a data set with middle-
sized dimensionality (8 inputs and 251 data points) and on (2) a high-
dimensional data set of 23 inputs and 7000 data points. 

Variable Selection on Middle-Sized Industrial Data 

The inferential sensor in this application predicts emissions from process 
variables. The correlation coefficients of the eight potential inputs relative to 
the emissions (the output) are shown in Figure 4. For this problem it is diffi­
cult to satisfy the regulatory requirements of 7.5% error with a linear model 
and so a nonlinear solution is needed. 

Pareto GP was used for variable selection and nonlinear model genera­
tion. The results from the variable selection are shown in Figures 6-5 ~ 6-8. 
The results are based on 5 independent runs of 10 cascades with 50 genera­
tions. The average sensitivities with their standard deviations for each input, 
as defined in the previous section, for two population sizes of 100 and 1000 
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are shown in each figure. The sensitivities in Figures 5 and 6 are based on all 
models in the population at the last generation and the sensitivities in Figures 
7 and 8 are based on the models in the archive at the last generation of the 
Pareto GP evolution. 

input variables 

Figure 6-4. Correlation coefficients of process inputs relative to emissions 

The last sensitivity analysis is a better demonstration for variable selec­
tion because it is based on the high-quality potential models which are the 
breeding source for the Pareto front. In principle, the most sensitive inputs 
(x2, x5, x6, and x8) have been consistently selected in all cases, but the dif­
ference is clearer with the archive selection in Figures 7 and 8. For compari­
son, a linear variable selection, based on PCA-PLS model with two principal 
components, is shown in Figure 9. The inputs ranking is represented by a 
Variable Importance in the Projection (VIP, described in Eriksonn et al, 
2001). Variables with VIP > 1 are treated as important. 

One of the differences between the linear and the GP-based variable se­
lection is that input x5 is insignificant from the linear point of view (which is 
supported by the low correlation coefficient of-0.5 in Figure 4). However, it 
is one of the most significant inputs, according to the nonlinear sensitivity 
analysis and process experts. The experts also selected two models for the 
final implementation, which included the four most influential inputs from 
the GP variable selection - x2, x5, x6, and x8. The correlation coefficient of 
the selected models is 0.93 and 0.94, much higher than the linear option and 
within the regulatory limits. The application details are given in (Kordon at 
ah 2003). 
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Table 6-1. Sensitivity analysis of models in the population at the last generation (mean and 
standard deviation over five independent runs) 
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Figure 6-5. Population size 100 Figure 6-6. Population size 1000 

Table 6-2. Sensitivity analysis of models in the archive at the last generation (mean and stan­
dard deviation over five independent runs) 
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Figure 6-9, Variable importance in the projection (VIP) of the 8 inputs based on a two princi­
pal components PCA-PLS model of the emissions soft sensor 

Variable Selection on High-Dimensional Industrial Data 

The inferential sensor in the high-dimensional application predicts pro­
pylene concentration. This application illustrates the scale-up performance 
of the proposed method on an industrial problem with a much larger search 
space. The results from the GP sensitivity analysis are shown in Figure 6-10, 
6-11 and the results from the corresponding linear variable ranking are 
shown in Figure 6-12. 

In this case the difference between the linear and nonlinear variable se­
lection is significant. The GP-based sensitivity analysis identifies four clear 
winners - inputs x4, x6, x8, and x21 (see Figures 6-10 and 6-11) - whereas 
the linear variable ranking suggests 12 important variables with VIP > 1: 
inputs x4, x5, x6, x8, x9, xl9, xl l , xl2, xl4, xl5, x20, and x22 (see Figure 
6-12). The proposed reduction of the search space based on the linear rank­
ing is much less, and an important variable, input x21 is missing. For the 
final implementation an ensemble of four models has been designed. The 
selected models from the process expert included the four inputs, based on 
the GP sensitivity analysis, i.e., inputs x4, x6, x8, and x21, and input xl l , 
recommended in a backup model from the experts. The application details 
are given in (Jordaan et al, 2004). 
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Table 6-3. Sensitivity analysis of models in the archive at the last generation (mean and stan­
dard deviation over five independent runs) 

iJiilii blTl̂ J|l.,r|î ji. h it alUt^ fill l l ^ r ^ l 

15 20 15 20 

Figure 6-10. Population size 100 Figure 6-11. Population size 1000 

ni] 

input variables 

Figure 6-12. Variable importance in the projection (VIP) of the 23 inputs based on a four 
principal components PCA-PLS model of the propylene soft sensor 

Summary 

Sensitivity analysis using Genetic Programming and more specifically 
Pareto GP has been used successfully in many industrial applications to do 
nonlinear variable selection. It has been observed that the results are quite 
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consistent and often allow for a considerable reduction in the feature space 
before final models are built. This, in general, leads to more robust models. 
The variable sensitivity is accomplished through a relatively simple fitness 
inheritance scheme that imposes little additional overhead in terms of com­
putational effort. 
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Chapter 7 

A HIGHER-ORDER FUNCTION APPROACH TO 
EVOLVE RECURSIVE PROGRAMS 

Tina Yû  
Chevron Information Technology Company 

Abstract We demonstrate a functional style recursion implementation to evolve recursive 
programs. This approach re-expresses a recursive program using a non-recursive 
application of a higher-order function. It divides a program recursion pattern into 
two parts: the recursion code and the application of the code. With the higher-
order functions handling recursion code application, GP effort becomes focused 
on the generation of recursion code. We employed this method to evolve two 
recursive programs: a STRSTR C library function, and programs that produce 
the Fibonacci sequence. In both cases, the program space defined by higher-
order functions are much easier for GP to search and to find a solution. We have 
learned about higher-order function selection and fitness assignment through this 
study. The next step will be to test the approach on applications with open-ended 
solutions, such as evolutionary design. 

Keywords: recursion, Fibonacci sequence, strstr, PolyGP, type systems, higher-order func­
tions, recursion patterns, filter, foldr, scanr, A abstraction, functional program­
ming languages, Haskell 

!• Introduction 
In August of 2000, I met Inman Harvey at the Seventh International Con­

ference on Artificial Life in Portland, Oregon. "I just finished my Ph.D in 
genetic programming last year," I told Inman at the dinner table. "Great, I have 
a challenge for you. Can you evolve (faster than random search) the STRSTR 
program?" 
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He was referring to the C library function which scans the first appearance 
of one character string in another character string. If the first string does not 
exist in the second string, STRSTR returns an empty string. For example ^ 

strstr (''example'\ ''test example'') = ''example'' 
strstr (''example'',''example test'') = ''example test'' 
strstr ("example" ,"test") ^ <' <' 

This program clearly needs recursion or iteration, a subject which I spent half 
of my Ph.D to investigate. Although I was eager to undertake the challenge, 
many other projects had higher priorities at that time. It was not until early this 
year when I got the chance to work on this problem. 

In this chapter, I present my results of using a higher-order function ap­
proach to evolve the STRSTR program. Additionally, I will show that programs 
generating the Fibonacci sequence can be evolved using higher-order functions. 

This chapter is organized as follows: Section 2 explains higher-order func­
tions and reviews previous work on using higher-order functions to evolve 
computer programs. In Section 3, the PolyGP system is described. Section 
4 presents Genetic Programming (GP) (Koza, 1992) experiments to evolve 
STRSTR. The experiments to generate programs producing the Fibonacci se­
quence are given in Section 5. In Section 6, we discuss our results and review 
other approaches to evolve recursive programs. Finally, section 7 concludes 
the chapter. 

2, Higher-Order Functions and Program Evolution 
Higher-order functions are functions which take other functions as inputs or 

return functions as outputs. This ability to pass functions around as inputs and 
outputs can be used to express patterns of recursion. A recursion pattern has 
two components: operations (recursion code) and application of the operations. 
By extracting the operations into a function and passing it to a higher-order 
function, the operations can be carried out by the higher-order function. 

For example, if the pattern of recursion is performing a series of operations 
on every element of a list, the operation can be extracted as a function/ which 
is then passed as an argument to the higher-order function map, which applies 
it to every element of the list: 

map f [] = [] 
map f list = cons (f (head list)) (map f (tail list)) 

map (+1) [1,2,3,4,5] = [2,3,4,5,6] 

'in this study, STRSTR returns a character string itself instead of the pointer to the character string. 
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Consequently, a recursive function can be re-expressed using a non-recursive 
application of a higher-order function (Field and Harrison, 1988). 

In a previous work, we have adapted this programming style to evolve recur­
sive EVEN-PARITY programs (Yu, 1999). Semantically, EVEN-PARITY takes 
a list of Boolean inputs and returns True if an even number of inputs are True 
and Fa l se otherwise. Experienced circuit design engineers might be able to 
identify one or two familiar methods to obtain recursion. One example is ap­
plying XOR to each pair of the Boolean inputs and then negating the result as 
the final output. 

When combined with the higher-order function foldr (with polymorphic 
types), the PolyGP system (described in Section 3) discovered 8 different recur­
sion patterns; each of which operates differently by applying different Boolean 
function (xOR, NOR, NAND) to the Boolean input pairs (Yu,1999, Chapter 6). 
This work not only shows that higher-order functions provide a feasible way to 
evolve recursive programs, but also demonstrates the power of GP for discov­
ering solutions that are beyond human capability. 

Higher-order functions are not restricted to express recursion patterns for list 
data structures. Other data types, such as tree and integer, can have higher-order 
functions defined over them to carry out the recursive operations. In Section 5, 
we will show such an example. In that case, a higher-order function is defined 
over an integer value. A set of operations are performed repeatedly until the 
integer value reaches zero. We have applied this higher-order function to evolve 
programs generating the Fibonacci sequence successfully. 

Higher-order functions are not expressly limited to programs with recursion 
patterns. Non-recursive programs can also incorporate higher-order functions 
to create modular programs. As an argument to a higher-order function, a 
function becomes a self-contained module (a A abstraction) in a program. This 
module has its own identity and can only exchange materials with the same 
kind of modules in another program during evolution. Consequently, higher-
order functions provide the ability to explore the regularity in a given problem 
during GP evolution. This module mechanism has been incorporated with GP 
to evolve financial technical trading rules based on S&P500 index (Yu et al., 
2004). Those results demonstrated that modular GP rules give higher returns 
than the returns of non-modular GP rules. 



96 GENETIC PROGRAMMING THEORY AND PRACTICE III 

3. The PolyGP System 
PolyGP (Yu, 1999) is a GP system which is able to evolve programs con­

taining higher-order functions. The programs have the following syntax: 

exp :: c constant 

I X identifier 

I / built-in function 

I expl exp2 application of one expression to another 

I Xx,exp lambda abstraction 

Constants and identifiers are given in the terminal set while built-in functions 
are provided in the function set. Application of expressions and A abstractions 
are constructed by the system. 

Each program expression has an associated type. The types of constants and 
identifiers are specified with known types or type variables. For example, the 
input variable strl has type [char] and constant True has Boolean type. 

s t r l : : [ c h a r ] 
True: :Bool 

Each function in the function set is also specified with its argument and 
return types. For example, the function and takes two Boolean type inputs, 
and returns a Boolean type output. 

and::Bool-^Bool-^Bool 

Higher-order functions have brackets around their function arguments. For 
example,^ter takes two arguments: one is a function and the other is a [char] 
type value. The function argument has type ( c h a r ^ B o o l ) , which indicates 
that it is a function which takes one input of char type and return a Boolean 
value. The output of filter is a [char] value. 

f i l t e r : : (char-^Bool)—>[char]—>[char] 

Using the specified type information, a type system selects type-matching 
functions and terminals to construct type-correct program trees. A program 
tree is grown from the top node downwards. There is a required type for the top 
node of the tree. The type system selects a function whose return type matches 
the required type. The selected function will require arguments to be created 
at the next (lower) level in the tree; there will be type requirements for each 
of those arguments. If the argument has a function type, a A abstraction tree 
will be created. Otherwise, the type system will randomly select a function (or 
a terminal) whose return type matches the new required type to construct the 
argument node. This process is repeated many times until the permitted tree 
depth is reached. 
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Lambda Abstraction and Higher-order Functions 
A abstractions are local function definitions, similar to function definitions in 

a conventional language such as C. The following is an example A abstraction 
together with an equivalent C function: 

(Ax (+ X 1)) (A abstraction) 
Inc ( int x){return (x+1)} (C function) 

However, A abstractions are anonymous and can not be invoked by name. 
The application of A abstractions is done by passing them as arguments to a 
higher-order function. The following shows the above defined A abstraction is 
applied by the higher-order function twice: 

twice f X = f (f x) 
twice (Ax (+ X 1)) 2 
= (A X (+ X 1))((A X (+ X D) 2) 
= + ((A X (+ X D) 2) 1 
= + (+ 2 1) 1 
= + 3 1 
= 4 

The procedure to create A abstraction trees is similar to that used to create 
the main program tree. The only difference is that their terminal set consists 
not only of the terminal set used to create the main program, but also the input 
variables to the A abstraction. Input variable naming in A abstractions follows a 
simple rule: each input variable is uniquely named with a hash symbol followed 
by an unique integer, e.g. #1, #2. This consistent naming style allows cross­
over to be easily performed between A abstraction trees with the same number 
and the same type of inputs and outputs. Figure 7-1 gives the program tree with 
higher-order function twice and A abstraction described in the above example. 

Figure 7-1. The program tree with higher-order function twice and A abstraction. 
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4. Evolving STRSTR Programs 

To evolve STRSTR program, the first step is to select higher-order functions 
that facilitate the evolution of recursion patterns. Functional programming 
languages, such as Haskell , have a rich set of higher-order functions in their 
libraries. From the Haskell library (Jones, 2002), we selected two higher-order 
functions: filter and scanr. 

The function filter applies a predicate to a list and returns the list of those 
elements that satisfy the predicate. 

f i l t e r : : (a—>Bool)--^[a]—>[a] 
f i l t e r (/= ^pO [ ' a ' , ' p ' , ' p \ ' l ' , ' e ^ ] = [ ^ a ' , ' l \ ' e ' ] 

The function scanr first applies its function argument if) to the last item 
of the list argument and the second argument {qO). Next, it applies/ to the 
penultimate item from the end of the list argument and the result from the 
previous application. This operation continues until all elements in the list 
argument is processed. It then retums the list of all intermediate and final 
results. 

scanr: : (a—>b—>b) —^b-^ [a] -^ [b] 
scanr f qO [] = [qO] 
scanr f qO (x:xs) = f x q:qs 

where qs@(q_)= scanr f qO xs 

scanr cons [] [̂ 'apple''] = 
Capple''/'pple'\''ple'\''le'S''e''] . 

In addition, the library function isPrefixOf is handy for implementing 
STRSTR. It checks if the first argument is a prefix of the second argument. 

i sP re f ixOf : : [ a ] - ^ [a]->Bool 
isPrefixOf C a p p " ] C a p p l e ' ' ] = True 

With the 3 library functions, STRSTR function is defined as: 

s t r s t r s t r l s t r 2 = 
head ( f i l t e r ( isPref ixOf s t r l ) ( scanr cons [] s t r 2 ) ) 

Here, scanr produces all sub-strings of the input str2. The function filter 
checks each of the sub-strings and retums the list of the sub-strings where strl 
is the prefix. The function head then retums the first sub-string in the list. This 
STRSTR implementation works fine as long as strl occurs in str2. When this is 
not the case, filter would retum an empty list, which will cause head retum a 
mn-time error. To avoid such an error, a function headORnil is defined: 

headORnil [] = [] 
headORnil list = head list 
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The recursive STRSTR defined using higher-order functions is therefore: 

strstr strl str2= 

headORnil (filter (isPrefixOf strl) (scanr cons [] str2) 

Figure 7-2a is the defined STRSTR program tree. As explained, the role of 
higher-order functions in a recursive program is to apply the recursion code to 
data inputs. The recursion code, however, is defined by programmers. In the 
case where GP is the programmer, we have to provide terminals and functions 
for GP to evolve the code. Figure 7-2b shows the areas of the code which are 
generated by GP. In particular, the triangle with a A root is the recursion code for 
filter to apply. The recursion code for scanr is inside the other triangle which 
is also evolved by GP. 

Figure 7-2a. The defined recursive Figure 7-2b. The STRSTR program tree 
STRSTR program tree. structure; the code inside the two triangles 

will be evolved by GR 

Experimental Setup 
Table 7-1 gives the function set for GP to evolve STRSTR. Among them, 

three are higher-order functions: filter and scanr are selected from the Haskell 
library while fold2lists is defined for GP to evolve a function operating like 
isPrefixOf. foldllists is an extension of foldr. Instead of applying recursion 
code on single list, foldllists applies recursion code over two lists. When an 
empty list is encountered, foldllists returns different default value, depending 
on which one of the two lists is empty. 

fold21ists f defaultl default2 [] list2 = defaultl 

fold21ists f defaultl default2 listl [] = default2 

fold21ists f defaultl default2 (frontl:restl)(front2:rest2) = 

f frontl front2 (fold21ists f defaultl default2 restl rest2) 

The second column of Table 7-1 specifies the type of each function. We 
used special types such as input and output to constrain the functions on 
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certain tree nodes, so that the top two layers of the program trees have the same 
structure as that shown in Figure 7-2b. 

For example, we specify the return type of STRSTR to be [output]. The only 
function which returns this type is headORniU which will always be selected as 
the program tree root. The single argument of headORnil has type [ [output] ] 
and the only function that returns this type \^filter, which will always be selected 
as the argument node below headORnil, Although there are other ways to 
constrain tree structures, typing is convenient since the PolyGP system has a 
powerful type system to perform type checking for the program trees. 

Table 7-1. Function Set 

function type 

headORnil \output\ —> [output] 
filter {[char] -^ Bool) —̂  |c/iar] —> {output} 
scanr {char -^ [char] -^ [char]) —> [output] -^ [output] —> [c/iar| 
cons char -^ [char] —> [char] 
fold21ists {char -^ char —> Bool —> Bool) —> Bool —> Bool —> 

[input] —̂  [c/iar] —> Bool 
and Bool -^ Bool —> Bool 

Table 7-2 gives the terminal set. The variable strl will always be selected as 
the fourth argument to fold2lists. Similarly, str2 and [] will always be selected 
as either the second or the third argument to scanr. At a first look, it seems that 
the program trees are so constrained that the generation of STRSTR programs 
would be very easy. However, after careful examination, you will find that all 
that have been specified are the skeleton of STRSTR program: the higher-order 
functions and the inputs list which the recursion code will apply. The core of a 
recursive program, the recursion code must be discovered by GP. 

terminal 

strl 
true 
[] 

Table 7-2. 

type 

[input] 
Bool 
[output] 

Terminal Set 

terminal 

str2 
false 

type 

[output] 
Bool 

The GP parameters are given in Table 7-3 while the three test cases used to 
evaluate GP programs are listed in Table 7-4. For this problem, three test cases 
are sufficient as they include all possible scenarios: the first string appears at 
the beginning of the second string; the first string appears in the middle of the 
second string and the first string does not exist in the second string. 
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population size 
maximum tree depth 
mutation rate 
selection method 

Table 7-3. GP Parameters 

500 max generation 
5 crossover rate 
40% copy rate 
tournament of size 2 number of runs 

100 
50% 
10% 
100 

The fitness function is defined as follows: 

/-p»w.^«+{r:Är^:r"^ length(i?^) > length(E^ 
length(Ä^)), otherwise 

R is the output returned by a GP program and E is the expected output; diff 
computes the number of different characters between the two outputs. If the 
two outputs have different length, diff stops computing when the shorter output 
ends. The length difference then becomes a penalty in the fitness calculation. 
Note that a program which returns an output shorter than the expected length 
is given a penalty five times higher than a program which returns an output 
longer than the expected length. This is based on my observation that the most 
frequently produced shorter output is an empty list. Such programs obtain 
a reasonably good fitness by satisfying the easiest test case: case number 3. 
However, they are very poor in handling the other two test cases. Once the 
population converges toward that kind of program, some important terminal 
nodes (e,g. False) become distinct and crossover or mutation are not able to 
correct them. To avoid such premature convergence, programs which generate 
shorter outputs than the expected outputs are penalized severely. A program 
which satisfies all 3 test cases successfully has fitness 0. 

case no. 

1 
2 
3 

Table 7-4. 

strl 

"sample" 
"sample" 
"sample" 

Three Test Cases 

str2 

"sample test" 
"test sample" 
"test" 

expected output 

"sample test" 
"sample" 

Results 
The program space turns out to be very easy for GP to search: all 100 runs 

find a solution before generation 31. The "computation effort" required to find 
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a solution is given in Figure 7-3a. The minimum number of programs GP has 
to process in order to find a solution is 20,000. 

The computational effort was calculated using the method described in (Koza, 
1992). First, the cumulative probability of success by generation / using a 
population size M (F(MJ)) is computes. This is the total number of of runs 
that succeeded on or before the ith generation, divided by the total number runs 
conducted. Next, the number of individuals that must be processed to produce a 
solution by generation / with probability greater than z (by convention, z=99%) 
is computed using the following equation: 

The hardware CPU time used on a Pentium 4 machine to complete the 100 
runs is 40 minutes, which is longer than our other GP experimental runs. This 
is because each program has 3 recursions. In particular, fold2lists is inside of 
filter. This nested recursion takes machines a long time to evaluate. 

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 

Figure 7-3a. Computation effort required 
to generate a STRSTR programs. 

Figure 7-3b. The average population fit­
ness during program evolution. 

After editing, all evolved STRSTR programs look the same (see Figure 7-4). 
The scanr function generates a list of sub-strings from input str2. The filter 
function then removes the sub-strings whose initial characters do not match the 
input strl. The headORnil function then retums the first item in the resulting 
list. If the resulting list is empty, headORnil retums an empty list. 

To investigate if a random search can do as well a job as GP does for this 
problem, we made 100 random search runs, each of which generated 20,000 
programs randomly. None of them found a solution. We also evaluated the 
average population fitness of the 100 GP runs (see Figure 7-3b). They show 
the average population fitness improves as the evolution progress (the data after 
generation 18 are insignificant as they are based on a very small number of 



Evolving Recursive Programs Using Higher-Order Functions 103 

Figure 7-4, The shortest STRSTR program generated by GP. 

runs); the improvement is particularly evident during the first 8 generations. In 
other words, GP search leads the population converge toward fitter solutions 
and finds an optimal at the end. All the evidences indicate that fitness and 
selection have positive impact on the search. GP is a better search algorithm 
than random search to find STRSTR programs in this program search space. 

5. Fibonacci Sequence 
Fibonacci sequence is defined as the following: 

«. X _ f 1 ,if n=Oorn=l 
•̂  ^ ^ ~ I Ui-i + ni-2 > otherwise 

To generate the first n values of the sequence, a program has to compute the 
two previous sequence values recursively for n time. The recursion, recursion 
pattem in this case is therefore applying some operations over an integer value. 
A higher-order function/oWn is designed for this pattem of recursion: 

foldn: : ([int]—^ [int] )^int—>input—» [output]—^ [output] 

foldn f default 0 list = cons default list 

foldn f default 1 list = cons default (foldn f default 0 list) 

foldn f default n list = f (foldn f default n-1 list) 

Here, list is an accumulator to store the sequence values generated so far. The 
recursion code (/) is applied on the accumulator to compute the next sequence 
value. As mentioned previously, the role of higher-order functions in a recursive 
program is to apply the recursion code, which are generated by GP. In Figure 7-5, 
the left triangle is the recursion code area. The right triangle is the default value. 
Both of them are generated by GP . Similar to the previous experiment, we use 
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special types input and output to constrain the functions and terminals on 
certain tree nodes so that the evolved program trees have the specified structure. 

Figure 7-5. The program tree structure; the area inside the two triangles are generated by GP. 

Experimental Setup 
The function and terminal sets are given in Table 7-5 and Table 7-6 respec­

tively. We specify [output] as the program return type, hence enforce/oWn, 
the only function that returns this type, to be the program tree root . This 
function has four arguments; the third one will always be the variable n and the 
fourth one will always be the variable list. Initially, accumulator list is an empty 
list. It grows as the sequence values are generated. Randomint is a random 
number generator which returns a random integer value in the range of 0 and 
3. The GP parameters are listed in Table 7-3. 

Table 7-5. Function Set 

function type 

foldn 
plus 
minus 
head 
tail 
cons 

{[int] -^ [int]) —> int 
int —> int —> int 
int —> int -^ int 
[int] -^ int 
[int] —> int 
int —> [int] —> [int] 

input -^ [output] —> [output] 

Table 7-6. Terminal Set 

terminal type terminal type terminal type 

input list [output] randomint int 

Each evolved GP program is tested on n value of 8. The expected return list 
is therefore [34,21,13,8,5,3,2,1,1] . The fitness function is basically the 
same as the one in the previous experiments. One exception is that there is a 
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run-time error penalty of 10 for programs applying head or tail to an empty 
list. The fitness function is therefore: 

/ -:: diff(R,E)+10*rtError+ 
length(R)-length(E) 
5*(length(E)-length(R)) 

,length(R)> length(E) 
»otherwise 

where R is the return list while E is the expected list. The run-time error flag 
rtError is 1 if a run time error is encountered during program fitness evaluation. 
Otherwise, it is 0. 

Results 
This program space is slightly harder than the STRSTR program space for 

GP. Among 100 runs, 97 found a solution; all of them are general solutions 
work for any value of n. The computation effort required to find a solution is 
given in Figure 7-6a. The minimum number of programs evaluated by GP to 
find a solution is 33,000. The hardware CPU time on a Pentium 4 machine to 
complete the 100 runs is 7 minutes. After editing, all programs become the 
same as that shown in Figure 7-7. 

The left most branch in the program tree is the recursion code that the higher-
order function foldn applies to a list. It is a function, specified by A, with 
one argument (#1). The argument is an accumulator containing the Fibonacci 
sequence values generated so far. The function adds the first two elements of the 
list together and then concatenates the result to the accumulator. This operation 
is repeated until the input n becomes 0, when the default value 1 is returned. It 
is a general solution that produces the first n values of the Fibonacci sequence. 

generation 

Figure 7-6a. Computation effort required 
to evolve a program generating Fibonacci 
sequence. 

Figure 7-6b. The average population fit­
ness during program evolution. 

We also made 100 random search runs, each generates 33,000 programs 
randomly. Similar to the results of the STRSTR experiments, none of them 
found a program capable of producing the Fibonacci sequence. The average 
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Figure 7-7. The shortest program generated by GP. 

population fitness of the 100 GP runs in Figure 7-6b indicates that GP search 
guided by fitness and selection has led the population converging toward fitter 
programs and found an optimal at the end. This supports the case that GP is a 
better search algorithm for this program space. 

6. Discussion 
Recursion is a powerful programming technique that not only reduces pro­

gram size through reuse but also improves program scalability. Evolving recur­
sive programs, however, has not been easy due to issues such as non-termination 
and fitness assignment (Yu, 1999, Chapter 3). By re-expressing recursive pro­
grams using non-recursive application of a higher-order function, the produced 
recursive programs always terminate. It is therefore a promising approach to 
evolve recursive programs. 

In a previous work, we have shown that when using higher-order function 
foldr (with monomorphic types) to define recursive EVEN-PARITY, the problem 
difficulty is greatly reduced. In fact, random search is sufficient to find a solution 
in this program space (Yu, 1999, Chapter 7). In this chapter, we study two other 
recursive programs using a similar approach. Both program spaces defined by 
higher-order functions are not difficult for GP to find a solution. Random 
search, however, could not find a solution. Further analysis of population 
average fitness confirms that GP search is indeed superior than random search 
in these two problem spaces. 

One important characteristic of this approach is that GP effort is mostly 
on evolving the recursion code (A abstractions). The application of the code 
is handled by higher-order functions. It is important to note that GP has no 
knowledge about how the recursion code is applied. The relationship between 
the code and its application is leamed through the iterative process of programs 
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evaluation, correction and selection. Our experimental results indicate that GP 
is able to acquire such knowledge to evolve recursion code that work with the 
higher-order function to produce correct outputs. 

Although incorporating designed/selected higher-order functions is an effec­
tive way to evolve recursive programs, it has its shortcoming: domain knowl­
edge are not always available to design/select the appropriate higher-order func­
tions. A more general approach would be to let GP evolve the higher-order func­
tions suitable for a given problem. In this way, problems with poorly-defined 
scope can also benefit this technique. 

Koza and his colleagues proposed Automatic Defined Recursion (ADR) as 
a way for GP to evolve recursive programs (Koza et al., 1999). An ADR tree 
has 4 branches: condition, body, update and ground. Since an ADR can call 
itself inside its body and the update branch may be ill-defined during program 
evolution, an ADR may never terminate. It is therefore necessary to set an 
ADR execution limit when evolving recursive programs. They have employed 
ADR with architecture-alternating operations to successfully evolve programs 
generating the Fibonacci sequence. However, the solution is not general and 
does not work for input n beyond 12. 

Through incremental program transformation, Olsson showed that recursive 
programs can be developed by his ADATE system (Olsson, 1995). Instead of 
relying on fitness-based selection and genetic operation, his system applies four 
transformation operations to induce recursive programs. He gave some example 
programs, such as a sorting algorithm, which were successfully generated using 
this approach. 

7. Conclusions 
Functional implementation of recursive programs is not well understood nor 

utilized in the GP community. The implementation does not make explicit re­
cursive calls. Instead, recursion is carried out by non-recursive application of 
a higher-order function. This chapter explains this style of recursion imple­
mentation and demonstrates one way to incorporate it in a GP system to evolve 
recursive programs. 

In this GP system, higher-order functions are included in the function set. 
Recursion occurs when a higher-order function appears in a program tree node. 
We applied this GP system to evolve two recursive programs. In the first case, 
a challenge by Inman Harvey, multiple recursions are involved. We selected 
two Haskell library functions and designed one higher-order function for these 
recursion patterns. In the second case, a higher-order function operating over 
an integer value is designed. In both cases, the GP system is able to evolve 
the recursive programs successfully by evaluating a small number of programs. 
Random search, however, is not able to find a solution. 
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These results clearly endorse GP ability to evolve recursive programs that 
random search can not. Yet, the success is linked to the problem-specific higher-
order functions. When domain knowledge is available, like the two problems 
we studied, identify such higher-order functions is not hard. However, when 
this is not the case, it becomes unclear if GP is able to compose the recursive 
code to work with a general purpose higher-order function. An altemative 
approach is to have GP evolve the problem-specific higher-order functions. In 
this way, the GP system is more general and can be applied to problems that do 
not have a well-defined scope. This is the area of our future research. 

Are we ready to tackle real-world problems using this approach? Maybe. 
We have learned quite a deal about higher-order functions selection and fit­
ness assignment. However, both problems we studied have known solutions, 
which help the selection of higher-order functions. Most real-world problems 
are open-ended in the sense that there is no known optimum. However, this 
does not preclude the possibility of applying the method. In particular, in the 
area of evolutionary design where creativity is essential to problem solving, an 
imperfect higher-order function might still be able to deliver good solutions. 
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Abstract Geographical distribution is widely held to be a major determinant of evolution­
ary dynamics. Correspondingly, genetic programming theorists and practitioners 
have long developed, used, and studied systems in which populations are struc­
tured in quasi-geographical ways. Here we show that a remarkably simple version 
of this idea produces surprisingly dramatic improvements in problem-solving 
performance on a suite of test problems. The scheme is trivial to implement, in 
some cases involving little more than the addition of a modulus operation in the 
population access function, and yet it provides significant benefits on all of our 
test problems (ten symbolic regression problems and a quantum computing prob­
lem). We recommend the broader adoption of this form of "trivial geography" in 
genetic programming systems. 

Keywords: geography, locality, demes, symbolic regression, quantum computing 

1. Geography 
All biological populations are distributed in space, with the result that some 

organisms are close neighbors while others live at great distances from one 
another. It has long been recognized that such geographical distribution, even 
in uniform environments, can influence evolutionary dynamics in significant and 
complex ways (Mayr, 1942; Wright, 1945; Avise, 2000;Liebermanetal., 2005). 
In particular, positive influences of geographical distribution on the evolution of 
individuals with certain desirable features {e,g, altruistic behavior) have been 
demonstrated in both analytical models and simulations (Eshel, 1972; Nowak 
and May, 1992; Axelrod et al., 2004; Spector and Klein, 2005a). 
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It is therefore not surprising that many evolutionary computation systems 
also model some form of geography, locating their evolving individuals within 
grid-based or continuous virtual spaces. This is a particularly natural move 
for systems that are designed to model aspects of natural ecosystems (Ray, 
1991; Holland, 1995; Ofria and Wilke, 2004). But it is also a popular move 
in problem-solving evolutionary computation systems, in the context of which 
geography is often justified by the ways in which it can be used to maintain 
population diversity. 

Standard genetic algorithms and genetic programming techniques are non-
spatial in their most common formulations (Holland, 1992; Koza, 1992; Banzhaf 
et al., 1998). However, many researchers and practitioners routinely divide their 
populations in to discrete or overlapping sub-populations, often called demes, 
that provide a form of geography (Collins and Jefferson, 1991). In these systems 
selection and competition takes place locally but selected individuals occasion­
ally mate or migrate across demes. Because the computations taking place 
in different demes are generally independent—particularly when the demes 
are non-overlapping, in which case they are sometimes called "islands"—one 
can often run them on independent processors and reap benefits both of paral­
lelism and of the diversity maintenance supported by geographical distribution 
(Maruyama et al , 1993; Nowostawski and Poll, 1999; Andre and Koza, 1996). 

Demes have been demonstrated, in certain cases, to improve problem solving 
performance (see e.g. (Collins and Jefferson, 1991; Fernandez et al., 2003)). A 
wide range of connectivity patterns and migration regimes has been discussed in 
the literature, and there are initial results linking specific connectivity patterns 
to expected performance on specific problems (Bryden et al., 2005). 

In this chapter we present a form of geography that is considerably sim­
pler than those generally used in genetic programming. Our trivial geography 
model is a 1-dimensional "overlapping neighborhoods" model that implements 
a concept of geography similar to that used in many artificial life simulations 
(Ray, 1991; Ofria and Wilke, 2004; Axelrod et al., 2004). It is also similar 
in many respects to the "local selection" genetic algorithm of Collins and Jef­
ferson (1991); although their work is often cited as inspiration for the use of 
isolated demes with migration, the individuals in their model were actually 
distributed across 1-dimensional or 2-dimensional grids, with one individual 
per grid location, and selection and mating were performed in local areas of 
the grid. For example, short random walks through the grid were used to pair 
mates. A more recent genetic programming model, known as "cellular" or "dif­
fusion" genetic programming, locates individuals on a 2-dimensional grid and 
allows interactions only between immediate neighbors (Pettey, 1997; Folino 
et al., 1999; Folino et al., 2003). Several other models involving related notions 
of locality have been used in other genetic programming work, often in the con-



Trivial Geography in Genetic Programming 111 

text of additional innovations (e,g, co-evolution or autoconstructive evolution) 
(D'haeseleer and Bluming, 1994; Spector, 2001). 

Trivial geography requires no explicit representation of demes, connectivity 
patterns, or migration rates. It requires only minimal changes to a standard 
genetic programming system and a single new parameter. The question we 
set out to investigate was whether such a minimal form of geography could 
make much of a difference with respect to problem-solving performance, and 
if so what that difference might be. Our data show that trivial geography does 
indeed appear to make a substantial positive difference, improving problem-
solving performance. 

In the next section we describe our concept of trivial geography and its sim­
ple implementation. This is followed by two sections demonstrating the utility 
of trivial geography, first on a suite of ten symbolic regression problems and 
then on a difficult problem in quantum computing. We follow these demonstra­
tions with a general discussion and a recommendation that trivial geography be 
incorporated into genetic programming systems more broadly. 

2. Trivial Geography 
In our trivial geography scheme the population is viewed as having a 1-

dimensional spatial structure—actually a circle, as we consider the first and 
last locations to be adjacent. The production of an individual for location i 
is permitted to involve only parents from f s local neighborhood, where the 
neighborhood is defined as all individuals within distance R (the neighborhood 
radius) of i. Aside from this restriction no changes are made to the genetic 
programming system. 

This scheme can be applied to most standard genetic programming sys­
tems with very little effort. Since most systems store their populations in 1-
dimensional data structures (arrays or lists) anyway, all that is required is that 
one restrict the selection of parents relative to the index of a child. 

To avoid conflation of geography and genetic operators we assume that ge­
netic operators are chosen independently of location. Presumably the opera­
tors are chosen randomly, with biases incorporated into the random choice to 
achieve desired operator ratios. This is indeed a common implementation strat­
egy (used, for example, in ECJ^), although in some implementations (e,g, that 
described in (Koza, 1992)) a particular genetic operator is applied to produce 
the first segment of the population, another operator is applied to produce the 
next segment, and so on. Under such an implementation operators would be re­
stricted to certain geographic areas and one can imagine that strange dynamics 

^http: / /cs .gmu.edu/~eclab/projects /ecj / 

http://cs.gmu.edu/~eclab/projects/ecj/
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Table 8-1. Symbolic regression problems used for tests of trivial geography. 

# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Problem 

y = Sx^ + 3a;2 + X 
y=:7x^- 3a;2 + 17x 
y = 5a;3 + 12x2 - 3x 
J/ — x^ + a;̂  + X 
y = x^ — 2x2 _ ^ 
y = 8x̂  + 3x̂  + x̂  + 6 
2/ = Tx̂  - 6x^ + 3x2 _,_ 172; _ 3 
y = 5x'5 - 2x5 - 5x^ + 3x^ + 5 
y = x^ + x^ + x2 + X — 8 
y = x'' - 2x^ + x2 - 2 

would result; one would probably want to convert first to location-independent 
operator selection, which is itself usually a simple modification. 

While trivial geography can be used with various selection schemes it is 
particularly simple to describe in terms of tournament selection. In this context 
it can be implemented simply by changing the function that chooses a random 
individual to participate in a tournament. Whereas the standard scheme chooses 
each such individual randomly from the entire population, in trivial geography 
we choose each such individual from the neighborhood of the location for 
which we are creating a new individual. In particular we choose only from 
individuals with indices in the range {i — R^i-\- R), where i is the index of the 
location for which we are creating an individual, i? is a radius parameter, and 
we "wrap around" from the bottom to the top of the range and vice versa. ̂  The 
modification to restrict the range of choices is indeed often trivial, involving 
only one or a few lines of code. 

3, Trivial Geography Applied to Symbolic Regression 
We tested trivial geography on the ten arbitrarily chosen symbolic regres­

sion problems listed in Table 8-1. We used the PushGP genetic programming 
system, which evolves programs in the Push language (Spector, 2001; Spector 
and Robinson, 2002; Spector et al, 2005).^ Push is a multi-type, stack-based 
programming language that supports the evolution of novel control structures 

În some programming languages this "wrapping around" can be accomplished with a single call to the 
modulus function. 
•^http: //hampshire . edu/lspector/push. html 
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Table 8-2. Parameters for symbolic regression tests of trivial geography. The instruction set is 
limited to simple integer manipulation and integer stack manipulation. The INPUT instruction 
pushes the current input (x) value onto the integer stack. 

Problems 
Input (x) values 

Fitness 
Runs per problem 

Radius (R) 
Population size 
Crossover rate 
Mutation rate 

Duplication rate 
Tournament size 

Maximum generations 
Initial program size limit 
Child program size limit 
Program evaluation limit 

Ephemeral random constants 
Instructions 

Symbolic regression problems listed in Table 8-1. 
0-9 
Sum of absolute values of errors for all inputs. 
115 with trivial geography, 
115 without trivial geography. 
10 
2000 
40% 
40%, fair mutation 
(Crawford-Marks and Spector, 2002) 
20% 
7 
200 
100 
100 
100 
integer ( -10 ,10) 
INTEGER,+, INTEGER.-, INTEGER.*, 
INTEGER./,INTEGER.POP, INTEGER.DUP, 
INTEGER.SWAP,INTEGER.SHOVE, 
INTEGER.YANK,INTEGER.YANKDUP, INPUT 

through explicit code and control manipulation, but none of these novel fea­
tures were used in the present study. For the experiments reported here we used 
only a minimal integer-oriented instruction set, so that PushGP was acting here 
much like any standard genetic programming system."̂  We have no reason to 
believe that the remaining differences between PushGP and other genetic pro­
gramming systems contributed to our results in any significant way. The full 
set of parameters used for our runs is presented in Table 8-2. 

We examined the results in two ways, looking both at the "computational ef­
fort" required to find a solution (Koza, 1994) and the mean best fitness across all 
runs on a particular problem. Computational effort was computed as described 
by Koza (pp. 99-103), first calculating P{M, z), the cumulative probability of 
success by generation / using a population of size M (this is just the total num­
ber of runs that succeeded on or before the iih generation, divided by the total 
number of runs conducted). /(M, i, z), the number of individuals that must be 

"̂ We used the version of PushGP distributed with the Breve simulation environment (Klein, 2002). Breve is 
available from h t tp : //www. spiderland. org/breve. 
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Table 8-3. Successes/runs and computational efforts for the symbolic regression problems with 
and without trivial geography. 

# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Successes/runs without 
trivial geography 

67/115 
24/115 
8/114 

115/115 
106/115 
17/115 
2/114 
0/113 

73/113 
101/113 

Effort without 
trivial geography 

600,000 
3,024,000 

12,566,000 
36,000 

132,000 
5,928,000 

54,810,000 
oo 

848,000 
280,000 

Successes/runs with 
trivial geography 

113/115 
64/115 
50/115 

115/115 
115/115 
76/113 
6/114 
1/113 

113/113 
113/113 

Effort with 
trivial geography 

316,000 
2,176,000 
3,160,000 

30,000 
66,000 

1,840,000 
38,406,000 

144,282,000 
276,000 
164,000 

processed to produce a solution by generation i with probability greater than z 
(by convention, z =99%) is then calculated as: 

I{M,i,z) = M * (i + 1) * 
log(l - z) 

log( l -P(M, i ) ) 

The minimum of /(M, i, z) over all values of i is defined to be the "compu­
tational effort" required to solve the problem. 

The computational efforts calculated from our 2,283 runs (115 runs for 
each of the 2 conditions for each of the 10 problems, with 17 runs lost to 
miscellaneous system problems) are shown in Table 8-3. Lower efforts are, 
of course, better, so this data demonstrates that trivial geography provides a 
considerable benefit on all of the symbolic regression problems. 

Because the problems vary widely in difficulty we also show, in Figure 8-1, 
a graph of these results normalized independently for each problem, with the 
effort for the standard configuration (without trivial geography) set to 100; the 
values for the runs with trivial geography therefore indicate the computational 
effort as a percentage of that in the standard configuration. From this graph it 
is clear that the benefits provided by trivial geography are indeed substantial. 

The mean best fitness values from our runs are shown in Table 8-4. Lower 
fitness values are better, so this data also demonstrates that trivial geography 
provides a considerable benefit for all of the symbolic regression problems. 
We also show, in Figure 8-2, a graph of these results normalized for each 
problem, with the mean best fitness for the standard configuration (without 
trivial geography) set to 100; the values for the runs with trivial geography 
therefore indicate the mean best fitness as a percentage of that in the standard 
configuration. For problems #5, #9 and #10 trivial geography achieved a 100% 
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Figure 8-]. Computational efforts calculated for the symbolic regression problems with and 
without trivial geography. This plot is normalized independently for each problem, with the 
values for runs in the standard configuration (without trivi al geography) shown as 100%. Problem 
#8 is anomalous because no solutions were found without trivial geography, producing an infinite 
computational effort. 

solution rate (best fitness = 0 for all runs). Problem #4 was exceptionally 
easy, leading to 100% solution rates in both configurations; both are therefore 
plotted as 100%. From the mean best fitness values it is also clear that the 
benefits provided by trivial geography are indeed substantial. 

For the mean best fitness values we conducted T tests to assess the statistical 
significance of the differences between the configurations with and without triv­
ial geography. Aside from problem #4 (in which both configurations achieved 
100% solution rates) all differences are significant with p < 0.01. 

4. Trivial Geography Applied to a Quantum Computing 
Problem 

Quantum information technology is expected to provide revolutionary ben­
efits for computing, but quantum computers are counter-intuitive and difficult 
to program. Genetic programming can be used to automatically develop quan­
tum computing algorithms, and the resulting algorithms may be useful both 
for solving practical problems and for answering open questions in the the-



52.50 
98.67 

148.77 
0 

5.51 
7,149.94 

957.43 
27,475.48 

22.41 
1.81 

0.65 
19.13 
48.39 

0 
0 

63.19 
332.48 

16,859.71 
0 
0 
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Table 8-4. Mean best fitness values (for which lower values are better) for the symbolic regres­
sion problems with and without trivial geography. 

# Mean best fitness without Mean best fitness with 
trivial geography trivial geography 

1 
2 
3 
4 
5 
6 
7 

10 

ory of quantum computing. A detailed discussion of the application of genetic 
programming to quantum computing problems can be found in (Spector, 2004). 

The problem we set out to solve, like many quantum computation problems, 
involves determining how a "black box" computational gate called an oracle 
transforms the qubits to which it is applied.^ In particular, we were interested 
in determining whether a given 2-input, 1-output Boolean oracle flips its output 
qubit under the conditions illustrated in Figure 8-3. That is, we are asked to 
determine if the cases for which the oracle flips its output qubit satisfy the 
logical formula {IQO V IQI) A (/lo V / n ) , where lab indicates whether or not 
the output is flipped for the input (a, b). 

This problem, which is called the "AND/OR" oracle problem, has been the 
subject of several of our previous investigations (Spector et al., 1999; Bamum 
et al., 2000; Spector, 2004). We previously used genetic programming to find 
quantum algorithms that perform better than any possible classical algorithm 
(that is, they have lower probability of error) when restricted to a single ora­
cle call.We have recently been investigating the two-oracle-call version of this 
problem. The lowest error probability obtainable by a probabilistic classical 
algorithm on the two-oracle-call version of this problem is ^ = 0.1666,.., but 
in our recent work we have found, using genetic programming, quantum algo­
rithms with an error probability of less than 0.11 (Spector and Klein, 2005b). 

^ A qubit is the quantum analog of a classical "bit"; see (Spector, 2004) for a detailed description of qubits 
and the ways in which they are manipulated by quantum gates. 
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Figure 8-2. Mean best fitness values (for which lower values are better) for the symbolic re­
gression problems with and without trivial geography. This plot is normalized independently for 
each problem, with the values for runs in the standard configuration (without trivial geography) 
shown as 100%. For problems #5, #9 and #10 trivial geography achieved a 100% solution rate 
(fitness = 0 for all runs). For problem #4 both configurations achieved a 100% solution rate. 

ORACLE(0,0) ORACLE(Q,l) ORACLE(l,0) ORACLE{l,l) 

Figure 8-3. An "AND/OR" tree describing the property of interest in the AND/OR oracle 
problem (see text). 
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Our new results on the two-oracle-call AND/OR problem used trivial ge­
ography, and our anecdotal evidence led us to believe that trivial geography 
played an important role in our success. But this work also involved inten­
sive runs with expensive fitness tests and large populations distributed across 
a 23-CPU computer cluster. It was not practical to replicate runs of this scale 
the hundreds of times that would be necessary to fully assess the contribution 
of trivial geography, so we opted instead to conduct many smaller-scale runs 
which, while they would not solve the problem of beating the classical error 
probability, would still produce significant improvements in fitness. 

We conducted 92 runs with and 92 runs without trivial geography, using the 
parameters shown in Table 8-5 and, again, the version of the PushGP genetic 
programming system that is distributed with the Breve simulation environment. 
Fitness was assessed using the QGAME quantum computer simulator, a version 
of which is also distributed with Breve. ̂  

Computational effort is meaningful and finite only in the context of a success 
criterion that is reached in at least some runs. But the difficulty of this problem, 
relative to the resources we employed, prevented us from finding any solutions 
that beat the classical error probability. Since there is no other obvious choice 
for a success criterion we reportonly a comparison of mean best fitness values. 

The mean best fitness for the runs without trivial geography was 0.51, while 
the mean best fitness for the runs with trivial geography was better, at 0.32. A T 
test shows this difference to be statistically significant with p < 0.005. Again, 
we see a substantial improvement in problem-solving performance provided by 
trivial geography. 

5, Discussion 
We have presented a simple modification to the standard genetic program­

ming technique that appears, from the tests we have run to date, to provide 
substantial benefits to problem-solving performance on both artificial and real-
world problems. The modification incorporates notions of geographical distri­
bution that have a long history in evolutionary biology and many precedents 
in genetic programming and other forms of evolutionary computation. Our 
modification, however, is arguably simpler to implement than any of its prede­
cessors; in many cases it can be implemented in one or a handful of lines of 
code. We were surprised to find that this "trivial" form of geography nonethe­
less provides real benefits, and although we cannot make general claims about 
its utility^ we recommend that trivial geography be adopted more widely in 
genetic programming systems. 

^QGAME documentation and code is available from h t tp : //hampshire. edu/lspector/qgame .html. 
^Such claims would require analysis and discussion of the results in the context of the No Free Lunch theorem 
(Wolpert and Macready, 1997; Droste et al., 1999). 
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Table 8-5. Parameters for quantum computing tests of trivial geography. For this problem a 
developmental approach was used in which certain instructions add quantum gates to a developing 
"embryo"; see (Spector, 2004) for details. 

Problem 

Embryo 

Fitness cases 

Fitness function 

Runs 
Radius (R) 

Population size 
Crossover rate 
Mutation rate 

Duplication rate 
Tournament size 

Maximum generations 
Initial program size limit 
Child program size limit 
Program evaluation limit 

Ephemeral random constants 
Instructions 

AND/OR oracle problem (Spector, 2004), with two calls 
to the oracle permitted. 
Three-qubit quantum circuit with a final 
measurement on one qubit (index 2 of (0-2)). 
All possible two-input, one-output Boolean 
oracles, specifically (looloihohi - answer): 
0000:0, 0001:0, 0010:0, 0011:0, 
0100:0,0101:1,0110:1,0111:1, 
1000:0,1001:1, 1010:1, 1011:1, 
1100:0, 1101:1, 1110:1, 1111:1 
Misses + MaxError where Misses is the number 
of cases for which the probability of error is greater 
than 0.48 and MaxError is the maximum probability 
of error of any case. 
92 with trivial geography, 92 without trivial geography. 
15 
2500 
40% 
40%, fair mutation (Crawford-Marks and Spector, 2002) 
20% 
7 
500 
100 
250 
250 
integer (-10,10), float (-10.0,10.0) 
FLOAT.%, FLOAT.*, FLOAT.+, FLOAT.-, FLOAT./, 
FLOAT.DUP, FLOAT.POP, FLOAT.SWAP, 
FLOAT.FROMINTEGER, LIMITED-ORACLE, HADAMARD, 
U-THETA, MEASURE, SRN, CNOT, U2, CPHASE, SWAP, 
END 

For researchers and practitioners using genetic programming systems that al­
ready involve geographical distribution (e.g, in isolated demes with migration) 
an obvious practical question, not addressed here, is that of how trivial geogra­
phy compares to their presumably more complex techniques. One might also be 
interested in the effects of combining several forms of geography, for example 
by using an island model in which trivial geography is used within each island. 
Although comparisons of these techniques are simple to make in principle, one 
would have to conduct large numbers of tests using each of many geographical 
schemes to make definitive recommendations. Our contention here is not that 
trivial geography necessarily outperforms other forms of geography, but only 
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that it appears to provide benefits over non-geographical models in many cases 
for nearly no cost. 

The mechanism by which trivial geography improves problem-solving per­
formance is presumably a form of diversity maintenance. An obvious follow-
up study would apply diversity measures to runs like those conducted here 
and investigate the relations between problems, performance, and diversity. 
Many diversity measures for genetic programming have been developed, as 
have methodologies for correlating various diversity measures and aspects of 
system performance (Burke et al., 2004). 

The values of R, the neighborhood radius, that we used in the experiments 
reported here (10 and 15) were chosen somewhat arbitrarily. We conducted 
preliminary runs with several values of R and many appeared to perform well; 
we chose the values that we did because they appeared to give good results, but 
did not investigate other values of R systematically. 

6. Summary 
An extremely simple modification to the genetic programming algorithm, 

incorporating "trivial geography," appears to improve problem-solving perfor­
mance for nearly no cost. This modification has many precedents in genetic 
programming and evolutionary computation, but it is surprising that so simple 
a form of the idea can have such substantial effects. We recommend that trivial 
geography be adopted more broadly in genetic programming. 
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Chapter 9 

RUNNING GENETIC PROGRAMMING 
BACKWARDS 

Riccardo Poli^ and William B. Langdon^ 
Department of Computer Science, University of Essex, UK 

Abstract Backward chaining evolutionary algorithms (BC-EA) offer the prospect of run­
time efficiency savings by reducing the number of fitness evaluations without 
significantly changing the course of genetic algorithm or genetic programming 
runs. "Tournament selection, iterated coupon-collection problem, and backward-
chaining evolutionary algorithm," Poli, FOGA, 2005 describes how BC-EA does 
this by avoiding the generation and evaluation of individuals which never ap­
pear in selection tournaments. It suggests the largest savings occur in very large 
populations, short runs, small tournament sizes and shows actual savings in fixed-
length binary GAs. Here, we provide a generational GP implementation, includ­
ing mutation and two offspring crossover of BC-EA and empirically investigate 
its efficiency in terms of both fitness evaluations and effectiveness. 

Keywords: Backward-Chaining, genetic programming, tournament selection, efficient algo­
rithms 

1. Introduction 
Due to its simplicity and efficiency, particularly for large populations, tour­

nament selection is currently the most popular form of fitness selection in Ge­
netic Programming (GP). The average number of toumaments per generation 
depends upon whether crossover generates one or two children. With non-
overlapping populations of size M and if crossover produces one child from 
two parents the expected number of toumaments needed to form a new genera­
tion is M(l +Pc) (Pc is the crossover probability). However, if each crossover 
produces two offspring then only (and exactly) M toumaments are needed. 
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Here we focus on genetic programming with two-offspring crossover. ̂  So, if 
n is the tournament size, creating a new generation requires drawing exactly nM 
individuals uniformly at random (with resampling) from the current population. 
As we highlighted in (Poli, 2005), an interesting side effect of this process is 
that not all individuals in a particular generation are necessarily sampled. This 
is particularly true where tournament groups are small. For example, n = 2. 

Except in special cases (such as elitism), the individuals that do not get 
sampled by the selection process have no influence whatsoever on future gener­
ations. However, these individuals use up resources, especially CPU time. So 
one might wonder whether it is possible to avoid generating such individuals 
and what sort of saving one could obtain. 

In (Poli, 2005) we provided a theoretical analysis based on Markov chains of 
the sampling behaviour of tournament selection that started to show the savings. 
In addition it described a general scheme, Backward-Chaining, Evolutionary 
Algorithms (BC-EA), which exploits the sampling deficiencies of tournament 
selection to reduce (or make better use of) the fitness evaluations in an EA. 
(Poli, 2005) suggests the greatest benefits of backward chaining EAs come 
with very large populations, short runs and relatively small tournament sizes. 
These are the settings used frequently in genetic programming, particularly 
when attacking large real-world problems, so a backward-chaining GP system 
would appear to have a great potential. 

The next section provides a review of previous relevant work, including the 
main findings of (Poli, 2005). The third section describes the implementation 
and time and space complexity of our backward chaining GP system. Section 4 
experimentally compares its performance and behaviour with standard GP. We 
conclude with Section 5. 

2. Background 
One of the main lines of research on selection in EAs has been into loss 

of diversity, i.e. the proportion of individuals of a population that are not se­
lected. In (Blickle and Thiele, 1997; Motoki, 2002) different selection methods, 
including tournament selection, were analysed in depth mathematically. 

It is important to understand the difference between not selecting and not 
sampling an individual in a particular generation. Not selecting refers to an 
individual that did not win any tournaments. This is exactly what research on 
the loss of diversity has concentrated on. Not sampling, instead, refers to an 
individual that did not participate in any tournament at all, simply because it 
was not sampled during the creation of the required tournament sets. (Poli, 
2005) and this paper focus on individuals that are not sampled. 

'We have considered the one-offspring case in (Poli, 2005; Poli and Langdon, 2005). 
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(Sastry and Goldberg, 2001) show cases where the performance of a GA 
using a particular version of tournament selection (which guarantees that all 
individuals in a run are sampled) is better than a GA with standard tournament 
selection. Similar results have been recently reported in (Sokolov and Whitley, 
2005), which proposes a different tournament strategy that also guarantees that 
all individuals are sampled. While these two lines of work concentrate on 
modifying tournament selection, we focus on understanding and exploiting the 
sampling behaviour of standard tournament selection. 

Tournament Selection and the Coupon Collector 
In (Poli, 2005), a connection between tournament selection and the coupon 

collection problem was proposed and analysed. In the coupon collection prob­
lem (Feller, 1971), every time a collector buys a certain product, a coupon is 
given to him. The coupon is equally likely to be any one of N types. In order 
to win a prize, the collector must have at least one coupon of each type. 

How is the process of tournament selection related to the coupon collection 
problem? We can imagine that the individuals in the current population are 
distinct coupons and that toumament selection will draw (with replacement) 
nM times from this pool of coupons. Results on the coupon collector problem 
tell us that if n < log M, there may be a substantial number of individuals 
that selection did not sample. That is, for small toumament sizes or large 
populations, many individuals will not be sampled. 

In (Poli, 2005), we found that the expected number of distinct individuals 
sampled by toumament selection in one generation is approximately M(l - e"""). 
So for n = 2, we should expect about 13.5% of the population not to be sam­
pled. For n = 3 this drops to 5%, and becomes quickly negligible for larger 
toumament sizes. This suggests that saving computational resources by avoid­
ing the creation and evaluation of individuals that will not be sampled by the 
toumament selection process may be possible only for small toumament sizes. 
However, low selection pressures are quite common in GP practice, particularly 
when attacking hard, multi-modal problems which require extensive exploration 
of the search space before zooming in on any particular region. Also, much 
greater savings in computation are possible if we exploit the transient behaviour 
of toumament selection over multiple generations. 

To understand what happens over multiple generations, let us imagine we 
are interested in knowing the genetic makeup and fitness of mo individuals in 
a particular generation, G. Clearly, in order to create such individuals, we will 
need to know who their parent(s) were. On average, this will require mnning mo 
tournaments to select such parents. In each toumament we pick n individuals 
randomly from generation G—1. After nmo such trials, we will be in a position 
to determine which individuals in generation G—1 will have an influence on 
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generation G? Let rui be the number of individuals sampled. We can now 
perform nrui trials to determine which individuals in generation G — 2 (the 
new coupon set) will have an influence on future generations. Let m2 be their 
number. The process continues until we reach the initial random generation. 

The quantities m^ for t = 0 ,1 , . . . are stochastic variables. Their probabil­
ity distributions are necessary in order to evaluate the sampling behaviour of 
tournament selection over multiple generations. In (Poli, 2005) we analysed 
this process by defining and studying a new and more complex form of coupon 
collection problem: the iterated coupon collection problem. We modelled the 
iterated effects of tournament selection as a Markov chain and we showed 
that under very mild conditions the transition matrix for the chain is ergodic. 
Therefore, the probability distributions of rut converge (roughly exponentially) 
towards a limit distribution that is independent from the initial conditions and 
so, the expected value of rut converges to a constant value. 

In other words, for long runs (Le. large G) the number of individuals required 
in the final generation, mo, makes almost no difference to the total number 
of individuals sampled by tournament selection. However for short runs, the 
transient of the Markov chain is what one needs to focus on. Both are given by 
the Markov chain theory, but one needs to be able to numerically compute the 
eigenvalues and eigenvectors of the transition matrix. 

Efficient Tournament Selection and Backward Chaining EAs 
From a practical perspective, the question is: how can we modify an EA to 

achieve a computational saving from not evaluating and creating individuals 
not sampled by selection? The idea proposed in (Poli, 2005) is to reorder the 
different phases of an EA. These are: a) the choice of genetic operator to use 
to create a new individual, b) the formation of a random pool of individuals for 
the application of tournament selection, c) the identification of the winner of 
the toumament (parent) based on fitness, d) the execution of the chosen genetic 
operator, and e) the evaluation of the fitness of the resulting offspring.-^ 

The genetic makeup of the individuals is required only in phases (c), (d) and 
(e), but not (a) and (b). So, it is possible to change the order in which we perform 
these phases without affecting the behaviour of our algorithm. For example, 
we can first iterate phases (a) and (b) as many times as needed to create a full 
new generation (of course, memorising all the decisions taken), and then iterate 
phases (c)-(e).^ 

^The other individuals in generation G - 1 have not been sampled and so cannot contribute. Of course only 
the winners of tournaments pass their genetic material to generation G. 
^Phases (b) and (c) are repeated once for mutation and twice for crossover. That is as many times as the 
arity of the genetic operator chosen in phase (a). 
"̂ (Teller and Andre, 1997) used a similar idea to speed up (but not reduce!) GP fitness evaluations. 
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Figure 9-1. Example of graph structure induced by tournament selection in a population of 
M = 6 individuals, run for G — 3 generations, using binary tournaments (n = 2) and crossover 
ratepc — 1/3. Nodes with four incoming links were created by crossover. The remaining nodes 
were created by either mutation or reproduction. Shaded nodes are the potential "ancestors" 
involved in the creation of the first individual in last generation. 

In fact, one can even go further. If we fix in advance the maximum number of 
generations G we are prepared to run our EA, then phases (a) and (b) (random 
choices of genetic operations and who will be in which tournament) can be 
done, not just for one generation, but for a whole run. Then we iterate phases 
(c)-(e) as required. 

We can view the selection of genetic operations and tournament members 
(phases (a) and (b)) during the whole run, as producing a graph structure con­
taining (G + 1)M nodes. The nodes represent the individuals to be created 
during the run and the edges connect each individual to the individuals that 
were involved in the tournaments necessary to select its parents (see Figure 9-
1). Nodes without outgoing nodes are not sampled by tournament selection. 

If we are interested in calculating and evaluating mo individuals in the pop­
ulation at generation G, maximum efficiency can be achieved by considering 
(flagging for evaluation) only the individuals that are directly or indirectly con­
nected with those mo individuals. For example, if in Figure 9-1 we were 
interested only in the first individual in the last generation, we would need to 
create and evaluate only that individual and its potential ancestors (shown with 
shaded nodes). The possible ancestors of our mo individuals can be found with 
a trivial connected-component graph algorithm. Once the relevant sub-graph 
is known, we evaluate the individuals in it from generation 0 to generation G. 

The graph induced by tournament selection can be created without the need 
to know either what each individual (node) represents or its fitness. So one 
might ask whether the construction and the evaluation of the individuals in the 



130 GENETIC PROGRAMMING THEORY AND PRACTICE III 

sub-graph should simply be performed in the usual (forward) way, or whether 
it may be possible and useful to instantiate the nodes in some different order. 
In (Poli, 2005), it was proposed to recursively proceed backwards. 

Here is the basic idea. Let us suppose we are interested in knowing the 
makeup of individual i in the population at generation G. In order to generate 
z, we only need to know what operator to apply to produce it and which parents 
to use. In turn, in order to know which parents to use, we need to perform 
tournaments to select them. In each such tournaments we will need to know the 
relative fitness of n individuals from the previous generation (which of course, 
at this stage we may still not know). Let S = {^i, 52 , . . . } be the set of the 
individuals that we need to know in generation G - 1 in order to determine i. 
If we don't know the makeup of these individuals, we can recursively consider 
each of them as a subgoal. So, we determine which operator should be used 
to compute 5i, we determine which set of individuals at generation G — 2 is 
needed to do so, and we continue with the recursion. When we emerge from 
it, we repeat the process for 52, etc. The recursion can terminate in one of 
two ways: a) we reach generation 0, in which case we can directly instantiate 
the individual in question by invoking the initialisation procedure, or b) the 
individual for which we need to know the genetic makeup has already been 
evaluated before. Once we have finished with z, we repeat the same process for 
any other individuals of interest at generation G, one by one. 

This algorithm is effectively a recursive depth-first traversal of the graph 
induced by tournament selection (c./ Figure 9-1). While we traverse the graph, 
as soon as we are in a position to know the genetic makeup of a node encountered 
we invoke the fitness evaluation procedure. An EA running in this mode is a 
Backward-Chaining, Evolutionary Algorithms (BC-EA). 

Irrespectively of the problem being solved and the parameter settings used, 
because the decisions as to which operator to adopt to create a new individual 
and which elements of the population to use for a tournament are random, this 
version of the algorithm is almost statistically identical to a standard EA (see 
(Poli, 2005)). However, there is an important difference: the order in which 
individuals in the population are evaluated. For example, let us consider the 
population depicted in Figure 9-1 and suppose we are interested in knowing 
the first individual in the last generation, i.e. individual (3,1). In a standard 
EA, we evaluate individuals column by column from the left to the right in the 
following sequence: (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (1,1), (2,1), ... 
until, finally, we reach node (1,3). A BC-EA would instead evaluate nodes in 
a different order, for example, according to the sequence: (1,0), (3,0), (4,0), 
(1,1), (2,0), (2,1), (1,2), (6,0), (4,1), (5,1), (3,2), and finally (1,3). So, the 
algorithm would move back and forth evaluating nodes at different generations. 

Why is this important? Typically in an EA, the average fitness of the popula­
tion and the maximum fitness in each generation grow as the generation number 
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grows. In the standard EA, the first 3 individuals evaluated have an expected 
average fitness equal to the average fitness of the individuals at generation 0, 
and the same is true for the BC-EA. However, unlike for the standard EA, the 
fourth individual created and evaluated by BC-EA belongs to generation 1, so 
its fitness is expected to be higher than that of the previous individuals. In­
dividual 5 has same expected fitness in the two algorithms. However, the 6th 
individual drawn by BC-EA is a generation 1 individual again, while the for­
ward EA draws a generation 0 individual. So again, the BC-EA is expected to 
produce a higher fitness sample than the other EA. This applies also to the 7th 
individual drawn. Of course, this process cannot continue indefinitely, and at 
some point the individuals evaluated by BC-EA start being on average inferior. 

This behaviour is typical: a BC-EA will find fitter individuals faster than an 
ordinary EA in the first part of a run and slower in the second part. So if one 
restricts oneself to that first phase, the BC-EA is not just faster than an ordinary 
EA because it avoids evaluating individuals neglected by tournament selection, 
it is also a faster search algorithm! 

3. Backward-Chaining GP 
Based on these ideas, we have designed and implemented a Backward-

Chaining, Genetic Programming (BC-GP) system in Java. The objective is 
to evaluate whether the BC-EA approach indeed brings significant efficiency 
gains in the case of large populations and short runs, and whether a BC-GP 
compares well with an equivalent standard (forward) version of GP in terms of 
ability to solve problems. 

Backward-Chaining GP Implementation 
Figure 9-2 provides a pseudo-code description of the key components of our 

system. The main thing to notice is that we use a "lazy-evaluation" approach. 
We do not create the full graph structure induced by tournament selection: we 
statically create the nodes in the graph (and store them using two-dimensional 
arrays). However, the edges are dynamically generated only when needed and 
stored in the stack as we do recursion. This is achieved by choosing genetic 
operator and invoking the tournament selection procedure only when needed 
in order to construct an individual, rather than at the beginning of a run and 
for all individuals and generations. Also note that our implementation is rather 
simplistic, in that it requires the pre-allocation of three G x M arrays: 

Popula t ion is an array of pointers to the programs in the population at each 
generation. Programs are stored as strings of bytes, where each byte 
represents a primitive. 
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Fitness is an array of single precision floating point numbers. This is used 
to store the fitness of the programs in Population. 

Known is an array of bits. A bit set to 1 indicates that the corresponding 
individual in Population has been computed and evaluated. 

Pre-allocating these arrays is wasteful since only the entries corresponding 
to individuals sampled by tournament selection are actually used. By using 
more efficient data structures, one could save some memory. BC-GP also uses 
an expandable array sibling_pool to temporarily store the second offspring 
generated in each crossover. 

Space and Time Complexity of BC-GP 
Let us evaluate the space complexity of BC-GP and compare it to the space 

complexity of standard GP. We divide the calculation into two parts: 

^ ^^ ^fixed I" ^variable5 

where Cfixed represents the amount of memory (in bytes) required to store the 
data structures necessary to run GP excluding the GP programs themselves, 
while Cvariabie represents the memory used by the programs. This can vary as a 
function of the random seed used, the generation number and other parameters 
and details of a run.̂  As far as the fixed complexity is concerned, in a forward 
generational GP system 

CLd = 2 x M x ( 4 + 4) = 16M 

The factor of 2 arises since, in our generational approach, we store both the 
current and the new generation. This requires 2 vectors of pointers (4 byte 
each) to the population members and two vectors of fitness values (floats, 4 byte 
each), where the vectors are of size M. In BC-GP, instead, we need 

Cl,^ = G X M X (4 + 4 + ^) « 8GM 

since we need to store one array of pointers, one of floats, and one bit array, all 
of size G X M, 

Variable complexity is harder to compute. In a standard GP system this is 

^variable ^ 2 X M X S^g^^ 

where ^^ax '̂  ^̂ ^ maximum value taken by the average program size during 
each generation of a run. In a BC-GP 

^variable ^ '^ '^avg' 

^The array sibling.pool typically includes only very few individuals and so we ignore it in our calculations. 
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run(G,M): 
begin 
Create G x M tables Known, Population sind Fitness 

For each individual I of interest in generation G 

evolve_back(I,G) 
return all I of interest 

end 

evolve_back(indiv,gen): 
begin 

if Known[indiv][gen] then 
return 

if gen == 0 then 

Population[gen][indiv] = random program 
else 

myremd = rsmdom.floatO 
if myrand < crossover_rate then 

if myramd < crossover_rate/2 or sibling_pool[gen] = empty then 
parentl = tournament(gen-1) 
parent2 = tournament(gen-1) 
offsprings = crossover(parentl,parent2) 
Population[gen][indiv] = offspring[1] 
sibling.pool[gen].add(offspring[2]) 

else 
Population [gen] [indiv] = sibling_pool[gen] . remove_rcindom_indiv () ; 

endif 
else 

parent = tournament(gen-1) 
Population[gen][indiv] = mutation(parent) 

endif 
endif 

Fitness[gen][indiv] = fit_func(Population[gen][indiv]) 
Known[gen][indiv] = true 

end 

tournament(gen) 
begin 
fbest = 0; best = -1 

repeat tournament.size times 
candidate = random integer l . , .M 
evolve_back( gen, candidate ) 
if Fitness[gen][csmdidate] > fbest then 

fbest = Fitness[gen][candidate] 
best = candidate 

endif 
endrepeat 
return( Population[gen][best] ) 

end 

Figure 9-2. Pseudo-code for backward-chaining GP. Note use of sibling_pool for second 
child produced by crossover. 
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where S'^g is the average program size during a BC-GP run {Le., it is the pro­
gram size averaged over all individuals created in a run) and £^^ is the number 
of programs actually created and evaluated during the run (E^ < E^ = GM). 
So, the difference in memory required by the two algorithms is 

AC^C^ -C^ = M{8G - 16) + E ^ X Sf^g - 2 X M X S^^^, 

which indicates that in most conditions the use of BC-GP carries a significant 
memory overhead. However, this does not prevent the use of BC-GP.^ 

The memory overhead of BC-GP, AC, is a function of the average average-
program-size S'^g and the maximum average-program-size S!^^^. We know 
that statistically BC-GP and GP behave the same, so we expect ^^^x — '̂ max 
and so 5^g < S^^. An additional complicating factor is that the size of 
programs often evolves. If bloat (Langdon et al , 1999) happens in a particular 
problem, then programs in both GP and BC-GP will increase in size towards the 
end of the run. However, since with BC-GP, in certain conditions (mo <C M), 
we evaluate few individuals in the last generations of a run, where bloat is 
typically most marked, S'^g can be be a lot smaller than S'^g. That is, with 
bloat the programs created in a BC-GP may be on average smaller than those 
created by forward GP. So, we may have S'^g <C 5'^ax-

These effects partly mitigate the memory overhead, AC, of BC-GP. Also, 
because BC-GP tends to evaluates smaller programs than GP, it has an impact 
on run time too. To see this we need to assess the computational complexity T 
required to run GP and BC-GP. T is effectively dominated by the cost of running 
the fitness function. The cost of fitness evaluation depends on various factors, 
but it is typically approximately proportional to the number of primitives in the 
program to be evaluated (Le., executed) and the number of fitness cases A'̂ . So 
if we express T in number of primitives executed, we have 

T ^ - G X M X Â  X 5^g 

T^ = E^ xN X 5£g 
for standard GP, and 

for BC-GP. So, the saving provided by BC-GP is 

AT = T^ -T^ = N x{GxM xS[^^-E^ X S'f.g). 

That is, for a bloating population, the parsimony of BC-GP in terms of fitness 
evaluations is compounded with its parsimony in terms of program sizes. In 
some cases (Poli and Langdon, 2005) this leads to considerable savings. 

^For example, in the worst possible case (where all programs are constructed and evaluated) a BC-GP with 
a population of 100,000 individuals run for 50 generations and with an average program size (throughout a 
run) of 100 nodes would require around 540MB of memory. 
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4. Experimental Results 

Test problems and setup 
We used BC-GP in a variety of experiments on three continuous symbolic 

regression problems where the objective was to induce a target function from 
examples. The target functions were an univariate quartic polynomial, a four 
variable quadratic polynomial and a ten variable cubic polynomial. The quar­
tic polynomial is f{x) = x^ -{- x^ -{- x^ + x. For this problem we used 20 
fitness cases of the form (x, f{x)) obtained by choosing x uniformly at ran­
dom in the interval [—1,+!]. The first multivariate polynomial, Poly-4, is 
/ (xi , a;2, xs, X/{) = a;iX2 4- X3X4 4- xia;4. For Poly-4, 50 fitness cases of the 
form (xi, 0:2, X3, X4, / (xi , • • • , X4)) were used. They were generated by ran­
domly setting Xi G [—1,4-1], The second multivariate polynomial, Poly-10, 
is / (xi , • • • , xio) == X1X2 4- X3X4 + X5X6 4- xixyxg 4" XSXQXIQ. For Poly-10 
we also used 50 fitness cases of the form (xi, • • • , a;io, / (xi , • • • , xio)); again, 
each of the ten variables is chosen at random from the range [—1, 4-1]. The 
function set for GP included the functions 4-, —, x and the protected division 
DIV (if \y\ <= 0.001 DIV(a;, y) = x else DIV(x, y) = x/y). The terminal set 
included the independent variables in the problem (x for Quartic, xi, X2, xs, 
X4 for Poly-4 and xi, X2,... xio for Poly-10). 

Fitness was calculated as the negation of the sum of the absolute errors 
between the output produced by a program and the desired output on each of 
the fitness cases. A problem was considered to be solved if a program with 
an error of less than 10~^ summed across all fitness cases was found. We 
used binary tournaments (n = 2) for parent selection. The initial population 
was created using the "grow" method with max depth of 6 levels (the root 
node being at level 0). We used 80% two-offspring sub-tree crossover (with 
uniform random selection of crossover points) and 20% point mutation with 
a 2% chance of mutation per tree node. The population size M was 100, 
1,000, 10,000 and 100,000. The maximum number of fitness evaluations was 
30M (shorter runs were explored in (Poli and Langdon, 2005)). For different 
experiments, depending on statistical requirements, we performed 100, 1,000 
or even 5,000 independent runs of both backward and forward GP. 

In symbolic regression problems, the fitness of programs in the population 
even after a prolonged period of evolution, can be extremely variable. Since the 
mean is a linear function, the mean population fitness can be seriously changed 
by individuals with outstandingly poor fitness. So while both algorithms draw, 
at each generation, individuals from the same distribution the measured means 
can be different. While observed means are similar in most generations, even 
averaging over many runs, the mean of means is still sometimes affected by 
noise injected by poor individuals. In contrast other statistics, e,g, the median 
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Figure 9-3. Quartic polynomial regression problem. Normal GP contrasted with chance of 
success with BC-GP (population size 100, average over 1000 runs). 

and best, are non-linear and much less effected by the worst in the population. 
Therefore, we chose to plot the best and the proportion of successful runs. 

To make a comparison between the algorithms possible, we computed statis­
tics every M fitness evaluations for BC-GP. We treated this interval as a genera­
tion even though the fitness evaluations may be spread over several generations. 
In the BC-GP we computed 80% of the final generation (Le, mo = 0.8M).'̂  

Effectiveness and efficiency comparison 
Figures 9-3 and 9-4 compare the success probabilities of BC-GP and GP for 

the quartic polynomial for population sizes 100 and 1,000. The error bars in­
dicate standard error (based on the binomial distribution). As expected BC-GP 
does better and the difference is statistically significant except for the final gen­
erations. With a population of 1,000 (Figure 9-4) or bigger (data not reported), 
BC-GP is also always statistically better than or equal to standard GP. Natu­
rally, with big populations both forward and backward GP almost always solve 
the quartic polynomial. Nevertheless BC-GP reaches 100% faster. 

The four-variate polynomial, Poly-4, is much harder than Quartic. This is 
an interesting test case since it requires large populations to be solvable in 
most runs. Figure 9-5 shows the fraction of successful runs with a population 
of 1,000. Figure 9-6 plots similar data but for a population of 10,000. The 

^(Poli and Langdon, 2005) reports experiments where we calculated only one individual in the last generation 
(i.e. mo = 1). 
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Figure 9-4. Quartic polynomial regression problem. As Figure 9-3 but with population of 1000. 
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Figure 9-5. Fraction of successful runs (out of 5,000 runs) on the Poly-4 problem for forward 
GP and BC-GP (30 generations) with populations of 1,000. 

difference between BC-GP and forward GP is statistically significant for all 
population sizes used. 

Symbolic regression of Poly-10 is very hard. We tried 1,000 runs with 
populations of 100, 1,000 and 10,000, and 100 runs with 100,000 individuals. 
Neither standard GP nor BC-GP found a solution in any of their runs. As 
illustrated in Figure 9-7 for the case M == 10,000, BC-GP on average finds 
better programs for the same number of fitness evaluations. 

So far we have compared forward GP and BC-GP when both algorithms 
are given the same number of fitness evaluations. In Table 9-1, we show a 
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Figure 9-6, Fraction of successful runs (out of 1000 runs) on the Poly-4 problem for forward 
GP and BC-GP with populations of 10000. 
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Figure 9-7. Error summed over 50 test cases for Poly-10 regression problem (means of 1,000 
runs, with populations of 10,000). 

comparison when they are run for the same number of generations (G = 30). 
Thanks to the savings obtained by avoiding to create and evaluate individuals 
not sampled by selection (and any of their unnecessary ancestors), by the end 
of the runs, BC-GP evolved solutions of similar fitness but took around 20% 
fewer fitness evaluations. Similar savings are obtained at all population sizes. 

The tests mentioned above have been performed also for the case of tourna­
ment size n = 3. In all cases BC-GP was superior, but by a smaller margin. 
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Table 9-1. Normal GP v. Backward chaining on 
Generations 30. Means of 1 000 runs. 

Problem 

Quartic 
Poly-4 
Poly-10 

Best Fit 

0.00 
0.12 

11.12 

Forward 
Evals Succ Prob 

300,000 100.0% 
300,000 96.3% 
300,000 0.0% 

Quartic, Poly 4 and Poly 

Best Fit 

0.00 
0.16 
11.29 

Backward 
Evals 

240,321 
240,315 
240,299 

10. Population 10,000. 

Succ Prob 1 Saving 

100.0% 
96.0% 
0.0% 

19.9% 
19.9% 
19.9% 

5. Conclusions 
We exploited a recent theoretical analysis (Poli, 2005) of the sampling be­

haviour of tournament selection over multiple generations to build a new, highly 
efficient realisation of GP: backward chaining genetic programming (BC-GP). 
Thanks to its special way of recursively computing programs and fitnesses 
backward from the last generation to the first, BC-GP offers a combination of 
simplicity, fast convergence, increased efficiency in terms of fitness evaluations 
and primitive evaluations, statistical equivalence to a standard GP, reduced bloat 
and broad applicability. This comes at the cost of an increased memory use. 

The BC-GP algorithm is not hard to implement (see pseudo-code in Fig­
ure 9-2). Also, BC-GP tends to find better individuals faster irrespective of 
the value of the tournament sizes n. However, if one wants use tournaments 
with more than three individuals and to compute a large proportion of the final 
generation, the computational saving provided by BC-GP may be too limited to 
be worth the implementation effort and the memory overhead. In applications 
which require computing only a small number of individuals in a given gener­
ation of interest and where a very large population is used, then BC-GP can be 
fruitfully applied even for large tournament size. For example, with BC-GP, 
tournament size 7 and a population of a million individuals, one could calculate 
1 individual at generation 7, 7 individuals at generation 6, 49 individuals at 
generation 5, /emphetc. Note that this costs less than initialising the population 
in a forward GP. The information gained by BG-GP in this way could prove 
very important, for example, in deciding whether to continue a run or not. 

In future research we intend to test the new algorithm on other problems and 
explore possible ways of further improving the allocation of trials and decision 
making in BC-GP and GP 
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Chapter 10 

AN EXAMINATION OF SIMULTANEOUS 
EVOLUTION OF GRAMMARS 
AND SOLUTIONS 

R. Muhammad Atif Azad ^ and Conor Ryan ^ 
CSIS Department, University of Limerick. Limerick, Ireland. 

Abstract This chapter examines the notion of co-evolving grammars with a population of 
individuals. This idea has great promise because it is possible to dynamically 
reshape the solution space while evolving individuals. We compare such a system 
with a more standard system with fixed grammars and demonstrate that, on a 
selection of benchmark problems, the standard approach appears to be better. 
Several different context free grammars, including one inspired by Koza's GPPS 
system are examined, and a number of surprising results appear, which indicate 
that several representative GP benchmark problems are best tackled by a standard 
GP approach. 

Keywords: grammatical evolution, evolving grammars, grammatical ADFs, generative rep­
resentations 

1. Introduction 
Work such as (Whigham, 1995; Keller and Banzhaf, 1999; O'Neill and Ryan, 

2004; Piaseczny et al., 2004) has demonstrated that context free grammar based 
GP systems are capable of evolving both the grammar (which specifies and 
constrains the solution space) and a population of individuals. Intuitively, this is 
an attractive idea, especially given that something similar had to have happened 
in nature; that is, the genetic code had to evolve either before or in parallel with 
the species that use it. 

Although the above examples all demonstrated that this is possible, it was 
not clear under what circumstances one would want to use these methods. In 
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particular, as each of these papers were hiproof of concept, most of them were 
not focused at a comparative analysis against a system with fixed grammars. 

The promise of these systems is that they would be able to tune the system 
towards solving a particular problem, but the question this chapter is concerned 
with is what is the cost of this tuning? 

This chapter investigates a number of different ways of treating the gram­
mars or function sets made available to a system, varying from a simple, closure 
obeying system like GP, up to a multiple type evolving system. We start by 
introducing Grammatical Evolution (GE), the evolutionary system used to con­
duct these experiments, and describe the effects that different kinds of grammars 
can have. The chapter then looks at the various ways in which these grammars 
can be modified on the fly - including no modification, as in standard GP, before 
applying them to five benchmark problems. 

We show that, in general, the simpler the grammar, the more successful 
the search is, and on occasions the results demonstrate that a GPPS inspired 
grammar that provides more functionality than is necessary can be competitive. 

2. Grammatical Evolution 
Grammatical Evolution (Ryan et al., 1998) (O'Neill and Ryan, 2001) (O'Neill 

and Ryan, 2003) is a Genetic Programming system that uses a Genetic Algo­
rithm to search the space of structures specified by a grammar such as a Context 
Free Grammar or an Attribute Grammar. 

The key difference between GE and GP is the use of linear chromosomes by 
GE. Rather than evolving programs directly, GE employs a separation of the 
search and solution spaces, by performing a mapping from the linear structure 
to a program (or whatever structure is being evolved). 

This mapping is made possible by the use of a grammar, which specifies 
what structures are syntactically valid. The mapping involves the generation of 
a derivation tree, using genes from the chromosome to resolve choices. 

One of the main advantages of using a grammar in this way is that one avoids 
the closure problem; that is, it is trivial to have multiple types in the grammar. 
Another potential advantage is the ability to tune a grammar. The grammar 
not only specifies what structures are syntactically valid, it can also be used to 
bias the search, by making the system more likely to produce certain types of 
structures, or structures that are more likely to have certain characteristics. 

Grammars 
A grammar can be described using Backus Naur Form (BNF) which consists 

of a four tuple < N^T^P^S > where T is the set of terminals (symbols that 
can appear in programs produced by the grammar) .Â  is a set of non-terminals, 
intermediate symbols used by the grammar, 5 is a start symbol from which all 
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programs are developed, and P is a set of production rules that map from the 
start symbol to the terminals. 

Consider the following grammar, which produces expressions similar to 
those generated by GP for standard symbolic regression problems. 

<expr> 
<op> 
<sop> 
<var> 

= (<op> <expr> <expr>) I (<sop> <expr>) I <var> 
= + I - I % I * 
= sin I cos I log 
= X I 1.0 

In this case, the start symbol is <expr>. 
Grammars are useful in an evolutionary setting because, by their very nature, 

they express a set of syntactic constraints. However, it is possible to have some 
more explicit constraints than shown above. For example, one could force every 
individual to start with (* <expr> <expr>), or to ensure that only certain 
variables can appear in conditional tests. 

Example 
To use a grammar in a generative way, one creates a derivation tree, which 

records each choice made in the derivation sequence. GE operates by evolv­
ing sequences of choices which, when interpreted with a particular grammar 
produce syntactically valid structures. 

Individuals in GE are binary strings, which are interpreted as a sequence of 
eight bit codons, each of which is used to make a single choice in the derivation 
sequence. 

Consider an example individual 222,31,74,122,67,201,14,26,22, already 
divided into eight bit codons and expressed in decimal for clarity. The codons 
are in the range 0..255, so, when being used to make a choice, have a modulus 
operation applied to them with the number of choices available. 

Recall the start symbol is <expr>. There are three choices available for this, 
so we have 222 mod 3 = 0, which corresponds to the first choice. The start 
symbol is then replaced with (<op> <expr> <expr>). 

The process continues with the left most non-terminal until there are either 
no non-terminals left (the individual is completely mapped) or all of the codons 
have been used. In the latter case, the individual is considered non-viable and 
given a zero fitness. 

In this case, all but the last two codons are consumed, resulting in: 
(* X ( s i n X)). 
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Biasing of Grammars 
All grammars contain inherent bias. In the example grammar above, if 

random initialisation of the population was employed, one would expect a third 
of all individuals to consist of just a single point of either X or 1.0. 

An alternative approach is to use a closed grammar, which is analogous 
to a GP system that has the closure property. In this case, there is just one 
non-terminal, so the grammar from above would be rewritten as : 

<expr> ::= (+ <expr> <expr>) I (- <expr> <expr>) 
I (% <expr> <expr>) I (* <expr> <expr>) 
I (sin <expr>) I (cos <expr>) 
I (log <expr>) I X I 1.0 

Although this grammar represents the same set of legal individuals, it con­
tains a different bias to the original one, and this can have implications for the 
success or otherwise of a GE run. In this new grammar, it is now twice as 
likely that a randomly generated individual will contain something of the form 
{< opX expr >< expr >) as it is to contain an X or 1.0. 

This shows that the hierarchical nature of grammars using BNF can contain 
hidden biases, and some work (Nicolau, 2004) has looked at identifying how 
much bias. The following section examines work which has tried to take advan­
tage of the fact that changing the bias of a grammar can effect the performance 
of the system. 

3. Simultaneously evolving Grammars and the Solutions 
One of the first investigations into grammar bias was carried out by Whigham 

(Whigham, 1995). He discussed that depending upon the structure of the gram­
mar, it can have a relatively higher number of paths through it to generate certain 
sentences or forms of the sentences. For example, if a certain symbol appears 
in most of the production rules it has a high chance of being represented in a 
randomly generated set of sentences. With the use of different hand crafted 
grammars he showed that if the grammar design is guided by the problem 
specific knowledge it can boost the performance. He went on to propose an 
inductive biasing mechanism where the grammar is modified every generation 
by looking at the best individual found thus far. The terminal symbol found at 
the deepest location in the derivation tree is propagated up one level to create a 
new rule. For example the derivation sequence 
<IF> -> i f <T> <NT1> <NT2> 

-> i f aO <NT1> <NT2> 

can be collapsed into a single production <IF> -> i f aO <NT1> <NT2>, so 
the grammar can be modified to incorporate the new rule. The same modifica-
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tion may be suggested more than once during the course of evolutionary run, 
thus increasing its likelihood to be used in the generation of new individuals or 
in the case of a mutation event. 

Keller and Banzhaf (Keller and Banzhaf, 1999) argued that the structure of 
the grammar has implications towards the problem landscape as certain areas 
of the solution space can become more accessible than others. In the absence 
of domain knowledge, a poorly designed grammar can hamper the progress of 
the algorithm. They made a case for the evolution of the mapping from the 
genotype to the phenotype Le, the structure of the grammar. However, instead 
of having one global grammar, they proposed that every individual should have 
its own set of rules. This paves the way for the evolution of grammar along 
with the phenotypes they encode, in this case using diploid chromosomes. The 
purpose of this study was to demonstrate that co-evolution of genetic code and 
problem solution can work. However, no performance comparisons were made 
with a normal GP system. 

Working on a similar idea O'Neill and Ryan (O'Neill and Ryan, 2004) used 
GE to simultaneously evolve the grammar and the problem solution. As in 
the Keller-Banzhaf approach, a diploid chromosome is used to encode the two 
evolving entities. Each individual uses a pre-specified grammar's grammar or a 
meta grammar to produce a local grammar. The meta grammar has production 
rules to specify a context free grammar. One strand of the chromosome is 
used to pick rules from the meta grammar to produce a local grammar. The 
second strand uses this grammar to produce a sentence or a phenotype. The 
prosperity of a grammar in future generations depends upon the fitness obtained 
by the corresponding phenotype. A dynamically changing symbolic regression 
problem was used where the target function changed after a fixed number of 
generations. The exercise agreed with Keller and Banzhaf in demonstrating 
that such a co-evolutionary setup worked as the system was able to adapt to the 
changing behaviour of the problem, acquiring high frequencies of the symbols 
that constitute the target function every time. 

Chemical Genetic Programming (Piaseczny et al., 2004) is a recent addition 
to the list of granmiar evolving systems. As the setup discussed in the current 
study is very similar to Chemical GP, we discuss it in relative detail in the 
following subsection. 

Chemical GP 
As with GE, Chemical GP is based on linear strings and makes use of the con­

text free grammar. The name of the system derives its basis from the metabolic 
chemical reactions going on in a cell. These reactions enable the amino acids 
to produce proteins, which in turn are used to produce amino acids, thus consti­
tuting ^feedback loop. Assuming that this extra degree of freedom has helped 
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nature in evolving complex entities, Chemical GP claims a coarse analogy with 
this process to reformulate the structure of the grammar specified at the start of 
the run. Starting with a non-terminal from the pre~specified grammar, a subtree 
is generated. The subtree is then collapsed to form a single production rule or 
translation such that the frontier (the set of the leaves of the subtree) becomes 
the right hand side of the rule. Consider the following derivation sequence: 

<expr> -> <pre-op> ( <expr> ) <op> <expr> 
-> t anh ( <expr> ) <op> <expr> 
-> t anh ( <var> ) <op> <expr> 
-> tanh ( X ) <op> <expr> 

Considering that the same can be represented by a derivation tree, collapsing 
the tree can produce a translation like this: 
<expr> -> tanh ( x ) <op> <expr> 
which is a more compact way of arriving at the same result. This is similar to 
the concept of ADFs in canonical GP where a piece of code can be encapsulated 
into an ADF and repeatedly used through a function call. Likewise, a number 
of derivation steps can be replaced by a single production rule that produces 
the same effect as the derivation sequence. This effect is absent in most of the 
grammar evolving approaches discussed earlier. 

Chemical GP considers the production rules analogous to the amino acids 
that produce proteins (the frontier of the subtree). After the subtree collapse, 
these proteins themselves act as amino acids during the derivation process and 
can combine with other amino acids, the production rules in this case. Part 
of the grammar or the amino acid pool for a particular individual comes from 
a pre-specified grammar while the rest is formed from the derived rules. The 
proportion coming from the pre-specified grammar is determined by a parameter 
to the system. 

An individual comprises of three parts. The first part, termed DNA, is used 
to pick the rules from the grammar available to the individual, and the last part 
is used to encode new amino acids in the manner described before. The middle 
part encodes a tRNA sequence that produces a local grammar by incorporating 
the synthesized rules into the pre-specified grammar. 

Every rule in the local grammar has an associated integer value that is not 
necessarily unique. The DNA is any sequence of these integer values. Starting 
from a start symbol, the DNA is read and the corresponding rule is applied to 
continue the derivation sequence. If more than one rule has the same identi­
fier, the one that can be applied to the left most non-terminal in the derivation 
sequence is chosen. If multiple rules are applicable, a random choice is made. 
This can lead to difficulties in analysing the individuals. Therefore, further 
work is awaited that demonstrates the motivation behind such a mapping func­
tion as against a deterministic scheme. Another consequence of the mapping 
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process is possibility of introns arising within the chromosome length used for 
mapping. This happens if an integer value is read from the DNA that is not 
associated with any applicable rule, as it is ignored, thus producing introns. 
This is additional to the introns appearing towards the end of the chromosome 
if mapping terminates earlier on. 

In the wake of this discussion we now describe our grammar evolving setup 
in conjunction with GE. 

Our Approach 
The first design choice is how to represent the grammar encoding and the 

solution encoding parts of a GE individual. GE uses variable length one point 
crossover. It is not known a priori, what length an individual will require to 
map to a valid sentence of arbitrary size. Moreover, the grammar should be 
clearly defined before the mapping process starts. This means that a portion 
of the individual should be clearly marked to encode the grammar. For this 
purpose, a variable length GA with diploid chromosomes is employed. One 
chromosome is used to evolve new rules from a pre-specified grammar and the 
other chromosome is used to produce a sentence of the grammar that includes 
the new rules, possibly replacing some from the original grammar. 

GE uses the grammar encoding chromosome to derive new rules. First, we 
decode a codon to pick a non-terminal from the grammar using the modulo 
operation. Then, we grow a derivation tree rooted at this non-terminal as the 
normal GE mapping ensues. Once the tree growth stops, a new production is 
formed that has the root of the tree as its left hand side and the frontier constitutes 
the right hand side (RHS). In haploid GE, the mapping stops when either the 
entire chromosome is consumed or all the non-terminals have been resolved 
into terminal symbols. The objective is to have a valid solution that can be 
evaluated. The mapping of grammar encoding chromosome, on the other hand, 
is only meant for producing new production rules where it is allowed to have 
non-terminals on the RHS. Moreover, waiting for a terminal-only frontier can 
exhaust the entire grammatical chromosome, whereas we want to take a flexible 
approach by letting the evolution decide whether or not it should be the case. 
Even if the tree growth stops leaving a few non-terminals left in the frontier, a 
production is formed as mentioned before. If some part of the chromosome is 
still unread, it can be used to produce more rule(s) in a similar fashion. 

To decide when to stop growing a tree, we make use of a stopCodon. After 
picking a non-terminal and before starting to grow the tree, we read a codon 
and save it as a stopCodon. Then, when we start the tree growth, at each step 
we read a codon (let's call it newCodon) to pick a rule from the set of available 
choices in the following manner: 
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stopChances = stopCodonmod {\applicableRuleSet\ + 1) 
chosenlndex = newCodon mod {\applicableRuleSet\ + stopChances) 
If chosenlndex > |app/ica6/eü'a/eS'et|, tree growth is stopped, otherwise it is 
continued with the selected rule marked by the chosenlndex. Thus, depending 
upon the value of the stopCodon the chances of stopping a tree growth can be 
as much as the number of rules available for selection. This is an adaptable 
measure and was preferred over keeping a system parameter. The derivation 
tree growth can also stop if it maps completely to terminal symbols or the end 
of the chromosome is reached. Except in the latter case, another derivation tree 
growth ensues to encode for a new rule. 

When a rule is encoded, it can either just add to or replace a rule from the 
corresponding rule set. This Boolean decision is made by reading another 
codon before growing the tree. If codon mod 2 = = 1 a rule is replaced. The 
index of the replaced rule is determined by decoding another codon. Thus a 
rule encoding comprises of four control codons (the first picking a non-terminal 
to grow) and the codon sequence that encodes the tree. 

If some rules are omitted from the grammar, it makes it impossible to generate 
legal sentences from the grammar. Such rules are therefore marked and are not 
allowed to be removed in our setup. Consider the following example: 

<expr> : := <expr> + <expr> I Sin ( <expr> ) I <var> 
<var> : := X I y I z 

In this case <expr> ~> <var> is the only link to the terminal symbols. Thus 
it is marked for non-removal. 

Instead of having an unconstrained one point crossover, we employ a sensible 
crossover for the rule encoding chromosome. It is a two point crossover with 
the restriction being that it can only swap entire rule encodings. This is hoped 
to be less disruptive than the normal one point crossover. 

4. Experimental Setup 
In this study we compare different grammatical setups along with the afore­

mentioned grammar evolving system. As mentioned before that structure of 
the grammar is a major design issue for grammar based evolutionary algo­
rithms and it is no different with GE. For the current study we use a single 
non-terminal grammar, (closed grammar, as described in section 2.0) a mul­
tiple non-terminal grammar, grammar evolving setup seeded with each of the 
aforementioned grammars, a domain specific hand crafted grammar and a uni­
fied grammar that has the functions used by all the problems available in it. 
This gives us a diverse set of designs to test. 

We are interested in seeing how the extra degree of freedom available with 
evolvable grammars compares with the other setups on standard GP problems. 
In particular, whether they can exploit or overcome the inherent peculiarities of 
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the pre-specified grammars to produce a comparable or superior performance. 
It is also interesting to see how a structurally simple closed grammar fares 
against the other setups. The use of grammars makes it possible for GE to 
incorporate domain specific knowledge without any programming overhead. 
When such information is available, it is informative to investigate if it can 
lead to performance enhancements in any or all the cases. We also examine a 
unified grammar, which is inspired by Koza's (Koza et al., 1999) GPPS. This is a 
function rich system which makes as many functions as possible available, thus 
removing the onus from the user to choose a function set. Koza estimated that 
this system was two orders of magnitude slower than standard GP, but argued 
that, as hardware continues to improve, this will become less of an issue. We 
are interested in GPPS in this context because evolvable grammars could have a 
similar use, that is, they are concerned with the identification of useful function. 

We use five benchmark problems from the GP literature. These include 
symbolic regression of the quartic polynomial, the discovery of a 6 bit multi­
plexer (Koza, 1992), the even 6 parity problem (Koza, 1994), the regression of 
a sextic polynomial (Piaseczny et al., 2004) and a 28 dimensional regression 
problem (Keller and Banzhaf, 2001). The quartic polynomial problem involves 
the discovery of a target function of x^ -^ x^ -\- x'^ -{- x with 20 training points 
drawn from the interval[—1,1]. The sum of squared error is normalized be­
tween 0 and 1.0 with an aim to maximize the fitness. The Sextic polynomial 
was used to demonstrate the efficacy of Chemical GP and entails the target 
function 2x^ + 3x^ + 3a;̂  + 100. We use the same fitness measure as used in 
(Piaseczny et al., 2004). When d represents the sum of squared errors, the raw 
fitness is calculated as follows: 

o^-d/50000000 

When d = 0 (the ideal case), the expression produces the best fitness i.e. 
e^. Hence this value is used to normalize the raw fitness values. 50 uniformly 
distributed points from the domain [—5,5] constitute the training cases. Keller's 
problem is defined as follows: /(A, ß , a, 6, • • • , ?/, 2:) = j + a; H- d + j * o + e * 
r —t —a + /i —A:*t6-f a —A: —5*o*i —/i*i; — i —i —5+/ —w*n + / + r —j*j*o* 
v—j-\-i-\-f^c-\-x — v-\-n—n^v — a—q^i^h-\-d—i — t-\-s-\-Ha—j^g^v — i — 
p^q^u — x+e+7n — k^r-\-k—Hu^x^d^r — a-\-t — e^x — v—p—c—o—o^u^ 
c*/i-|-x + e —a*n+c*/*r —x*t —n*(i-fp*x*i^*f—j*n —a —e*6H-a. Four 
of the inputs A, 5 , y, z are not used in the objective function and add noise. 100 
randomly selected training cases are used all coming from the domain [0,1]. 
Normalized sum of the squared errors represents the fitness of an individual. 

For both the boolean problems, the maximum fitness value is the correct 
categorization of all the 64 training cases. 

The grammars used in this study are listed in the appendix. The hand tuned 
grammars for the two polynomials encourage the use of the multiplication and 
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addition operators. For the sextic polynomial, the pow function is also a pre­
ferred function. For this problem it is not possible to write a single non-terminal 
grammar for the corresponding multiple non-terminal grammar. Therefore we 
have tried to minimize the number of the non-terminals to have an approximate 
effect of a closed grammar. For the multiplexer problem, the hand crafted gram­
mar forces that the condition part of an if-statement should only work on the 
address bits whereas the action part should only be concerned with the data bits. 
This approach has also been used elsewhere with success to improve perfor­
mance (Janikow, 2004). For the even parity problem hand tuning the grammar 
was not so obvious. Therefore, no such grammar is used for this problem. 

All the experiments involve 100 independent runs with a population size of 
500^ The runs execute for 200 generations. Crossover probability of 0.9 and 
bit mutation probability of 0.01 is used. The initialisation involves random 
generation of linear strings with an average length of 20 integers and a standard 
deviation of 5. Roulette wheel selection is used with steady state replacement. 
At every generation 500 parents are selected that probabilistically undergo ge­
netic operators. If any of the offspring are better than the worst member of the 
existing population, the former replaces the latter. 

Crossover in Effective Lengths 
For the solution encoding or the sentence mapping chromosomes of the 

individuals a variable length one point crossover is employed. However, the 
nature of the mapping process in GE is such that it may finish well before 
exhausting the entire length of the chromosome. This can also lead to the 
emergence of tails in the haploid GE chromosomes (O'Neill and Ryan, 2003). 
The tails are helpful in mapping the individual to a valid sentence due to the 
ripple effect in GE (O'Neill et al., 2003) the crossed over segment may require 
to encode for a different set of non-terminals. For such a context shift large 
tails can be suitable as they provide a greater chance of mapping the individuals 
completely. However, if the tails grow too large comparatively, the crossover 
point is more likely to be chosen from the tails. Thus, after the crossover the two 
offsprings will have the mapping parts intact with the variation only being in 
the tails. Such individuals with large tails can be attractive for selection because 
crossover involving them is unlikely to produce invalid or incompletely mapped 
individuals that are chastised by assigning the worst possible fitness in a typical 
GE setup. As the individuals grow large tails, the normal one point crossover 
becomes increasingly ineffective because it merely swaps the segments that 
can not express themselves in the phenotype as the mapping terminates earlier 

^The population size of 500 is fairly small for the even 6 parity problem in comparison with Koza's setup 
where it is of the order of many thousands. However, we keep a uniform setup for all the problems. 
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on. This causes the loss of phenotypic diversity. Therefore, we restrict the 
crossover point to be selected within the length that is effective in the mapping 
process. We term such a crossover as effective crossover. 

Results 
Figure 10-1 shows the mean best fitness plots for the two boolean problems. 

For this section we refer to the grammar evolving GE as GEGE. 

Even 6 Parity - Best Fitness Comparison 
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Figure 10-1. Depicted is the mean best fitness for the two Boolean problems. It was not obvious 
to design a hand tuned grammar for the even 6 parity problem, 'evolv-cfg' and 'evolv-closed' 
represent the grammar evolving setups with an initial multiple and single nonterminal grammars 
respectively. 

The results show that for the two Boolean problems, GEGE with an initial 
multiple non-terminal grammar (CFG) is among the worst performers. GE 
with a closed grammar does better than all the other setups except for the hand 
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tuned grammar in the case of multiplexer problem.The ideal individual count 
for the hand tuned grammar is 91% while the closed grammar yeilded a 51% 
success for the multiplexer problem. These numbers are far higher than the 
rest of the setups which could only achieve at best 20% success. The relatively 
small population size probably hampered the progress in the case of the parity 
problem where no ideal individual was found for any setup. This shows that the 
grammars represent a convenient mechanism for incorporating domain specific 
knowledge when available with no algorithmic modifications. However, it is 
also interesting to see that the closed grammar with its simple structure and 
no domain knowledge does better than the rest of the setups. GEGE with the 
closed grammar also does reasonably well in both the problems but we do not 
witness any instance of a superior performance. 

Figure 10-2 shows the mean best fitness for the problems from the real-value 
problem domain. For the quartic and sextic polynomial problems, the end of 
the run results are indistinguishable. The quartic polynomial problem seems 
too easy for GE with all of the setups. From the figure it is difficult to see but 
numerical data reflects that closed grammar again had a faster convergence to 
better fitness values. The use of hand tuned grammar did not have any clear 
advantage in both the problems in terms of mean best fitness. However, it was 
able to find a higher number of ideal individuals 41% for the quartic polynomial 
compared to the other setups that had a maximum of 10% to show. GE shows 
the best performance whether employed with a closed grammar or a CFG. 

The unified grammar is the slowest to pick up in the even 6 parity, sextic 
polynomial and Keller's problem. The performance is somewhere in the middle 
of the multiplexer and quartic polynomial problems. 

Discussion 
Overall, the best performer is the set up that used closed grammar. The only 

case that it was outperformed was in the multiplexer experiments, and then by 
the hand-tuned grammar. However, our experiences with producing hand-tuned 
grammars suggestin the case of the multiplexer) or it is very difficult. 

Table 10-1. Percentage of the individuals that fail to map all the non-terminals to terminal 
symbols in the final generation. 

Problem 

6 Parity 
Multiplxr 
Sextic 
Quartic 
Keller 

cfg 

13.5±0.9 
30.4±1.1 
15.4±1.0 
8.5±0.6 

3.45±0.5 

closed 

4.2±0.29 
2.0±0.21 
20.5±2.1 
8.5±0.73 
O.OdiO.O 

evol-cfg 

13.3±0.67 
29.7±1.46 
27.0±1.13 
13.6±1.41 
7.1d=1.03 

evol-closed 

6.9±0.5 
3.71±0.4 

29.6±1.23 
18.5±1.46 
O.OOitO.Ol 

unified 

22.1 ±0.41 
36.47±1.1 
21.7±0.72 
25.6±1.64 
32.0±1.2 

hand-tuned 

not-used 
28.9±1.13 
22.7±1.61 
29.5±1.1 
46.3±1.0 
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Sextic Polynomial - Best Fitness Comparison 
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Figure 10-2. Depicted is the mean best fitness for the problems of regressing mathematical 
functions, 'evolv-cfg' and 'evolv-closed' represent the grammar evolving setups with an initial 
multiple and single nonterminal grammars respectively. 
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Why then, does the closed grammar perform so well? We believe that it 
may be partly so because it is the least disruptive of the grammars. Every rule 
in the grammar is an expansion of the same non-terminal Therefore, the set 
of applicable rules never changes. As a result a codon always encodes for a 
fixed production rule. Therefore, in the event of a crossover, the exchanged 
fragments encode for the same derivation subtrees as before. However, in a 
multiple non-terminal setup it is not necessarily the case. This makes it more 
likely that crossover does not produce a completely mapped offspring i.e, it 
may have a few non-terminals left even when the entire chromosome has been 
read. This is termed as a mapping failure. We note the percentage of mapping 
failures in the offsprings produced in the final generation in Table 10-1. Space 
considerations do not permit us to plot them as a function of generation. The 
table shows that closed grammar depicts least mapping failures in the boolean 
problems and the Keller-Banzhaf problem. The trend reverses for the other two 
problems though. 

Crossover with the evolving grammars can also be disruptive because the two 
parents may have different grammars and thus cause a change of context for 
the exchanged fragments. Table 10-1 shows that when seeded with a CFG they 
were generally among the top two producers of mapping failures. Moreover, 
crossover in the grammar encoding chromosome can be very disruptive when 
the incoming rules displace the existing rules in the receiving grammar. Let's 
assume that before crossover a grammar looks like this: 
<nt> : := r u l e l I r u l e 2 I r u l eS 
To choose a rule, a codon is decoded by the formula codon mod 3. Let's 
suppose that after crossover, ru l eS is replaced with some new rules ruleA and 
ruleB changing the composition of the grammar. 
<nt> : := r u l e l I r u l e 2 | ruleA I ruleB 
This changes the interpretation of the 8 bit codons as the modulus operator will 
now use 4 instead of 3. Thus, the mapping of the entire individual is affected. 
At present, it is not clear how to address such a situation. 

These results do not contradict earlier work by (Keller and Banzhaf, 1999), 
(O'Neill and Ryan, 2004) and (Piaseczny et al., 2004), each of which demon­
strated that evolutionary systems can successfully evolve solutions while co-
evolving the grammar, but they do pose the question of where might it be ap­
propriate to use these methods. Whigham (Whigham, 1995) was able to show 
an increase in ideal solutions count in the multiplexer problem that we were 
not able to witness in our study. Other work did not report such comparisons. 
Future work can uncover the effect of the aforementioned issues towards the 
difference in performance. 

Researchers such as (Jacob, 1994) and (Hornby, 2003) have successfully 
evolved Lindenmayer systems (L-systems). However, L-systems have deter­
ministic paths through the grammars. In the case of simultaneous evolution 
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of parameters and the grammar with parametric L-systems, the number of pa­
rameters can be low and pre-determined. This is not the case in the present 
study where the solution mapping chromosome(that can be seen as an instance 
of a parameter set to the grammar) is typically of large and unspecified size. 
Therefore, while L-system based evolution is a successful instance of grammar 
evolution, it is fundamentally different from the avenues tackled in this chapter. 

The study also leads us to think that adding this extra degree of freedom can 
increase problem difficulty due to a larger search space. 

5. Summary 
This chapter has confirmed that it is possible to evolve the grammars in 

parallel with the solutions, but it has also shown on a selection of standard 
problems that the subsequent increase in the size of the search space, not to 
mention the additional code to support this co-evolution, can outweigh the 
benefits. There are almost certainly problems that will benefit from co-evolving 
the grammar, but these remain to be identified. 

It has also been shown that, where the knowledge is available ( .̂g.the Multi­
plexer problem) a tuned grammar can perform very well. However, this finding 
has the caveat that it is also possible to adversely effect the search capability of 
a system by using a less than ideal hand tuned grammar. 

The most consistent performer was the closed grammar, but it is not always 
possible to use one of these. Given the current state of research, we recommend 
using a reasonable, i.e. not particularly tuned, CFG. 

We also revisited Koza's idea of GPPS, and examined unified grammars, 
which err on the side of caution when including functions, usually providing 
more than are necessary. We discovered that these grammars gave surprisingly 
good performance on occasions despite having to deal with much larger search 
spaces. This is an encouraging result for any future research aiming at genetic 
programming black box type problem solvers. 

Appendix 
Listed are the grammars used in the experiments. Except for the even parity problem which 

had no hand crafted grammar, the others are ordered as follows: closed grammar, multiple 
non-terminal grammar and the hand crafted grammar. 

6 Multiplexer. 

S : := <expr> 
<expr> ::= ( <expr> AND <expr> ) | ( <expr> OR <expr> ) I NOT ( <expr> ) 
I IF ( ( <expr> ) ( <expr> ) ( <expr> ) ) | AO I Al I DO I Dl I D2 I D3 

S ::= <expr> 
<expr> ::= ( <expr> <op> <expr> ) | <pre-operation> I <var> 
<op> ::= AND I OR 
<pre-operation> ::= NOT ( <expr> ) I IF ( ( <expr> ) ( <expr> ) ( <expr> ) ) 
<var> ::= AO I Al I DO I Dl I D2 I D3 
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S : := <expr> 
<expr> ::= IF ( ( <condition> ) ( <action> ) ( <action> ) ) 
<condition> ::= ( <condition> <op> <condition> ) | NOT ( <condition> ) | <addr-bits> 
<action> ::= ( <action> <op> <action> ) I NOT ( <action> ) I <data-bits> 
I IF ( <condition> ( <action> ) ( <action> ) ) 

<op> ::= AND I OR 
<addr-bits> ::= AO I Al 
<data-bits> ::= DO I Dl I D2 I D3 

Even 6 Parity. 
S ::= <expr> 
<expr> ::= ( <expr> AND <expr> ) | ( <expr> OR <expr> ) I ( <expr> NAND <expr> ) 
I ( <expr> NOR <expr> ) | DO I Dl I D2 I D3 I D4 1 D5 

S ::= <expr> 
<expr> ::= ( <expr> <op> <expr> ) | <var> 
<op> ::= AND I OR I NAND | NOR 
<var> ::= DO I Dl I D2 I D3 I D4 I D5 

Quartic Polynomial. 
S ::= <expr> 
<expr> ::= ( <expr> + <expr> ) I ( <expr> - <expr> ) I ( <expr> * <expr> ) 
I ( <expr> / <expr> ) I Sin ( <expr> ) I Cos ( <expr> ) I Exp ( <expr> ) 
I Log ( <expr> ) I 1.0 I X 

S ::= <expr> 
<expr> ::= ( <expr> <op> <expr> ) | <pre-op> ( <expr> ) I <var> 
<op> ::= + I - I / I * 
<pre-op> ::= Sin I Cos I Exp I Log 
<var> ::= 1.0 I X 

S ::= <expr> 
<expr> ::= ( <expr> <op> <expr> ) I ( <expr> + <expr> ) | ( <expr> * <expr> ) 
I <pre-op> ( <expr> ) I <var> 

<op> ::= - I / 
<pre-op> ::= Sin | Cos | Exp 1 Log 
<var> ::= 1.0 I X 

Sextic Polynomial. 
S ::= <expr> 
<expr> ::= ( <expr> + <expr> ) | ( <expr> - <expr> ) I ( <expr> * <expr> ) 
I ( <expr> / <expr> ) I ( <expr> pow <expr> ) I X I <num> 

<num> ::= <Z> . <Z> | <Z> 
<Z> ::= <Z> <Z> 
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 1 9 

S : := <expr> 
<expr> ::= ( <expr> <op> <expr> ) | <R> | <Z> 
<R> : 
<Z> : 
<op> 
<D> : 

X I <Z> I <Z> . <Z> I ( <expr> pow <expr> ) 
= <D> I <Z> <Z> 

:= + I - I • I / 
= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

S ::= <expr> 
<expr> ::= ( <expr> + <expr> ) I ( <expr> • <expr> ) 
I ( <expr> <op> <expr> ) I ( <expr> pow <expr> ) I <R> I <Z> 

<R> : 
<Z> : 
<op> 
<D> : 

= X I <Z> I <Z> . <Z> 
= <D> I <Z> <Z> 
:= - I / 
= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

Keller's Problem. The grammar for this problem was very similar to the Quartic Polynomial Problem, 
except that it had 28 inputs and did not involve transcendental functions. It is avoided to be described here for the space 
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reasons. The hand tuned grammar kept the unrequired inputs i.e. A, B,y, z and the division function under separate 

non-terminals. 

The Unified g r ^ m i l l B r . The non-terminals <B-var> and <R-var> deal with the real and the boolean 
input variables. Depending upon the problem domain, the corresponding variables are specified for one of the non-terminals 
leaving the other non-terminals without any rules. As a result, the individuals attempting to map by taking the wrong path 
always fail to do so and are discarded. 

S ::= <decide> 
<decide> ::= <B-expr> I <R-expr> 
<B-expr> ::= ( <B-expr> AND <B-expr> ) j ( <B-expr> OR <B-expr> ) I NOT ( <B-expr> ) 
I ( <B-expr> NAND <B-expr> ) | ( <B-expr> NOR <B-expr> ) 
I IF ( ( <B-expr> ) ( <B-expr> ) ( <B-expr> ) ) I <B-var> 

<R-expr> ::= ( <R-expr> + <R-expr> ) | ( <R-expr> - <R-expr> ) I ( <R-expr> * <R-expr> ) 
I ( <R-expr> / <R-expr> ) I ( <R-expr> pow <R-expr> ) I Sin ( <R-expr> ) I Cos ( <R-expr> ) 
I Exp ( <R-expr> ) I <R-var> 
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THE IMPORTANCE OF LOCAL SEARCH 
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Abstract Standard Genetic Programming operators are highly disruptive, with the con­
comitant risk that it may be difficult to converge to an optimal structure. The 
Tree Adjoining Grammar (TAG) formalism provides a more flexible Genetic 
Programming tree representation which supports a wide range of operators while 
retaining the advantages of tree-based representation. In particular, minimal-
change point insertion and deletion operators may be defined. Previous work has 
shown that point insertion and deletion, used as local search operators, can dra­
matically reduce search effort in a range of standard problems. Here, we evaluate 
the effect of local search with these operators on a real-World ecological time 
series modelling problem. For the same search effort, TAG-based GP with the 
local search operators generates solutions with significantly lower training set 
error. The results are equivocal on test set error, local search generating larger 
individuals which generalise only a little better than the less accurate solutions 
given by the original algorithm. 

Keywords: local search, insertion, deletion, grammar guided, tree adjoining grammar, eco­
logical modelling, time series 

1. Introduction 
It has long been recognised (Nordin and Banzhaf, 1995; Nordin et al, 1995) 

that subtree crossover and mutation in Genetic Programming (GP) (Cramer, 
1985; Koza, 1992) are highly disruptive. In the standard GP tree representations, 
altering a node high in the tree with subtree operators entails the likelihood of 
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major disruption of the subtree below it. This is in strong contrast with the 
other main forms of artificial evolutionary algorithms, which generally support 
a range of operators with varying levels of disruption, and also with natural 
evolutionary systems (Ridley, 1996), in which mutations are often small-scale. 
In (O'Reilly, 1997), editing operators for making changes on a small scale 
were defined, namely insertion, deletion, and point mutation. However, these 
operators on standard GP representation (expression trees) were merely used to 
compute the distance metric between two GP individuals. It is not known how 
they can be implemented as genetic operators since the applications of insertion 
and deletion on GP expression trees generally results in invalid expression 
trees. In (Vanneschi et al., 2003), two structural mutation operators called 
inflation and deflation mutations were defined. These operators were proven 
to cause small changes in the structure of GP expression trees; however, since 
the definition is based on incrementing and decrementing arity, these operators 
become meaningless if all functions in the GP function set have the same arity. 
Moreover, it is difficult to extend this arity-based definition to syntactically-
constrained domains, which are the primary focus of grammar guided genetic 
programming (GGGP). 

We have previously shown (Nguyen and McKay, 2004b) that the point inser­
tion and deletion operators supported by the Tree Adjoining Grammar (TAG) 
representation presented in (Nguyen et al, 2003) are effective in solving a num­
ber of standard GP test problems, and in particular, can make major inroads into 
Daida's (Daida et al., 2003) structural difficulty problem (Nguyen and McKay, 
2004a). However these operators have not been applied to significant real-world 
problems. Here, we present an example of their application to an ecological 
time-series modelling problem. They are able to generate solutions which better 
fit the training data, without the concomitant risk of overfitting. 

The remainder of this paper is arranged as follows: Section 2 briefly intro­
duces TAGs and the TAG-guided GP system (TAG3P), and giving details on the 
point insertion and deletion operators based on them. Section 3 describes the 
Lake Kasumigaura modelling problem which is the focus of this application. In 
section 4, we describe the experimental setup used, while presenting the results 
and discussing their implications in section 5. Section 6 presents our general 
conclusions and discusses future work in this area. 

2. Grammars, Tree Adjunction and Genetic Programming 
Grammar-Guided Genetic Programming (GGGP) has been an important 

strand in GP since its near-simultaneous introduction by three separate groups 
of researchers (Wong and Leung, 1995; Whigham, 1995; Geyer-Schulz, 1995) 
in 1995. Since the differences between the three variants are not relevant to this 
paper, we base our discussion on Whigham's version. GGGP offers a number 
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of advantages, providing declarative search space restriction and homologous 
operators, and supporting human-guided incremental leaming. However most 
subsequent work in GGGP has relied on the Chomsky grammar formalisms 
from the 1950s (string-rewriting systems), which hinder the design of search 
operators acting directly on their derivation trees. 

Tree Adjoining Grammars 
Tree Adjoining Grammars (TAGs) have become increasingly important in 

Natural Language Processing (NLP) since their introduction in the 1970s by 
Joshi et al (Joshi et al, 1975). The aim of TAG representation is to more di­
rectly represent the structure of natural languages than is possible in Chomsky 
languages, and in particular, to represent the process by which natural language 
sentences can be built up from a relatively small set of basic linguistic units by 
inclusion of insertable sub-structures. Thus "The cat sat on the mat" becomes 
"The big cat sat on the mat" by insertion of the element 'big.' Further insertions 
throughout the sentence can give us more complex sentences such as "The big 
black cat sat lazily on the comfortable mat which it had commandeered" by 
insertion of the elements 'black,' iazily,' 'comfortable,' 'which it had com­
mandeered.' In context-free grammars (CFG - Chomsky's formalisms of type 
2), the relationship between the first and last sentences can only be discerned by 
detailed analysis of their derivation trees; in TAG representation, the derivation 
tree of the latter simply extends the frontier of the former. To put it another way, 
the edit distance between the derivation trees of these closely related sentences 
is much smaller in TAG representation than in CFG representation. This will 
be formalised in the next example. 

ft-.. ^ 

beta tree 

T 

V 

OP T 

LI 

T 

OP T 

Figure 11-1. Tree Adjoining Grammar for Kasumigaura Model 
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In more detail, a TAG grammar is specified by providing two sets of trees, the 
initial or a trees, corresponding to the basic building blocks of the language, 
and the auxiliary or ß trees, corresponding to the insertable elements of the 
language. Together, these trees are known as elementary trees. The trees for 
the primary grammar used in this paper are shown in Figure 11-1. 

As in Chomsky grammars, the nodes of the trees are labelled by terminal 
and non-terminal symbols; internal nodes must be labelled by non-terminals, 
while leaf nodes may be labelled by either terminals or non-terminals. Trees 
whose root is labelled by a non-terminal X are known as X-type trees, ß trees 
satisfy one additional constraint, namely that an X-type ß tree must have a 
distinguished node on its frontier, known as the foot node, labelled by X (in 
diagrams, we will mark the foot node with an asterisk '*'). 

Consider again the trees in Figure 11-1. LI may be any of the attributes 
listed in Table 1 {e,g. p for level of ortho phosphate). Rl and R2 are random 
epheremal constant in the ranges of [0 .. 1] and [-50 .. 50] respectively. OP 
may be any of '+,''-,' '*' or 7.' LI, Rl and R2 may be altered by the process 
of substitution as described below. 

The key operations used with tree-adjoining grammars are the adjunction 
and substitution of trees. Adjunction builds a new (derived) tree 7 from an 
auxiliary tree ß and a tree r (which may be an initial tree, or an already-derived 
tree). If tree r has an interior node labeled A, and ß is an A-type tree, the 
adjunction of ß into r to produce 7 is as follows: Firstly, the sub-tree a rooted 
at A is temporarily disconnected from r. Next, ß is attached to r to replace the 
sub-tree. Finally, a is attached back to the foot node of r. 7 is the final derived 
tree generated by this process. 

In substitution, a non-terminal node X on the frontier of an elementary or 
derived tree is substituted by an X-type initial tree. 

The completed derived trees of TAG (/. e,, derived trees with no non-terminals 
on the frontier) thus correspond directly to the derivation trees of a Chomsky 
grammar, recording how a particular string (the frontier) may be derived from 
the start symbol. TAG systems introduce a new type of tree, TAG derivation 
trees, which record the history of adjunctions and substitutions (including their 
locations) used in generating a given derived tree. 

Figure 11-2 shows a series of derivation trees and their corresponding de­
rived trees. The top row shows the fourth alpha tree with its LI defined as 't,' 
representing the water temperature. The frontier of every alpha tree is a valid 
expression, in this case the expression is *t.' 

The second row shows another beta tree with OP being '+' and LI being 
'chla.' The frontier T* + chla' is not a completed expression, but may be 
adjoined into a completed expression to create a new completed expression. 

The third row is another beta tree, presented here for future reference. 
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Figure 11-2. Example Derivation and Derived trees 

The fourth row shows the result of adjoining the tree of the second row into 
the tree of the first row. The derivation tree on the left indicates that the /?2 tree 
is adjoined into the first available adjuction point of the a4 tree. The derived 
tree on the right shows the result of this adjunction. The derived tree is created 
by first disconnecting the T-t' subtree of aA. The ß2 tree is then reconnected at 
the same point where the subtree had been disconnected. Finally, that subtree 
is then rejoined at the adjunction point of /?2. 

The fifth row shows the result of adjoining the tree of the third row into the 
tree of the fourth row. This shows that the adjunction will occur at the first 
available adjunction point of ß2 - this is its top node. Starting with the derived 
tree of row four, this proceeds by first disconnecting the subtree directly below 
'S'. The tree ßl is then connected at that point, and the disconnected subtree is 
then re-joined at the foot node of ß\. 

The substitution operation can change any of the substituatable terms in the 
trees shown. For example, '+' can change to '*,' '0.12' to '0.78,' or 'chla' to 
'p.' 
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TAG-based Genetic Programming 
The valuable properties which the TAG representation introduces into NLP 

are arguably also of value in GP, leading us to propose a TAG-based GP sys­
tem (Nguyen et al., 2003). Among the most important of these properties for 
GP is a feasibility property: after the deletion of an arbitrary subtree from a 
TAG derivation tree, the remnant tree is still a valid TAG derivation tree. An 
immediate consequence is the ability to flexibly design new operators, with the 
same ease as in linear evolutionary systems (such as GAs), while preserving 
the benefits of tree-based representations. 

TAG-based GP systems in most respects resemble other tree-based GP sys­
tems closely. We describe here the TAG3P system from (Nguyen et al., 2003). 
The underlying structure is a population of trees — in this case, completed TAG 
derivation trees. The grammar is specified by supplying the sets of a and ß 
trees. Populations then consist of derivation trees from that grammar. Fitness 
evaluation is carried out by generating the appropriate derived trees from the 
TAG derivation trees, and then (as in GGGP) evaluating the expression on the 
frontier of the derived tree as a GP expression. The search space is thus defined 
by the grammar — the set of all GP expression trees which may be generated 
by the given grammar, within the specified complexity bound. However unlike 
GGGP and most other tree-based GP systems, the feasibility property means 
that it is easy to control tree size so that tree size, rather than depth, is used as 
the complexity bound. 

As in GGGP, any reasonable selection operator may be used; current ver­
sions of TAG3P use tournament selection. As with GGGP, care must be taken 
to ensure that crossover and mutation operators do not violate the closure re­
quirement. In TAG3P, sub-tree mutation generates a new sub-derivation tree 
whose root is the non-terminal labelling the mutation point, while crossover is 
restricted to locations bearing the same non-terminal. 

TAG3P is simply a variant GGGP system, using TAG derivation trees, in 
place of Context Free Grammar (CFG) derivation trees. In this form, the primary 
benefits of TAG representation lie in the transformation of the distance metric 
of the search space, as in the 'cat' example previous described, and in the ability 
to directly apply size rather than depth as a complexity metric. 

We have shown in a number of papers (Nguyen et al., 2003; Nguyen et al., 
2004) that these benefits can be important for a wide range of problems. Our 
working hypothesis, for which we have some preliminary evidence, is that 
the distance transformation implicit in the TAG representation, by allowing 
previously long-distance dependencies to become local, may better support the 
construction and preservation of appropriate building blocks for some problems. 

However the representation effects are not the primary focus of this paper. 
Here, rather, we focus on the TAG representation's ability to support new GP 
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tree operators. Because of the feasibility property, it is possible to design a wide 
range of new operators, which is otherwise difficult to achieve with standard 
GP representation using expression trees and in GGGP using CFG derivation 
trees. Moreover, many of the new operators are biologically motivated, includ­
ing relocation and duplication (Nguyen et al., 2005), but also including point 
insertion and deletion operators motivated mainly by their local effects. 

Point Insertion and Deletion Operators in TAG3P 
The insertion and deletion operators in TAG3P can be viewed as extremely 

local mutation operators. 
The deletion operator is simple to describe: it uses a uniform distribution to 

select one of the leaf nodes of the derivation tree, and deletes it from the tree. 
Because of the feasibility property, this always results in a valid derivation tree. 

Conversely, the insertion operator selects uniformly randomly among the 
open adjunction locations within the derivation tree {Le, non-terminal locations 
which do not already have an adjoined subtree), choosing a location with some 
label X. It then selects uniformly randomly amongst the X-type auxiliary trees, 
and adjoins the selected auxiliary tree in the chosen location. 

While insertion and deletion can be treated as local mutation operators, our 
previous experiments have obtained significantly better results when they are 
used as local search operators, with sub-tree crossover and mutation remaining 
as the genetic operators. Hence in this application, the subtree operators are 
used as genetic operators only, while insertion and deletion are used as local 
search operators. The local search strategy used in this work is the most simple 
form of local search, namely, greedy-hill climbing. In more detail, for each 
generation, the system performs the initial stages of selection and then crossover 
and mutation as usual. However after that step, each new individual is then 
subjected to a fixed number of steps of local search. 

For each step of local search, one of the two local search operators (insertion 
and deletion) is chosen with equal probability, the chosen operator being applied 
to the current individual to obtain a new one. The fitness of the new individual 
is assessed, and if the new individual is better than the old, it replaces the old, 
otherwise it is discarded. 

The overall result is that the system tests a sequence of small changes in order 
to fine tune the individual. Note that this is feasible only because the flexibility 
of the TAG representation allows small changes throughout the derivation tree. 
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3. The Lake Kasumigaura Modelling Problem 

Phytoplankton in Lake Kasumigaura 
Phytoplankton are microscopic photosynthesising organisms, primarily from 

several groups of algae and bacteria. A number of species {e.g. Microcystis, 
Oscillatoria) can occasionally exhibit periods of superabundance (blooms) with 
harmful ecological and economic effects (Reynolds, 1984), so prediction of 
their abundance, and especially of blooms, is of considerable importance. 

Phytoplankton population dynamics are affected by a wide range of en­
dogenous variables, including physical factors such as light and temperature, 
chemical factors such as pH and the levels of nitrogen and phosphorus, and 
biological factors such as the level of grazing by Zooplankton. While there has 
been considerable previous work on developing predictive models (for exam­
ple, see (Recknagel, 2001)), there is still room for improvement in the quality 
and reliability of the models. 

Lake Kasumigaura is a large shallow lake in South-Eastem Japan, about 
70km NE of Tokyo. At the time of dataset collection, in the 1980s and 1990s, 
there was high nutrient runoff into the lake, and hence high nutrient loadings. 
Consequently, there was also a high phytoplankton abundance, with periodic 
blooms. There is considerable seasonal fluctuation in temperature and light 
loadings, resulting in a large seasonal component to the phytoplankton levels. 
This is measured by chlorophyll A readings, which are presented in Figure 11-3, 
the blooms corresponding to the peaks in the graph. 

Figure 11-3. Lake Kasumigaura Chlorophyll A Readings 

The Lake Kasumigaura dataset contains an extensive range of ecological 
variables sampled over the ten-year period 1984-1993 (Recknagel et al , 1998). 
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The data availability varies over the attributes, so in our work we have restricted 
our attention to the eight variables shown in Table 11-1. 

Table 11-1. Lake Kasumigaura Data Variables 

Variable 

Ortho Phosphate (p) 
Nitrate (n) 
Secchi Depth {s) 
Water Temperature {t) 
Light (/) 
Dissolved Oxygen (o) 
Copepoda {cd) 
Chlorophyll-A {chla) 

Mean ± Standard Deviation 

15.46±32.11 
517.17±525.10 

84.72±47.15 
16.50±7.82 

1199.16±695.55 
11.13±2.41 

160.36d=96.73 
74.35±46.60 

Units 

mg/l 

fJ'9/l 
cm 

d e g C 
MJ/m^ 

-
Individuals/I 

fJ'9/l 

Modelling Approach 
A wide variety of error measures are available for assessing the quality of 

models (and hence, to guide the computerised search for good models). For 
scenario modelling, Root Mean Square Error (RMSE) is the most widely ac­
cepted, and that is what we use in this paper. There is some question whether 
RMSE is the most suitable error measure for the use of time series models for 
future prediction. It is, for example, time-symmetric whereas it is arguable 
that error measures for time-series prediction should not be. For example, a 
model which anticipates an algal bloom too early may be more valuable than 
one which predicts its occurrence too late. Nevertheless, RMSE is widely used 
in predictive use of time-series models, and we follow standard practice in this 
area, for comparability with previous work. 

In describing a model-inference system, we need to describe two compo­
nents, the class of models explored, and the algorithm used to search amongst 
them. Here, we follow the lead of (Whigham and Recknagel, 2001) in using 
GP to generate difference equation models. 

Since our primary purpose is to investigate the performance of local search, 
we compare the original TAG3P (i.e. with sub-tree crossover and mutation op­
erators only) with two versions incorporating different amounts of local search 
with the insertion and deletion operators. For comparison with earlier works, 
we use CFG-based GGGP in a form close to that of Whigham and Recknagel's. 

Model Space. Whigham and Recknagel discuss a number of representations 
in the context of equal time differences, the most general being a simple first-
order difference equation. 
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yt-hi = f{^uyt) (11.1) 

However for irregularly-sampled data, it is essential to incorporate the time 
difference into the equation, the simplest approach being to incorporate it in 
differential form, ue.\ 

5y/öt = f{xuyt) (11.2) 

which may be re-written as 

vt-hi = yt-\-it^ fixuvt)) (11.3) 

The function to be learnt is / () . 

4. Experimental Method 

Data Preparation 
Data Cleaning. We first extracted the original underlying data from the 
dataset (assuming linear interpolation). It was clear that the data had been 
sampled on an approximately monthly basis, but that there were additional 
observations for one variable (light level) throughout the data, and additional 
observations for all variables in the more recent period. We discarded these 
additional observations to obtain a dataset with irregular but approximately 
equal sampling (29.96 ib 3.65 days). 

Data Categorisation, The dataset was divided into two equal portions, for 
training and testing the models. The first portion, covering the years 1984-1988, 
was used for training, while the second portion, covering the years 1989-1993, 
was used to test the generalisation ability of the evolved models. As is evident 
from Figure 11-3, pollution control methods over the period have reduced the 
impact of algal blooms, so that the two periods are not fully comparable. Thus 
the learning technique will need to over-generalise to compensate (a better 
approach to evaluation would use m-fold cross-validation, but this is not well-
accepted in the ecological modelling field). 

Genetic Programming Setup 
In these experiments, four treatments were used, incorporating four differ­

ent learning methods: a fairly standard form of Context-Free Grammar Guided 
Genetic Programming, the original TAG3P algorithm, and two variants incorpo­
rating varying degrees of local search (TAG3P20 and TAG3P50, with 20 and 50 
local search steps respectively), the population size being reduced correspond­
ingly, so as to give the same overall number of evaluations. GP parameters for 
the runs are given in Table 11-2. 
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Table 11-2. Genetic Programming Parameters for Kasumigaura Modelling 

Parameter Value 

General 
Runs per treatment 30 
Generations per run 51 
Probability of crossover 0.9 
Probability of mutation 0.1 
Selection Tournament Size 3 
Parameters for GGGP 
Population size 1000 
Local search steps 0 
Max depth (initial generation) 6 
Max depth (later generations) 10 
Parameters for TAG3P/TAG3P20/TAG3P50 
Population size 1000/50/20 
Local search steps 0/20/50 
Max size (initial generation) 6 
Max size (later generations) 40 

GGGP Setup. As is usual in GGGP, the acceptable form for / in our 
equation 11.3 is defined by a context-free grammar, shown in Table 11-3. The 
variables p, n, 5, t, /, o, co^ chla are the corresponding attributes from Table 11-
1, while ri and r2 are random ephemeral constants with ranges [0.0... 1.0] 
and [—50.0... 50.0] as in (Whigham and Recknagel, 2001). In this example, 
the independent variables p, n, 5, t, /, o, co form the vector Xt, while yt is the 
dependent variable chla. The function set consists of the arithmetic operators 
(+,—,*,/) together with the exponential function (pow, with exponents in the 
range [0..1]), permitting the learning of very general forms for the models. 

Table 11 -3. Context Free Grammar for Kasumigaura Model 

S -^T 
T -^ T.OP.T 
T -> T-powjrl 
T -^ p\n\s\t\l\o\co\chla\r2 

O P - + 1 - 1 * 1 / 

TAG3P Setup, The TAG3P runs used the TAG shown in Figure 11-1, derived 
from the CFG using Schabes' transformation (Schabes and Waters, 1995) 
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Filtering of Results 
An important complication with the function search space used in these ex­

periments is the potential to generate invalid numeric values, either out-of-range 
or undefined. Out-of-range and NaN (not a number) values can be generated by 
arithmetic operations such as division by zero or exponentiation. Out-of-range 
values cause little problem for evolutionary methods, since infinite values will 
simply be treated as very unfit, but NaN values are more troublesome. In these 
experiments, we handled NaN fitness values by resetting them to a very large 
{Le, unfit) value, namely exp(700). This is potentially disruptive to the evolu­
tionary process, if too many NaN values occur. As a precaution, we recorded 
the number of NaN substitutions in each run; typical values were around 5,000 
(around 1%) of the total number of fitness evaluations, suggesting that NaN 
substitutions did not substantially affect the evolutionary process. 

In reporting results, these exp(700) values can dominate means even when 
relatively rare. To avoid this phenomenon, values exceeding exp(300) were 
filtered from the results before computing mean results or graphing. The number 
of such filtered values are reported along with the results. For the same reason, 
only best-of-generation results are reported, since population averages tended 
to be dominated by these misleading values. 

5. Results and Discussion 

Results 
Figure 11-4 shows the evolution of reduced RMSE on the training data for 

each of the four treatments used. Each point in the plot represents the mean, 
over all 30 runs for that treatment, of the Root Mean Square Error (RMSE) of 
the best individual in each population at the given generation. 

Table 11-4 shows the mean error, over all runs for a given treatment, of the 
best individual in the final generation of each run. The table also shows the 
p-values from Student's T-test for all pairs of treatments. The null hypothesis 
is that there was no difference between means of the treatment pair, requiring 
a two-tailed unequal-variance test. Table 11-5 shows the corresponding values 
for the test data. In this case, a single run from the 30 for each of TAG3P20 and 
TAG3P50 was filtered out; no runs were filtered from the results for GGGP or 
TAG3P. Finally, Table 11-6 shows the mean sizes of these 'best' individuals. 

Discussion 
It is clear, both from Figure 11-4 and from Table 11-4, that local search does 

improve the training accuracy on this dataset - that is, that TAG3P with local 
search operators is better able to fit the data than either TAG3P alone, or a 
more standard GGGP system, the probabilities of the null hypotheses in these 
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Figure 11-4, Mean of Training RMSE of Best-in-generation Individual 

Table 11-4. Mean and SD of Training RMSE of Best Final-Generation Individual 

T test p values 
TAG3P50 
TAG3P20 
TAG3P 

GGGP 

52.85 ± 3.33 

9.88E-18 
2.98E-19 

0.60 

TAG3P 

53.23 ±2.13 

4.76E-21 
2.83E-21 

TAG3P20 

41.23 ±3.43 

0.89 

TAG3P50 

42.69 ± 3.06 

Table 11-5. Mean and SD of Test of Best Final-Generation Individual 

T test p values 
TAG3P50 
TAG3P20 
TAG3P 

GGGP 

136.1 ±214.16 

0.07 
0.03 
0.05 

TAG3P 

54.0 ±35.8 

0.52 
0.49 

TAG3P20 

48.9 ±19.5 

0.17 

TAG3P50 

60.6 ±40.7 

cases being very small. There may be a hint from the figure that TAG3P50's 
more eager search results in better early behaviour but poorer later results than 
TAG3P20 (Le, that 50 steps of local search may be too many), and similarly, 
that GGGP is less eager than TAG3P, but given the T-test results, this requires 
more confirmation before a definite conclusion can be reached. 

From Table 11-6, we see that the local search runs result in far larger indi­
viduals than TAG3P on its own; there is a concomitant risk that the results of 
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GGGP 

100.6 ±47.5 

Table 11-6. Mean Size of Best Final-Generation Individual 

TAG3P TAG3P20 

5.4 ±0.7 38.4 ±2.6 

TAG3P50 

39.0 ±1.5 

local search may be overfitted to the training data, and may generalise poorly 
to unseen data. Table 11-5 suggests that this has not occurred: while the differ­
ences in the table are either not, or only marginally significant, we can say that 
the 20 step local search runs generalise slightly better than the original version, 
while the 50 step runs generalise slightly worse, again suggesting that 50 steps 
may be too many. Furthermore, there is weakly suggestive evidence that all 
three TAG runs generalise better than the GGGP runs, in which a significant 
proportion appear to be significantly overfitted to the data, giving rise to very 
inaccurate predictions on the test data. 

One further caution is required with Table 11-6. The table records the geno­
type size in each case. However GGGP genotype sizes are not strictly compa­
rable with TAG genotype sizes - one TAG elementary tree typically subsumes 
a number of CFG productions (in this case, typically 2-3 as may be seen by 
comparing Table 11-3 and Figure 11-1, so that a TAG genotype typically cor­
responds to a GP genotype 2-3 times larger). Thus the best we may conclude 
regarding evolved GGGP sizes is that the GGGP individuals are roughly com­
parable in complexity with those from the TAG local search runs, and certainly 
much larger than those from the pure TAG3P runs. 

6, Conclusions and Further Work 
The results presented here confirm the ability of local search in TAG3P, using 

the point insertion and deletion operators, to significantly improve the search 
performance of the TAG3P evolutionary system - in this case, in a real-world 
ecological modelling problem. The test set error obtained from TAG3P with 
local search is far lower than that obtainable either by TAG3P alone, or by a 
more standard GGGP system. 

However for a learning problem such as this, in which generalisation is 
actually more important than test set accuracy, it is perhaps fortuitous that the 
large increase in individual size generated by the local search runs (Le. search 
appeared to favour insertion over deletion) did not result in overfitting and poor 
generalisation. When the search method is too effective at fitting the training 
set data, mechanisms are required to avoid over-fitting which may lead to poor 
generalisation. 

We plan to extend recent work on Minimum Measurement Length (MML) 
techniques for CFG-based GP (Shan et al., 2004) to the TAG representation, 
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enabling us to use an MML-based metric, rather than raw accuracy, as the fitness 
metric for TAG3P with local search in learning problems, and thus avoid the 
potential generalisation problems. 
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Chapter 12 

CONTENT DIVERSITY IN GENETIC 
PROGRAMMING AND ITS CORRELATION 
WITH FITNESS 

A. Almal, W. P. Worzel^ E. A. Wollesen^ and C. D. MacLean^ 
Genetics Squared Inc., 210 S. Fifth Ave, Suite A, Ann Arbor, MI 48104 

Abstract A technique used to visualize DNA sequences is adapted to visualize large num­
bers of individuals in a genetic programming population. This is used to examine 
how the content diversity of a population changes during evolution and how this 
correlates with changes in fitness. 

Keywords: genetic programming, diversity, chaos game, fitness correlation. 

1. Introduction 
Genetic Programming (GP) has borrowed theory extensively from Genetic 

Algorithms (GAs). It is widely accepted that the building-block hypothesis 
(Holland, 1975) holds true for GP and Poli has proven a Schema Theorem 
(Holland, 1975) for GP (Poli and McPhee, 2001). 

At the same time, there have been voices of dissent. Angeline (Angeline, 
1997) has described crossover as "macro mutation" that is as likely to be de­
structive of existing building blocks as it is to create new building blocks. Daida 
et al. (Daida et al, 2003) has suggested that GP is dominated by structural con­
siderations that significantly constrain the possible search space, thus limiting 
the importance of the Schema Theorem. McPhee and Hopper (McPhee and 
Hopper, 1999) and Daida et al (Daida, 2004) both showed that the genetic 
material in the final generation of evolution could be traced to a very limited 
subset of the initial generation. Daida et al (Daida, 2004) also suggests that 
tournament selection is better than fitness proportional selection at reaching a 
solution precisely because diversity is reduced quickly to a limited set of build­
ing blocks that are then shuffled to find their best combination. This is contrary 
to accepted wisdom that it is desirable to maintain diversity as long as possible 
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in order to search for the best building blocks available. Instead Daida et al 
(Daida, 2004) argues that for reasons of computational efficiency, it is better to 
allow fast convergence on a small number of building blocks that are selected 
from the initial populations. Without early convergence, a GP system will be 
forced to spend an inordinate amount of time evaluating inferior individuals. 

This paper introduces a means for visualizing Genetic Programming content 
and structure so that aspects such as diversity and structure within a population 
may be examined during evolution and related to the progression of fitness. 
This may be used to test some of the theories described above as well as giving 
GP users some insight into the appropriateness of GP parameter settings for the 
problem being solved. 

2. Content Mapping 

Chaos Game 
Genetic programming systems, as with other evolutionary systems, are gen­

erally not in equilibrium. The dynamics of the system are usually non- linear in 
behavior and genetic programming systems tend to be very sensitive to initial 
conditions. Due to these properties, a genetic programming system may be 
described as a chaotic dynamical system. By applying chaos theory to the dy­
namics of evolution in GP, it may be possible to better understand the emergence 
of non-random patterns during the evolutionary process. 

The Chaos Game is an interactive approach to teaching students about fractals 
and, indirectly, about chaotic dynamical systems. From a starting point within 
a simple geometric figure such as a triangle or a square, a point is plotted some 
fraction of a distance toward one of the figure's vertices. This is repeated, 
varying the targeted vertex until a figure emerges. For example, if a triangle is 
used and a point is plotted half way from the current position to the targeted 
vertex and the vertex is randomly selected, a Sierpinski triangle is created. 
This may be turned into a game by providing a target for the line to reach and 
requiring the student to pick the vertex toward which he or she moves (Voolich 
and Devaney, 2005). 

If a square is used instead of a triangle and each comer is labeled with one of 
the bases in DNA {i.e.. A, T, C and G), then each sequence of DNA will create 
a different graph. By plotting multiple sequences in this way, the Chaos Game 
can be used for a variety of things such as identifying recurring sequences, 
and identifying functional regions of DNA (Jeffrey, 1990) (V. Solovyev, 1993). 
This method is now widely used for sequence analysis and in particular for the 
discovery of particular sequences of interest for further analysis. 
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The Circle Game 
By moving from a polygon to a circle, a more flexible system is created 

with the values being mapped distributed evenly around the circle. This is 
equivalent to a polygon inset within a circle with the vertices touching the 
edge of the circle. By using this to plot individuals in genetic programming 
populations, the emergence of structure and content "motifs" during evolution 
may be tracked. 

In this approach, to represent the content of a GP expression the tokens being 
tracked (i,e., terminals and operators) are evenly spaced around a circle. By 
rendering a GP derived function as a linear string, the sequence of tokens may 
be plotted. As in the Chaos Game, beginning at the center of the circle, a point 
is plotted from the current location to a point halfway to the location of the 
point on the circle where the next token in the function lies. This is repeated 
until the function has been fully graphed in the circle and then repeated for all 
members of the population. (Koelle, ) An alternative version plots a line from 
the current location to a point half way to the appropriate vertex rather than a 
single point. This has the virtue of showing ordered patterns that repeat within 
the population but at the cost of creating a more tangled plot. 

It can be seen that the chaos game can capture the content diversity and 
show the emergence of patterns, however if we want to identify the 'motifs,' it 
requires us to represent the structure of the expression as well since a x b-\- c 
is quite different from a x {b -\- c) but their content plots would be identical. 
In order to do this we propose a modified approach that represents both the 
structure and the content. 

The equation shown in Equation 12.1 can be easily mapped into a binary tree 
structure as shown in Figure 12-1. 

[h\\{0p3 {Op2 Tl T2) T4) (12.1) 

link length = ŝ  
Op3 depth = 1 

_ /_ . \ . . . link length = ŝ  

i2 T4 depth = 2 

link length = ŝ  
Tl T2 depth = 3 

Figure 12-1. Binary Tree Representation of Equation 12.1 

In the modified algorithm, the nodes are plotted using the rules for the circle 
game. However, the length of the links for these nodes are given by s^, where 
5 is a scaling factor arbitrarily chosen between 0 and 1, and d is the depth of 
the node the link is leading to in the binary tree. Also the link for a node in 
the plots should originate from the location of its parent. For example, the 
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sequence of plotting for Equation 1, will be: plot a line from origin half the 
distance {s = 0.5) towards OpS, move a quarter distance towards Op2, move 
one-eighth of the distance towards T l , come back to the starting point for Op2, 
move one-eighth of the distance towards T2, come back to Op3 and move a 
quarter distance towards T4. The scaling parameter s can be chosen to be 
any arbitrary value, keeping in mind that it controls the visual divergence in 
the plot. Figure 12-2 shows an example of this for the expression shown in 
Equation 12.1. 

Content Diversity Visualization for Eq.1 
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Figure 12-2. Modified Circle Plot for Equation 12.1 

If we add Equations 12.2 and 12.3 and plot all three equations together using 
using different pens, we get the plot shown in Figure 12-3. This shows that 
similar expressions can be distinguished but at the same time their structural 
and content similarities can be spotted. 

(Op3 (Op2 T l T3) T4) (12.2) 

(Op2 (Opl T l T2) T2) (12.3) 

Showing Content Diversity During Evolution. By looking at the structural 
content plots for an entire population during evolution we can gain a glimpse 
of the dynamic changes in structure and content. There are two different types 
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Content Diversity Visualization for Eq.1-3 
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Figure 12-3. Circle Plot or Equations 12.1-12.3 

of plots we use to study evolution. In one we plot the entire graph and in 
the other we plot the nodes and the links are omitted. Both of these methods 
have unique qualities, the former tells us about the connectivity of the nodes(an 
essential feature for finding the motifs) and the latter approach gives a nice 
visual representation of the diversity during evolution. Especially interesting 
are the emergence of the circular fractals in these plots. These suggest that 
the GP system is searching for the appropriate combination of elements in a 
structure. 

Figure 12-4 shows a population of individuals at generation 0 of a run while 
Figure 12-5 shows the population at generation 10. Figure 12-6 shows it at 
generation 20 and 12-7 at the final generation, generation 40. By comparing 
these images we can see the appearance of shared content and structure within 
the population emerging from the random "ball of string" in generation 0. By 
the final generation shown in Figure 12-7, we can see how the content diversity 
has been reduced to a comparatively small number of variables and the structure 
is fairly similar across the individuals in the population. 

The plots of only the nodes for the same problem follow in Figures 12-8 
through 12-11. 
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Figure 12-4. Generation 0 Content Plot 
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Figure 12-5. Generation 10 Content Plot 
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Figure 12-6. Generation 20 Content Plot 
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Figure 12-7. Generation 40 Content Plot 
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3, Fitness Plots 
Correlation between content, structure and fitness can be made by comparing 

fitness plots with the circle plots above. Scatter plots of the individual fitness 
values in a test population shown in Figure 12-7 have a surprising diversity 
of fitness among the population, even late in the evolutionary process. The 
fitnesses of all individuals have been sorted by the training set fitnesses (not 
shown here) with the least fit individuals appearing at the left end of the graph 
and the most fit at the right end. Figure 12-12 shows the fitness distribution in 
generation 0, 12-13 at generation 10, Figure 12-14 at generation 20, and Figure 
12-15 at the end of the GP run, generation 40. 

Test Fitness Diversity for Run = 6 Fold = 1 Gen = 9 
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Figure 12-12. Test Fitnesses at Generation 0 

By comparing the circle plots and the fitness, we can see that although the 
content diversity narrows, the fitness variance among individuals remains high 
but we can also see that there are certain fitness bands that dominate the popu­
lation as the content goes down. 

4, Conclusions and Future Work 
The examples shown above were developed in a multi-deme system using 

generational evolution on a classification problem with a particular fitness mea­
sure suited for the type of classification problem we were working on. Any 
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Test Fitness Diversity for Run = 9 Fold 
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Figure 12-15. Test Fitnesses at Generation 40 

general conclusions about GP and the changes in content and its correlation to 
fitness will have to wait until this approach is applied to more varied problems 
and environments. 

One limitation we have encountered is that in problem sets where there are 
a large number of inputs and a large population, the "ball of string" effect for 
full plots can make identification of subtle difference difficult as even minor 
differences begin to run together. We have considered sampling the individ­
uals in a population rather than using the whole population to help deal with 
this problem. We are also trying 3D plots where the number of repeats of a 
segment corresponds to plot height. Another interesting experiment might be 
coloring the individuals according to the fitness and seeing the correspondence 
in between the fitness, structure and the content diversity. 

However, this approach shows potential as a way to model the dynamics 
of GP by providing insight into both structure and content during evolution. 
There are a number of questions that could be resolved more completely in 
terms of GP behavior such as the difference in diversity caused by crossover, 
a comparison of fitness proportional versus tournament selection, and perhaps 
most interesting, comparing populations in separate demes and the effect of 
different rates of transfer between the demes. 
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Similarly, running with varying probabilities of crossover and mutation and 
comparing the content distribution and its relationship to fitness will give an 
indication of how much GP is influenced by the building block hypothesis and 
the schema theory as opposed to structural limitations. 

Also, by comparing the circle plots described here with Daida et al 's struc­
ture plots (Daida et al., 2003), we will be able to see how much of the structure 
is captured in the circle plot compared to their approach. If the structure shown 
in the circle plots does not correspond to the structure relationships shown by 
Daida et al (Daida et al., 2003), then adding structure plots to circle plots and 
correlating with fitness should show the interplay between structure, content 
and fitness, testing many of the current theories in Genetic Programming. 
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Chapter 13 

GENETIC PROGRAMMING INSIDE A CELL 

Gene Regulation and Self-Organization: 
Inspirations from Genetic Programming in vivo 

Christian Jacob '̂̂  and Ian Burleigh 
Department of Computer Science, University of Calgary; 
Department of Biochemistry & Molecular Biology, University of Calgary 

Abstract We present an agent-based, 3D model of the lactose {lac) Operon, a gene regula­
tory system the bacterium E. coli. The lac Operon is a prime example of a 'real 
genetic programming' system, which has been studied extensively and lends itself 
to rigorous mathematical analysis and computational simulations. We suggest 
natural gene regulatory systems, as observed within E. coli, to serve as testbeds 
for future in silico genetic programming systems. 

Keywords: agent-based, biological modelling, gene regulatory system, lactose Operon, bioin-
formatics, simulation, swarm intelligence, self-organization 

1. Introduction 
The last decade has brought about a revolution in the understanding of 

epigenesis—the still awe-inspiring processes of evolving a simple, undiffer­
entiated cell into a complex adult organism—and other natural development 
processes. Genetic programming (GP) (Koza, 1992; Banzhaf et al, 1997), as 
a relatively new research area, is now entering a stage of maturation, where we 
strive to use evolutionary and developmental principles to automatically con­
struct and 'grow' more and more complex systems, such as computer programs. 
Interestingly enough, complex patterns and structures emerge within highly dy­
namic systems without any central control, which would globally regulate the 
development of particular subsystems, emergence and self-organization prin­
ciples play a major part in the decentralized construction of complex structural 
computational entities or 'agents' (Kauffman, 1995; Holland, 1998). 
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Agent-based, massively parallel, decentralized approaches provide an appro­
priate level of abstraction, where local interaction rules determine agent behav­
iors, from which the overall 'collective system intelligence' emerges (Bonabeau 
et al., 1999; Kennedy and Eberhart, 2001). In conjunction with using GP to 
evolve agent-behavior programs, 'swarm intelligence' systems have the poten­
tial to inspire not only our understanding of developmental processes and their 
evolution, but to inspire current and future GP methodologies and applications 
from studying and modeling 'programming in vivo' (Jacob, 2000). 

In this paper, we discuss one of the simplest gene regulatory systems—an 
example of 'real genetic programming'—with the objective of elucidating the 
underlying self-organization and swarm-interaction principles. We do this, first 
of all, to understand how to build agent-based models of biomolecular systems 
and, secondly, to derive abstractions for use in future genetic programming 
systems. We present a 3D-space, agent-based model of the lactose {lac) operon 
within the bacterium Escherichia coli (E. coli), which is one of the most basic 
and extensively investigated systems of gene regulation (Müller-Hill, 1996; 
Ptashne and Gann, 2002). 

The observable dynamics of biomolecular systems, such as gene regulation 
within a cell, results from the interactions of a (usually large, but finite) number 
of 'bio-agents,' such as proteins, peptides, signaling or macro-molecules. Our 
agent-based models apply swarm intelligence algorithms in order to simulate 
bio-molecular systems, an approach which is gaining a much broader accep­
tance within the life sciences research community (Burleigh et al., 2003; Jacob 
and Burleigh, 2004), thus complementing most of the current, more abstract 
mathematical and computational models (Salzberg et al., 1998; Bower and 
Bolouri, 2001).^ 

The paper is organized as follows: In Section 2 we introduce Operons as 
the basic modular units on bacterial genomes and describe the lac operon in 
detail. In Section 3, we present our model to explain how the on/off switching of 
genes results from the interactions among several bio-agents. Section 4 analyses 
typical simulation runs where the E, coli bacterium—i.e., its genome—reacts 
to an influx of lactose. In Section 5, we offer an outlook of the future of GP, 
based on what we have learned from our E. coli model. 

2, Operons as Self-Regulating Genetic Modules 
An operon is a group of genes located on the DNA (Deoxyribose Nucleic 

Acid) of bacteria that are transcribed as a unit. The so-called lac operon, found 

'Several alternative and complementary computer-based models of the lac operon exist, including simple 
grammar-based approaches (Collado-Vides, 1992), functional hybrid Petri net models (Matsuno et al., 2001), 
systems based on rewrite rules (Suen and Jacob, 2003), and systems based on large sets of differential 
equations (Tomita et al., 2000). 
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in the E. coli bacterium, is one of the best-studied gene regulatory systems, 
and is still used as a basis for investigating more complex genetic systems (Ja­
cob and Monod, 1961; Beckwith and Zipser, 1970; Müller-Hill, 1996; Ptashne 
and Gann, 2002). E, coli is a prokaryotic organism without a nucleus that 
is normally found in a lactose-rich environment, such as the gut of humans. 
E. coli requires the energy source of glucose for much of its growth and has 
evolved a solution for obtaining glucose from its environment by converting 
lactose into glucose and galactose. This conversion is accomplished through 
the enzyme ^-galactosidase, which is one of the products of the lac operon. 
In the presence of lactose, the lac operon is turned on and, hence, produces 
/3-galactosidase. When lactose is no longer present, the lac operon turns itself 
off and, consequently, stops the production of ^ö-galactosidase, thus conserving 
cellular resources. Gene-based self-regulation is an emergent property, medi­
ated by the interactions of proteins, enzymes, molecules, and DNA. In order to 
understand how this 'emergence' can be accomplished through the interactions 
of 'swarms' of agents, we will describe the lactose operon in detail. The main 
components of the lac operon as a regulatory unit on the bacterial DNA consists 
of four genes: lacZ, lacY, lacA, and lad (Figure 13-1). 

Module One: lacZ-Y-A. The lacZ-Y-A genes appear as a single module and 
are located adjacent to one another on the operon (Figure 13-1(a)). A control 
complex consisting of a promoter (P) and an operator (O) precedes the three 
genes. RNA polymerase reads the lacZ-Y-A sequence of genes, resulting in the 
production of their corresponding proteins Z, Y, and A through the processes of 
transcription and translation (explained in Section 3). 

Module Two: lacL The lad gene, the second key module, is located down­
stream of the main lac complex (Figure 13-1 (a)). It likewise contains a promoter 
region, and produces proteins with the help of RNA polymerase. The lad gene 
product is known as a repressor, which has a high affinity towards and binds 
to the operator region, thus preventing RNA polymerase from reading and ex­
pressing the lacZ-Y-A genes. 

Flipping the Switch: On, Off, and In-between. When lactose enters the 
cell, it binds to the repressors, forming a repressor-lactose complex (Figure 13-
1(b)). Due to conformational changes, the repressor is no longer able to bind to 
the operator region of lacZ-Y-A, Consequently, RNA polymerase is now free to 
read lacZ, lacY, and lacA —producing ^-galactosidase, lactose permease, and 
transacetylase, respectively. Among these three gene products, /3-galactosidase 
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is the enzyme that converts lactose into glucose and galactose.^ /?-galactosidase 
will then break down any lactose it encounters into glucose and galactose. Once 
lactose is removed from the system, the repressor is, again, free to bind to the 
operator region and terminate the production of/?-galactosidase; hence, the lac 
Operon is switched off. In this manner, the lac operon is able to regulate its own 
gene products, depending on the presence of lactose. 
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Figure 13-1. (a) After RNA polymerase docks onto Pi, the Lad promoter site, it transcribes the 
Lad gene into its mRNA representation, which is then translated by ribosomes into the repressor 
protein I. This repressor binds to the LacZ-Y-A operator site, which in turn blocks RNA p) and 
start scanning for promoter/operator sections. Once transcription is initiolymerase; hence, none 
of the three genes are expressed, (b) When lactose enters into the cell, it induces a shape change 
in the repressors that disables them from binding to the operator. Consequently, the LacZ-Y-A 
genes are accessible by the RNA polymerase and are expressed as proteins Z, Y, and A. 

3. The Emerging Switch 
Our computer implementation of the lactose operon model and its visual­

ization incorporates a swarm-based approach within a 3D visualization engine 
(Jacob and Burleigh, 2004; Burleigh et al., 2003). Each individual element 
in the simulation is treated as an independent agent governed by simple rules 
of interaction (Figure 13-2 and 13-3). Dynamic elements in the system move 
randomly in 3D space, executing specific actions when colliding with or getting 
close to other agents, which all operate within the boundaries of a spherical cell. 

^Lactose permease enhances the movement of lactose from the outer environment into the cell, whereas 
transacetylase does not seem to play a role in this regulatory system (Ptashne and Gann, 2002; Alberts et al., 
1998). 
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Figure 13-2, Zooming into a simulated E. coli cell, (a) All intra-cellular interactions are confined 
within a spherical cell, (b) Closeup of the circular DNA and a number of interacting 'bioswarm' 
agents. 

From DNA to Proteins 
We represent the actual encoding of the lac operon gene as a circular DNA 

double-helix-^ with its characteristic Watson-Crick complementarity pattern 
(Figure 13-3) (Watson and Crick, 1953). Groups of three nucleotide bases 
(Adenine, Cytosine, Guanine, and Thymine) form codons, which encode for 
specific amino acids, the basic building blocks of proteins. We chose to use 
codons for representing genetic sequences that make up the DNA strands. 

There are two distinct gene regions in the lac operon: the lad and the lacZ-
Y-A region (see Section 2). For the purposes of this model, we only include the 
lad and lacZ gene regions. The lacY and lacA genes do not greatly impact the 
function of the system and are therefore not included in our current model."^ 

Transcription. The processes of transcription and translation serve as inter­
mediary steps in order to produce proteins from a given gene. Once genes are 
'switched on', i.e., their operator region is not blocked by any repressor (Fig­
ure 13-1(b)), RNA polymerase has access to the encoding regions of the struc­
tural genes on the DNA. Transcription is the process of converting DNA into 
an intermediate molecule known as messenger Ribonucleic Acid (mRNA). The 
enzyme RNA polymerase is responsible for this particular conversion, which 
proceeds as follows: (1) RNA polymerase searches along the DNA structure 

^The DNA is kept still within the cell. In this model, we do not consider any thermal fluctuation of DNA, 
such as translation, rotation, or chain flexibility. 
"̂ The codons around the two operator sites and the stop codons represent actual sequences from the E. coli 
genome. The rest of the circular DNA consists of random codons. Incorporation of the complete lac operon-
related genome is possible in this model and will be a part of the next version of our biomolecular simulation 
system currently under construction. 
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Figure 13-3. An annotated snapshop of our Lactose operon simulation: RNA polymerases 
(brown) attach to the DNA strands (turning pink) and start scanning for promoter/operator sec­
tions. Once transcription is initiated, RNA polymerases produce mRNA strands, undergoing 
translation by multiple ribosomes. The ribosomes construct the amino acid (AA) chains of 
unfolded proteins (repressors and /3-galactosidases) based on the mRNA codon sequence. The 
snapshot also shows the key proteins involved in the switching behavior: /3-galactosidases and 
repressors. 

until it encounters an appropriate promoter region. (2) Starting at the promoter 
region, RNA polymerase begins to synthesize mRNA based on the genes found 
downstream from the promoter.̂  (3) Once transcription is complete, the mRNA 
strand is free to undergo a second conversion process (through translation), 
whereas RNA polymerase reiterates the process of transcription. 

In our model, RNA polymerases, the initiators of transcription, are repre­
sented as dark (detached) or brighter (attached) large spheres (Figure 13-3). 
Once RNA polymerase attaches to a DNA region, it starts scanning along the 
chain of codons. Transcription occurs once RNA polymerase has encountered 

^Here we make the simplifying assumption that mRNA copying begins right after the promoter region. In 
general, however, promoters can be quite distant from a coding region. 
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a viable promoter region. Genes adjacent to the promoter region are transcribed 
into mRNA, represented as a twisted single-stranded helix. As an example of 
the bio-agent rules that govern the overall simulation, Table 13-1 describes the 
simple programs for the polymerases. 

Table 13-1. Rules governing the behavior of RNA polymerase as an example swarm 
agent.Pseudocode is presented with each state of RNA polymerase outlined. The corresponding 
biological actions are described in the right column. 

I t e r a t e Pseudo Code 

case s t a t e of 

FLOATING: / * i n i t i a l s t a t e * / 
i f near DNA: 

a t t a c h t o n e a r e s t DNA codon 
s t a t e = DOCKED 

e l s e : 
move randomly w i t h i n t h e c e l l 

DOCKED: 

i f promoter r eg ion i s reached : 
s t a t e = READY_TO_TRANSCRIBE 

e l s e : 
move a long DNA t o next codon 

READY_TO_TRANSCRIBE: 
c r e a t e an empty mRNA molecule 
s t a t e = TRANSCRIBING 

TRANSCRIBING: 
i f a s t o p codon i s reached : 

r e l e a s e c o n s t r u c t e d mRNA 
s t a t e = DETACHED 

e l s e i f b locked by a r e p r e s s o r : 
d e s t r o y p a r t i a l mRNA 
s t a t e = DETACHED 

e l s e : 
move t o t h e next codon 
append codon mRNA 

DETACHED: 
de tach s e l f from DNA 
move rauidomly 
s t a t e = FLOATING 

end case 

Biological State and Action 

Floating: 
RNA polymerase is usually found near DNA 
and moves about the cell in a random manner. 
In this state, RNA polymerase will attempt to 
attach itself to the nearest free DNA strand. 

Docked: 
Once RNA polymerase has docked onto a 
free DNA strand, it will begin reading the 
DNA. 

Ready to Transcribe: 
When a promoter/operator sequence is 
found, the RNA polymerase will begin to ini­
tiate transcription. 

Transcribing: RNA polymerase will tran­
scribe the DNA sequence into an mRNA 
molecule. RNA polymerase reads each 
codon sequentially, and appends a new 
base to the growing mRNA molecule. This 
process is completed once RNA polymerase 
encounters the appropriate stop codon. RNA 
polymerase will then detach itself from the 
DNA. 

Detached: 
Once RNA polymerase has detached from 
DNA, it will again resume its random move­
ment within the cell. 
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Translation, During translation a protein is synthesized from an mRNA 
strand. This m/?A^A-to-protein conversion is achieved through the action of 
ribosomes and transfer RNA (tRNA) as follows: (1) A ribosome locates and 
attaches to a free mRNA strand. (2) The ribosome begins to read the strand and 
synthesizes a chain of amino acids with the support of tRNA. (3) The chain then 
folds into a 3-dimensional protein structure. Once translation is complete, the 
ribosome detaches from the mRNA strand and releases the newly made protein. 

The process of translation occurs once an mRNA strand has been synthesized. 
Ribosomes (Figure 13-3) attach to a free mRNA strand and begin to synthesize 
the associated amino acid (AA) chain, which is shown as a strand of disks. 
Multiple ribosomes can simultaneously read a single mRNA strand.^ Once an 
AA chain is completely synthesized, it turns into its associated protein, such as 
a repressor or /3-galactosidase.^ 

From Proteins to DNA 
In the case of the lac operon, repressor proteins and /3-galactosidase enzymes 

are synthesized through the processes of transcription and translation. Repres­
sors have a natural affinity for the operator region of the lac operon. They 
attempt to bind to the operator region and physically block transcription of the 
lacZ gene, which turns the lac operon off. This sequence of events is illustrated 
in Figures 13-4(a-c) through snapshots taken during our simulation over 2000 
iteration steps. In Figure 13-4(c) the operator site is surrounded by a number 
of repressors, which ensure that the operator is blocked (almost) all the time, 
so that no RNA polymerase can proceed past the operator site. 

At this point it should be noted that the 'switch-off' state is a collective 
property, resulting from the interactions of multiple repressor proteins with the 
operator site, in the following sense. Any repressor that binds to an operator 
does in fact detach after a certain time period. Consequendy, a single repressor 
will not be able to keep an operon section switched off continuously. However, 
a 'swarm' or group of repressors that tend to be around the operator site can 
cooperatively accomplish to block the operator for a much longer period. Once 
a repressor releases, another one will attach to the vacant operator. This aspect 
is reflected in our model and will be discussed in more detail in the following 
section. Hence, the expression of /3-galactosidase is cooperatively suppressed 
as illustrated in Figure 13-4(c). 

Once lactose is introduced into the cell (Figure 13-4(d)), repressor-lactose 
complexes are formed, which cause any bound repressor to be released from 

^In the E. coli bacterium, ribosomes are abundant within the cell. For proper visualization, we assume that 
there is always a sufficient number of ribosomes, which we only make visible when they attach to an mRNA. 
^In order to keep the model simple, we skip the complicated—and still largely unknown—processes of 
folding an AA chain into the specific 3-dimensional shape of a protein. 
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Figure 13-4. Different stages of the lac Operon simulation, (a) RNA polymerases scan the DNA 
strands and search for promoter regions, (b) RNA polymerases synthesize mRNA molecules. 
Ribosomes synthesize proteins, (c) Repressors (center bottom) around the operator block RNA 
polymerase from transcribing the LacZ gene, (d) Lactose is introduced into the system, (e) 
Lactose binds to repressors preventing them from blocking RNA polymerase. One RNA poly­
merase (on the left) has just started to transcribe part of the LacZ gene, (f) Most of the lactose 
is split into glucose and galactose. A number of /5-galactosidases are visible in the left half. 

the operator site. This, in turn, enables RNA polymerases to pass beyond the 
operator and initiate expression of /?-galactosidase. In Figure 13-4(e), one 



200 GENETIC PROGRAMMING THEORY AND PRACTICE III 

polymerase has already started to scan past the operator to the left of the DNA. 
Each of the produced /3-galactosidases will start to break down lactose into 
glucose and galactose (Figure 13-4(f)). As soon as all lactoses, including those 
bound to any repressor, are broken down, repressors will again start to attach 
to the lacZ operator, blocking any further production of ^ö-galactosidase. All 
the particles (except RNA polymerase and ribosomes) in the simulation system 
have a predefined lifespan, so that if a protein is not constantly expressed, 
it will eventually be degraded. Consequently, the simulated cell will finally 
switch back to a state analogous to Figure 13-4(c), where only repressors are 
expressed. 

Table 13-2, Control parameter settings for the biomolecular agents in Figure 13-4. The cell 
radius defines the unit step size (velocity: cell radius / iteration step; life span: iteration step). 

Parameter 

Number of polymerases: 
Polym-DNA docking distance: 
mRNA velocity: 
mRNA life span: 
Repressor velocity: 
Repressor floating period: 
Lactose velocity: 
Glucose velocity: 
Galactose velocity: 

Value 

24 
0.3 

0.01 
18 

0.03 
20.0 
0.03 
0.03 
0.03 

Parameter Value 

Number of lactoses: 400 
Polymerase velocity: 0.02 
Ribosome docking interval: 3.5 
/3-galactosidase life span: 50 
Repressor binding period: 5.0 
Repressor life span: 140 
Lactose life span: 1000 
Glucose life span: 500 
Galactose life span: 500 

4. How Good is the Agent-based Model? — A First 
Analysis 

During each simulation we track the numbers of all bio-agents. Figures 13-
5(a) and (b) show concentration graphs of two typical runs over 5000 time steps, 
similar to the simulation illustrated in Figure 13-4. Initially, there are no re­
pressors or /3-galactosidases in the system. Although the number of repressors 
then starts to increase over the first 200 iterations, it cannot prevent the produc­
tion of /?-galactosidase enzymes. However, once the repressor concentration 
has reached its first peak level at around t = 500, it almost completely blocks 
the lacZ operator, which drastically reduces expression of /3-galactosidase. At 
t — 500, lactose is introduced into the cell, which triggers the formation of 
repressor-lactose complexes, and the concentration of free repressors decreases 
rapidly. Now free repressors are too few to block the operator. After a short 
delay the number of /?-galactosidases increases, resulting in a corresponding 
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F/̂ wr̂  13-5. Evolution of the concentrations of biomolecular agents during four of our lactose 
simulations, (a) and (b) show two typical runs with the configuration parameters as described 
in Table 13-2. (c) Polymerase velocity is increased by a factor of 10: Vpoiy — 0.2. (d) 10-fold 
reduction of the time between ribosome docking: tdockirih) = 0.35. 
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Figure 13-6. Example snapshots during the evolution resulting from different settings of two 
bio-agent parameters, (a) Polymerase velocity, Vpoiy =0 .2 : increased by a factor of 10. (b) 
Ribosome docking delay, tdocki^ib) = 0.35: 10-fold reduction of the time between ribosome 
docking. The detailed evolutions are illustrated in Figures 13-5c and 13-5d, respectively. 

rise of both glucose and galactose. The lifetime of lactose within the cell was 
set to 1000 time steps, which reduces the lactose concentration to zero at around 
t — 1500. This causes the repressor concentration to build up again and resume 
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the repression of /?-galactosidase production, which brings the system back to 
its initial state with a relatively high number of repressors and a low base level of 
/3-galactosidase. By reintroducing lactose at t = 2500 one can observe similar 
interaction dynamics. Figures 13-5(a) and 13-5(b) result from two runs with 
the same parameter settings (Table 13-2), which illustrate the inherent noise in 
the agent model. However, the switching behavior occurs consistently. 

In order to find out how changes of some of the bio-agent control parameters 
would affect the overall evolution of the lac Operon simulation, we show two 
more experiments, where we modified the velocity of RNA polymerases and 
the docking interval for ribosomes. The graphs in Figure 13-5(c) result from a 
10-fold increase of RNA polymerase velocity to velpoiy — 0.2 units per time 
step. As in the previous two experiments, we introduced lactose at t = 500 and 
again at t = 2500. With the polymerases' faster speed, the different base levels 
for repressors, /?-galactosidases and rep-lac complexes obviously become less 
noisy. Hence, transcription speed determines the level of noise suppression in 
the system. Snapshots of this experiment are illustrated in Figure 13-6(a). In 
another experiment (Figure 13-5(d)), we reduced the mRNA docking interval 
between ribosomes from originally tdod^ib) == 3.5 to tdod^ib) — 0.3 time 
steps. This results in a drastic increase of the number of repressors, which 
almost immediately reduce any increase in /?-galactosidase to a very low base 
level. Interestingly, the lac operon switch is still functional. Snapshots of this 
experiment are illustrated in Figure 13-6(b). 

5, Gene Regulation and Genetic Programming 
Evolutionary optimization techniques can be used for bio-agents finding 

suitable or alternative settings for the bio-agent control parameters. This would 
allow a fine-tuning of the model with respect to measurements retrieved from 
in vitro and in vivo experiments. 

A combination of both automatic and interactive fitness evaluation turns out 
to be quite useful for both parameter tuning and 'reverse engineering.' The 
automatic fitness function would take care of simulation aspects that can easily 
be compiled into a mathematical formula, such as keeping the average density 
of particles within a certain range, or checking whether the switch is turned 
on/off. These constraint criteria would act as filters for the simulations that 
are then shown to an interactive evaluator, i,e., the model designer, who is 
usually an expert in the system under study. If we go back to the lac operon 
model discussed here, the microbiologist would observe a set of simulations 
on the computer screen. Looking at the interaction dynamics of the particles 
(e.g., Figure 13-6) and at plots of system-related aspects of the tracked particles 
(e.g., Figure 13-5), the expert is able to decide whether the parameter settings 
proposed by the evolutionary system make sense within the context under in-
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vestigation or not. This interactive breeding of model parameters does not only 
provide a tool for optimization in the classical sense, but serves as a platform 
for exploratory investigations in general—an inspirational tool to think about 
emergent patterns in complex systems (Kwong and Jacob, 2003). 

Within the same breeding scenario, GP can expand the scope of constructing, 
investigating, and analyzing agent-based models of bio-molecular systems or, 
in general, 'swarm' systems in the following ways: 

We can use GP to evolve interaction rules between the bio-agents. A 
rule set would be shared by the same types of agents, such as repressors, 
^-galactosidases, RNA polymerases, or ribosomes. Such rules can become 
relatively complicated (see Table 13-1), but one can certainly identify elemen­
tary behavioral commands (random walking, attaching, detaching, etc) which 
serve as suitable building blocks for the evolutionary construction of interaction 
programs. The evaluation criterion for this scenario could, first of all, be formu­
lated as a regression problem, where measurements from wet lab experiments 
of the system under study determine the desired system output. Again, the 
expert's intervention through interactive fitness evaluation would complement 
the automatic rule-evolving GP system. However, approaching the evolution 
of interaction rules from a simplistic regression perspective is in many cases 
too naive, not realistic and not feasible. Most biological systems, for which 
computational and mathematical models would be highly desirable, are only 
partially understood. Consequently, there are usually not enough experimen­
tal data available to compare a fitness function to. In this case, GP provides 
a promising vehicle to evolve different agent types, in combination with their 
interaction rules. Hence, one can investigate different ways of generating some 
desired temporal and spatial dynamics that result in specific—partly observable 
or measurable—system outputs. Questions about a particular system could be 
asked, such as whether a different set of agent interaction rules leads to similar 
behavior {e.g., in the case of the lac operon: is the switch still working?). 

6. Conclusion and Future Work 
We have presented a 3D agent-based model of the lac operon gene regulatory 

system, including a fast visualization engine.^ The model focuses on simulating 
important aspects of a biomolecular system including basic genetic processes 
such as transcription and translation. We believe that such simulations and vi­
sualizations will serve as powerful educational tools, and will support biologists 
in their understanding of complex gene regulatory systems, and decentralized, 
massively-parallel biological systems in general. Furthermore, such exam-

^Currently, we work with a Java3D version (used in a CAVE^^ Automated Virtual Environment) and a 
C++/OpenGL version of our simulations. 
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pies of (relatively simple) 'real genetic programming' systems should serve 
as an inspirational platform for future genetic programming systems in silico. 
Studying real genetic programming systems, such as the one within E. coli, 
gives us a much better understanding not only of the underlying mechanisms of 
gene regulation (with major consequences for gene therapy, drug design, etc), 
but can also provide alternative ways of constructing computer programs with 
built-in self-regulation mechanisms. In addition to studying robustness proper­
ties within our lac Operon model, we are currently working on a GP approach 
that incorporates aspects of gene regulation and Boolean networks (Kauffman, 
1995). 

One can find further information about our lactose operon model on our 
Evolutionary & Swarm Design web site (www.swarm~design.org), which 
is being expanded to incorporate other types of bio-molecular agents as well 
as several communicating cells, and other swarm-based models of biological 
systems, such as the A-switch and an artificial immune system (Jacob et al., 
2004). 
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Chapter 14 

EVOLUTION ON NEUTRAL NETWORKS 
IN GENETIC PROGRAMMING 
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Abstract We examine the behavior of an evolutionary search on neutral networks in a 
simple linear genetic programming system of a Boolean function space problem. 
To this end we draw parallels between notions in RNA-folding problems and in 
Genetic Programming, observe parameters of neutral networks and discuss the 
population dynamics via the occupation probability of network nodes in runs on 
their way to the optimal solution. 

Keywords: neutrality, linear GP, networks, population dynamics 

1. Introduction 
For more than a decade now, neutrality has been observed to play an important 

role in Genetic Programming (GP) runs. This was originally believed to be an 
atypical phenomenon, perhaps related to the choice of representation (Koza, 
1992; Altenberg, 1994a; Angeline, 1994). It was later realized that introns or 
non-effective code, as it became to be called, constitute the bulk of material 
generating neutrality in GP and that this type of code would appear in most 
representations of GP systems (Nordin and Banzhaf, 1995). For a long time 
the debate centered around questions of reasons for the emergence of this type 
of code which certainly was unintended by the designers of GP systems, and 
originally deemed disadvantageous (Soule et al., 1996; Langdon and Poli, 1998; 
Soule and Heckendom, 2002). 

During the same time, it was proposed that the theory of neutral mutations as 
put forward in the seventies and eighties for natural evolution (Kimura, 1983), 
could be understood in terms of the existence of neutral networks (Schuster, 
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1995; Forst et al., 1995; Reidys et al., 1997). Subsequent to that proposal 
various natural evolutionary systems have been examined, and the existence 
of neutral networks has been confirmed (Huynen et al., 1996; Babajide et al., 
1997). Its benefits for evolution were gradually revelled (Nimwegen et al., 
1998; Schultes and Bartel, 2000), and thus it was natural to ask what neutral 
networks would have to offer for evolutionary search. 

Bamett proposed to adopt a search paradigm different from a population-
based Genetic Algorithm (GA) search in landscapes with considerable neutral­
ity (Bamett, 2001). Smith et al (T. Smith and O'Shea, 2001) argue that, due to 
higher evolvability, GA systems with neutrality in search behave more aptly in 
difficult search landscapes. 

Recently, the confluence of both lines of inquiry can be observed in GP as 
well. Early observations (Banzhaf, 1994) spoke to the advantage of using plenty 
of neutrality. In the context of circuit design using Cartesian GP Miller and 
coworkers argued for search efficiency as one characteristic of representations 
with neutrality (Vassilev and Miller, 2000b; Vassilev and Miller, 2000a; Vassilev 
et al., 2003). Ebner (Ebner et al., 2002) pointed out how neutral networks can 
influence evolvability and Yu (Yu and Miller, 2001) studied the interaction 
between neutral and adaptive mutations in the context of search in Boolean 
function landscapes. 

In this contribution we shall discuss neutrality and the benefit of neutral net­
works in the context of a simple Boolean search problem using a linear GP 
representation, that consists of registers and logic operators. We shall show 
the relation between genotype and phenotype networks, discuss how the search 
benefits from neutrality as offered by non-effective code, and demonstrate the 
population dynamics of a search process. In the final section we shall put our 
eyes on robustness of the evolutionary solutions, and ask ourselves how evolv­
ability of the search process can be improved if the observations put forward 
here can be generalized. 

2. Problem, GP representation and Search Operators 
In order to be able to examine the effects we are interested in, we have chosen 

a small problem instance of a Boolean problem space. While it can be argued 
that this space is not suitable to solve real problems, the emphasis here is on 
trying to understand the influence of neutrality, notably its benefits. 

The problem space under consideration is the NAND space where two binary 
inputs xi and X2 are used and the output x^ is studied under various NAND-
combinations of inputs. 

Xz = fNAND{xi,X2) (14.1) 
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This follows work done by (Langdon and Poll, 1999) where it was shown, for 
tree-based GP, that there is a complexity threshold above which all Boolean 
functions can be reached by a combination of Boolean operators on inputs. 

We use a linear GP representation because it is much easier to analyse in terms 
of non-effective code (Banzhaf et al., 1998; Brameier and Banzhaf, 2001), 
and because it is easier to understand. The representation consists of a set 
of instructions in a register machine language, interpreted by the CPU as a 
program. As for the content of the registers, we allow only Boolean values "0" 
and " 1 " as the operators of these programs in the logical NAND operation. 

Even with so small a set of elements, combinatorics is at play, forcing us to 
quickly relinquish the plan to depict everything exhaustively. One choice we 
have is whether we want to have only a single type of register (read-and-write) 
which can act both as source and destination register of the programs executed, 
or two types of registers (input and calculation) which differ in that input reg­
isters hold the input values constantly, i,e, are only acting as source registers, 
and calculation registers can act both as source and destination registers. 

Table 14-1 shows the combinatorics in these two different systems, depend­
ing on the length of programs allowed. In the following, we shall concentrate 
on C == / = 2. The first calculation register also works as the output register. 

Table 14-1. Comparison of the number of programs for different number of registers. C: Num­
ber of calculation registers; I: number of input registers; L: Length of programs in number of 
instructions. The number of programs is calculated by (/ + C)2^ C^. 

C Registers 

2 
3 
1 
2 
3 

/ Registers 

0 
0 
2 
2 
2 

L = 2 

64 
729 
81 

1,024 
5,625 

L = 3 

512 
19,683 

729 
32,768 

421,875 

L = 4 

4.1 X 10^ 
5.3 X 10^ 
6.6 X 10^ 
1.0 X 10^ 
6.3 X 10^ 

L = 6 

3.3 X 10"̂  
1.4 X 10"̂  
5.9 X 10^ . 
3.4 X 10"̂  
2.4 X 10^ 

L - 10 

1.1 X 10^ 
2.1 X lO '̂* 

.. 3.5 X 10^ 
1.1 X 10^^ 
5.6 X 10^^ 

A typical program (for i?0, Rl calculation registers and i?2, R3 input regis­
ters, output in register RO) looks like this: 

RO = R l NAND R2 

R l = R l NAND RO 

RO = R3 NAND R l 

R l = R l NAND R2 

R l = R l NAND RO 

R l = R2 NAND R l 

(*) 
(*) 
(*) 

which we code as the following genotype: 

012 110 031 112 110 121 
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This is different from the phenotype of that program which results after remov­
ing the introns^ ((*)-marked code, above) to yield 

RO = Rl NAND R2 

Rl = Rl NAND RO 

RO = R3 NAND Rl 

which we code as the following phenotype: 

012 110 031 

Figure 14-1 depicts which functions can be reached with programs of different 
length up to L = 8. As seen in the figure, there is a large discrepancy between 
the presence of different Boolean functions, with some like "Equivalance" being 
frequently found and thus being easy, and others like "Identity" being seldomly 
found and thus being difficult. Note the complexity threshold again: Below 
program length 5 there is no solution to the Equivalence function. 

In the following, our GP system will be set up to find the most difficult func­
tion, the "Equivalence" function, and we shall study how the system achieves 
this solution and what can be said about the neutral networks it uses to find it. 

After introducing the representation, we have to say a few words about the 
search operator(s) we shall employ in our GP runs. In this contribution we 
decided again for the operator mutation, which is the easiest to analyse. Whereas 
it can again be argued that this is not an efficient way to traverse the problem 
space at hand, we would counter, that at least we can understand what is going 
on in the system. 
For illustration purposes, suppose a mutation would change a bit in the genotype 
mentioned below. 

012 110 031 112 110 121 -> 012 110 031 012 110 121 

This would mean, that the phenotype now changes, too: 

012 110 031 -> 012 110 012 

In other words, by switching one bit, one of the instructions has been rendered 
non-effective, whereas a previously non-effective one has become effective. 

The evolutionary dynamics we have chosen is again a very simple one, we 
observe and examine runs with a population of /L^(1 + A) searchers, where 
the notation is borrowed from Evolutionary Strategies. There are // indepen­
dent searchers (providing for statistics), each one acting in an elitist way ( +-
strategy), and exploring the neighborhood with A trials (in our case, A = 10). 
If one of these neighbor states is equal or better in fitness, the searcher assumes 
the new state; if not, it remains where it was. 

^The last three instructions only affect register Rl and not the output register RO. 
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size 

Boolean functions 

Figure 14-1. Boolean function space for various length of programs. For L = 5 "<^" has a 
0.00114 % share of the search space, in contrast to "= 1" with a share of 23.4 %. For L < 5 
"<^" is not present at all. 

3, Non-effective Code, Neutral Networks, and the 
Genotype-Phenotype Map 

As we have mentioned in the beginning, we expect that neutrality should 
play an important role in the search process in our Boolean function landscape. 
Neutrality is provided by non-effective code. This is unintentionally generated 
by a sequence of instructions if a later instruction simply overwrites what has 
been computed before. It might even happen that all instructions are non­
effective. This is the case, if no data is written into the predetermined output 
register of the GP system. We refer to the corresponding phenotype as the 
"empty phenotype." 

The Genotype-Phenotype-Mapping (GPM) function is provided through re­
moving the non-effective code. This is analogous to the neutrality provided in 
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RNA folding (Gruener et al., 1996). By analysing a program's code, beginning 
from the last line, we identify those instructions which are not effective (it could 
be an entire block of instructions). All other instructions which will have an 
influence on the result of the calculation, are subsequently copied and treated 
as the phenotype of the program. 

Table 14-2 shows, for an exhaustive examination of all possible genotypes in 
a small example, the frequency of corresponding phenotypes. This is precisely 
the sort of picture one encounters in RNA folding landscapes: Many very 
uncommon phenotypes, and few highly common phenotypes, if looked at from 
the point of view of enumeration of all genotypes. 

Table 14-2. Redundancy of genotypes mapping into phenotypes for C = 2; / = 2; L = 5. The 
last line shows total number of genotypes and phenotypes. G: Number of genotypes; P: number 
of phenotypes; R=G/P: Redundancy. The fitness value relates to <^ as the reference function. 

G 

1,192,960 
87,808 
415,744 
749,568 
948,224 
1,030,400 
384,000 
100,352 
657,408 
1,413,120 
2,560,000 
405,504 
1,753,088 
917,504 
4,096,000 
131,072 

4,259,840 
3,276,800 
1,048,576 
8,126,464 

1 33,554,432 " 

P 

1,192,960 
5,488 
12,992 
15,616 
14,816 
12,880 
4,000 
392 
856 
920 
1,000 
144 
428 
56 
100 
2 
40 
10 
1 
4 

1,262,705 

R 

i 
16 
32 
48 
64 
80 
96 
256 
768 
1,536 
2,560 
2,816 
4,096 
16,384 
40,960 
65,536 
106,496 
327,680 
1,048,576 
2,031,616 

Best Fitness 

0 
2 

2 

2 
2 
2 
2 
1 
2 
2 
2 

Worst Fitness \ 

4 \ 
2 
3 
3 
4 
3 
2 
2 
2 
2 
2 
3 
3 
2 
2 
2 
2 
2 
2 
3 

Each genotype can be considered a node in a graph. A mutation would 
then provide a link between nodes in the graph, allowing evolution to move 
if this step is actually allowed by selection. Due to the genotype-phenotype 
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mapping, however, there is also a graph of nodes constituting the network of 
phenotypes. Each of these nodes has a particular fitness depending on how the 
fitness function was defined for the problem. A movement on the genotype 
network driven by mutation now induces a corresponding movement on the 
phenotype network. Figure 14-2 shows the graph of phenotypes in a Boolean 
problem small enough that all phenotypes can be enumerated and drawn (length 
of programs: 2 instructions only). 

: ;/ m:....... 

Figure 14-2. Phenotype network graph for a Boolean function problem with C ~ 2\I = 
2;L = 2. Nodes have different colors, depending on the particular fitness they represent which 
is calculated as the difference to the AND function. Two neutral networks are shown with black 
edges. Self-connections of nodes are not shown. 

The links between nodes correspond, as we said, to mutations, except that 
we have not shown self-connections which may still have a substantial impact 
on evolutionary search. These links are distributed unequally between nodes, 
induced by the GPM. 

Neutral networks are constituted by those nodes in the network which have 
the same fitness and are connected by mutations. Note that there is a difference 
between this definition of neutrality and the definition used by e.g. (Ebner 
et al., 2002). Here we consider all phenotypes with the same fitness to be in 
the same neutral network, provided there is a mutational link. Ebner et al. 
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considers neutral networks only between the same phenotypes (which surely 
will have the same fitness). There are two disconnected components of the 
neutral network to the second-best fitness level. 

Strictly speaking, the phenotype network has no direct meaning for the evo­
lutionary search. Our GPM is a simple many-to-one projection and the con­
nectivity of nodes on a path in the phenotype network is not necessarily related 
to the path in the genotype network. That is to say, some phenotype nodes are 
hiding the fact that the genotypes represented by them are actually not con­
nected at all. Therefore, the connectivity distribution of the phenotype network 
seems to be only of minor interest. We shall address this problem later again 
by suggesting another way of forming phenotypes. 

4. Connectivity of Neutral Networks and Population 
Dynamics 

It is interesting to study the connectivity of neutral networks, and relate it to 
the dynamics of a population of searchers on the network. The reason is that, 
as is well known from the study of random walks on graphs, those nodes in the 
network which have the highest connectivity tend to be visited the most. This 
is a simple Markov chain result (Lovacz, 1993; Noh and Rieger, 2004), and it 
leads to the following prediction: The search in the neutral network will not be 
a pure random drift. It will have a bias, and will concentrate on those nodes 
of the network where connectivity is highest. If in the mutation neighborhood 
of those nodes a node with a better fitness can be found, it will be discovered 
quickly. This can be captured by saying that the nodes of the neutral network 
have a different effective fitness (Nordin and Banzhaf, 1995; Banzhaf et al., 
1998; Stephens and Vargas, 2000; Banzhaf and Langdon, 2002), and those 
nodes with a higher connectivity will have a higher effective fitness. 

As pointed out (Schuster et al., 1994), it can be safely assumed that neutral 
networks for different levels of fitness are strongly intertwined. Le, it will not 
be difficult to encounter transition nodes from one of these networks to another 
with a higher fitness. These so-called portal nodes (Nimwegen et al., 1998) 
are spread throughout the network and provide ample chance to jump off a 
neutral network onto one with better fitness. The only problem in our Boolean 
example is that in fact the problem is so easy (only 5 different fitness values) 
that it is difficult to observe all the phenomena. By looking at Figure 14-3 we 
can compare an exhaustive mapping of the search space in terms of connectivity 
characteristics with a mapping based on 100,000 GP runs. With this amount 
of sampling, the GP runs are already approaching full knowledge of the search 
space. 

Connectivity characteristics lends itself as a new way of observing the system, 
and allows an alternative definition of phenotypes. The only condition of these 
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Figure 14-3. Distribution according to connectivity characteristics: A genotype's connectivity 
characteristics is given by a triplet of values (/, Â , D) where / (D) is the number of neighbors 
with improved (deteriorated) fitness and Â  the number of neutral neighbors. Since the total 
number of neighbors is constant (35), two values (here: / and N) are sufficient for characteri­
zation. The 3D/2D plots show the proportions of connectivity for all genotypes of fitness 2 in 
the genotype network (Figures (a) and (b)) and for all visited nodes of fitness 2 within 100,000 
GP runs (Figures (c) and (d)). 

phenotypes will be that the fitness of an individual should be carried by the 
phenotype. So our alternative phenotypes look like this: {fitness, N, I)i for 
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Figure 14-4. The alternative phenotype definition allows to visualize a PT network. Node colors 
reflect the fitness levels from high fitness (white) to low fitness (dark gray). Pale nodes in the 
network center correspond to nodes in the subnetwork depicted in next figure. Three nodes with 
fitness 0 (perfect solutions) lie in the upper left corner of the network. Fruchterman-Reingold 
algorithm (2D) was used to create graphs. 

individual i, where Â  is the number of neutral connections and / is the number 
of improving connections of the individual node. 

5. Robustness and Evolvability 
Two of the main functions of neutrality in biological systems are considered 

to be (i) robustness of phenotypes against mutation and (ii) evolvability. For 
(i) to work, a viable genotype would try to locate itself in the center of a 
neutral network such as to make sure that any mutation that might happen to 
it still allows it to stay on the neutral network. In the absence of neutrality, 
a viable genotype/phenotype pair might always stand a high probability to 
produce deleterious mutations. 

The other function is to provide more potential for evolvability. Follow­
ing Kirschner and Gerhardt (Kirschner and Gerhart, 1998) evolvability can be 
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Figure 14-5. Neutral network of the most frequently visited nodes. More than 95% of all edges 
in the PT network passed during 1,000 GP runs belong to this subnetwork. Node labels specify 
fitness value (one digit), number of neutral neighbors (two digits) and number of improved 
neighbors (two digits). Self-connections are not shown, although they contribute over 50% . 

defined as the capacity of an organism to generate heritable variation. It is in­
teresting to note that modem metazoa seem to have developed in that direction. 

In the context of evolutionary computation this would come about by al­
lowing genotype/phenotype pairs to escape local optima through higher di­
mensional saddles, produced by neutral changes to the pair. Furthermore, if the 
network provides a clear guide via effective fitness, it could accelerate evolution 
even in the case of not being caught in a local minimum. Evolution would most 
probably be attracted to genotypes/phenotypes which are highly connected in 
the network, and thus have a better chance to be connected to higher-fitness 
states. 

Another aspect of evolvability - not discussed here - is modularity (Altenberg, 
1994b; Wagner and Altenberg, 1996). For this to work, a clearer picture of what 
building blocks are should be developed. We feel that more research needs to 
be done on the question of building blocks in GP before this question can be 
approached. For recent progress in this field, see (Langdon and Banzhaf, 2005). 
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6. Suggestions for Future Work, Summary and 
Conclusions 

We have shown, in the context of a very simple hnear GP system, that neu­
tral mutations play an important role in setting the system up for exploration. 
We argue that the situation in this type of a GP system is analogous to what 
can be found in RNA-folding and optimization: There are many uncommon 
phenotypes, and just a few very common ones. From this we concluded that 
neutral networks must be highly intertwined such as to allow a quick transition 
from one neutral network to the next, through certain portal nodes. 

By exhaustively enumerating solutions for a small Boolean logic problem we 
have demonstrated these ideas. The problem space is by no means considered to 
be difficult. Yet, by choosing the most difficult Boolean function to be realized 
in the system, we have at least made every effort possible to make it "relatively" 
difficult. 

Unfortunately, systems like the present are combinatorial and do not lend 
themselves to exhaustive search very easily, except for the smallest choice of 
parameters. It would be interesting, for example to analyse the networks of 
C, / > 2. As Table 14-1 illustrates, however, this becomes quickly infeasible. 

Notwithstanding the problem of exhaustive examination, we plan to analyse 
networks locally, around local optima or best fitness phenotypes found so far. 
We also want to provide more thorough statistical measures of network charac­
teristics, such as centrality of neutral networks etc. It would be most interesting 
to be able to pinpoint the nodes which most searchers have to pass through and 
to manipulate the search in order to either lead it towards these nodes or away 
from them. 
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Chapter 15 

THE EFFECTS OF SIZE AND DEPTH LIMITS ON 
TREE BASED GENETIC PROGRAMMING 

Ellery Fussell Crane^ and Nicholas Freitag McPhee^ 
University of Minnesota, Morris, Morris MN 56267, USA 

Abstract Bloat is a common and well studied problem in genetic programming. Size 
and depth limits are often used to combat bloat, but to date there has been little 
detailed exploration of the effects and biases of such limits. In this paper we 
present empirical analysis of the effects of size and depth limits on binary tree 
genetic programs. We find that size limits control population average size in 
much the same way as depth limits do. Our data suggests, however that size 
limits provide finer and more reliable control than depth limits, which has less of 
an impact upon tree shapes. 

Keywords: size limits, depth limits, genetic programming, population distributions, tree 
shape 

1. Introduction 
The causes and effects of code growth in Genetic Programming (GP) have 

been extensively researched (Langdon and Poli, 2002). In order to avoid the 
negative repercussions of bloat, a variety of corrective measures are employed 
to keep program sizes in check (Poli, 2003; Silva and Almeida, 2003; Luke and 
Panait, 2002; Koza, 1992). One frequently used method is to employ a fixed 
limit on program size by restricting either the depth or the size of syntax trees. 

While these limits have the desired effect of keeping the sizes down, little is 
known about what other impacts such limits might have on the dynamics of GP. 
Previous research has shown that decisions such as these can have significant 
effects on the behavior of runs (Gathercole and Ross, 1996) and on important 
structural features such as the size and shape distributions of populations (Poli 
and McPhee, 2003; McPhee and Poli, 2002). It would therefore be useful 
to better understand what structural effects size and depth limits might have, 
especially given their widespread use. 
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In (McPhee et al., 2004), we examined these issues using variable length 
linear structures. Here we extend that work to binary tree GPs. Several im­
portant differences exist between these two structures. In variable length linear 
structures, which are essentially unary trees, a size limit is exactly the same as 
a depth limit. This is not the case in binary trees, where it is possible to have a 
large depth and small size. 

To evaluate the effects of depth and size limits, we performed a large number 
of empirical runs using various limits on a problem that induces bloat. In 
this chapter, we present and analyze data taken from these runs. The focus of 
this analysis is learning how depth and size limits affect the average size of 
individuals in a population and how they affect tree shape. From this analysis, 
we also draw conclusions about the differences between size and depth limits, 
and provide a tentative recommendation for the use of size limits. 

Of special significance to this result is the fact that depth limits have been 
widely used to combat bloat in genetic programming. This is in part a result of 
the use of depth limits in John Koza's first two highly influential books (Koza, 
1992; Koza, 1994). In explaining his use of depth limits, Koza noted 

... that for the default value of 17 for the maximum permissible depth ... for a 
program created by crossover is not a significant or relevant constraint on program 
size. In fact, this choice permits potentially enormous programs. For example, 
the largest permissible ... program consisting of entirely two-argument functions 
would contain 2^^ = 131,072 functions and terminals. (Koza, 1994, p. 659) 

This reasoning regarding depth limits certainly seems plausible, and depth 
limits have served the needed goal of reducing program size for over a decade. 
The results in this paper make it clear, though, that depth limits can severely 
constrain the space of trees that GP is likely to explore (supporting, e.g., (Daida, 
2003)). Using our definition of depth, a depth limit of 17 theoretically allows 
for a tree with 262,143 nodes. In doing this study we generated nearly 100 
million individuals with depth limit 17 using a problem with a strong tendency 
to bloat. The largest individual we generated had a size of 341. 

While many researchers (including Koza) have moved to using size limits, 
many continue to use depth limits. Such researchers may be under the mis­
taken belief that these limits aren't significantly affecting the dynamics of their 
systems. It is valuable, then, to better understand the impact of both of these 
widely used types of limits. 

Surprisingly, our results show that, with appropriate values, both size and 
depth limits have nearly the same effects upon the average size of a population. 
The key difference between the two limits appears to be in how they affect 
the relationship between population average size and population average depth. 
Size limits do not seem to affect this relationship at all, while depth limits appear 
to bias the population towards slightly smaller average depths. 
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When comparing data from runs using a depth Hmit with that from runs 
using comparable size limits, we find that the distributions of sizes are extremely 
similar. The distribution of depths are also quite similar, but depth limits clearly 
restrict the depths much more than size limits restrict sizes. In both cases, the 
distributions are also very similar to the gamma-like distributions seen in earlier 
work on variable length linear structures. 

In Section 2 we present background material necessary for understanding 
the rest of the chapter, including problem set up and definition of terms. In 
Section 3 we present and analyze data generated from runs using depth limits, 
and in Section 4 we do the same for runs using size limits. Based on questions 
arising from those two sections, we present an analysis of the impact of depth 
and size limits on tree shape in Section 5. After discussing future avenues of 
research on this topic in Section 6, we summarize our conclusions in Section 5. 

2. Background 
In this section, we define several terms and concepts used in this chapter. We 

also define the test problem and parameters we use. 

Convergent average size and the strength of Umits 
In (McPhee et al., 2004), we defined the notion of a population's convergent 

average size in populations where a strong size limit is in place. We now extend 
this definition to account for tree depth. 

In the presence of bloat, the average size and average depth of individuals 
in any population increase rapidly during the early generations of a run. After 
this initial period of unchecked tree growth, the population "hits" the size or 
depth limit, and the population average size remains at a relatively constant 
value over time. We refer to this value as the run's convergent average size, and 
more precisely define it as the mean of the population's average size over all 
of the generations after a run has converged. Figure 15-1 in Section 3 provides 
several examples of the population average size "converging" after reaching a 
limit. 

Closely related to convergent average size is the notion of size or depth limit 
strength. Though all of the runs using limits that we examined experienced the 
convergence described above, it is clear from both (McPhee et al., 2004) and 
the work presented later in this chapter that not all limits cause the same amount 
of deviation from the convergent average size. Some limits cause very small 
amounts of variation from the convergent average size, and we refer to them 
as stronger limits than those which cause larger amounts of variation. Once 
again, this is easy to observe in Figure 15-1, where the larger limits clearly have 
more variation around the convergent average size than do the smaller limits. 
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We therefore define a size or depth limit's strength as the standard deviation of 
population average size over all of the generations after a run has converged. 

Binary Syntax Trees 
In our previous work (McPhee et al, 2004) we studied the impact of size 

limits on variable length linear structures. Those structures were essentially 
trees with two different unary functions (labeled 0 and 1) and a single type of 
leaf (labeled 0). 

In this chapter we extend our previous work to binary trees, which are more 
frequently used than linear structures. We will have two functions or internal 
nodes, again labeled 0 and 1, and a single type of leaf or terminal node, again 
labeled 0. Thus individuals will consist of binary trees where every internal 
node is labeled with a 0 or a 1, and every leaf is labeled with a 0. 

We also define the size of a tree to be the number of nodes (both internal 
nodes and leaves) in the tree. The depth of a tree is the number of edges along 
the longest path from the root node to a leaf. Thus, for example, a tree consisting 
of just a single leaf node has depth 0 and size one, while a full tree of depth 2 
has size 7. More generally, the size of a full tree of depth d is 2̂ "̂ ^ — 1. 

Crossover Operator 
Because our primary interest is the effect of size limits on code growth due to 

crossover, we focus exclusively on the standard subtree-swapping GP crossover 
operator. Thus there will be no use of mutation or any other genetic operators 
in this study. 

The crossover operator acts by removing a non-empty subtree of an individual 
and replacing it with a subtree taken from another individual. In the work 
reported here, the subtrees are chosen uniformly from the set of all a tree's 
(non-empty) subtrees, including the entire tree itself. Note that we are not using 
any sort of bias. This includes, for example, the common bias of choosing 90% 
of the crossover nodes as internal nodes. 

The One-Then-Zeros Problem 
We have used the one-then-zeros problem in a number of previous studies 

of the effect of bloat and genetic operators on variable length linear structures 
(McPhee et al., 2004; Rowe and McPhee, 2001). This problem has the advan­
tage of being simple to explain and amenable to schema theory analysis. It 
also has a natural tendency to bloat, Le,, the average size of individuals tends 
to increase over time in a manner that is not directly dependent on their fitness. 

One limitation of this previous work has been the restriction to variable length 
linear structures, while a large proportion of the GP community uses (non-unary) 
tree structures to represent expressions and programs. In this study we extend 
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our earlier work to examine binary trees, and as a result need to generalize the 
one-then-zeros problem to the case of binary trees. 

We thus introduce the degree-N one-then-zeros problem. In this problem the 
trees will consist of N-ary internal nodes, all labeled either 0 or 1, and leaf nodes, 
all labeled 0. Regardless of the degree, the fitness function is the same. The 
fitness of a tree (or string in the unary case) is 1 if the root node is labeled 1, and 
all other nodes (internal and leaf) are labeled 0; the fitness is 0 otherwise. Thus 
the only fit trees are those that follow the pattern, and those trees are all equally 
fit. Given this, our earlier work used the degree-1 one-then-zeros problem, and 
the work presented here uses the degree-2 one-then-zeros problem. ̂  

Another important property of this problem is that it has no direct structural 
bias in the sense that (with two exceptions discussed below) the fitness function 
doesn't favor any particular sizes or shapes. Thus most of the data on sizes, 
depths, and tree shapes presented in this paper are being driven by the underlying 
dynamics of GP and standard subtree crossover, and not by particular properties 
of this problem. The two exceptions are (a) trees with a single (leaf) node are 
guaranteed to be unfit (since the only leaf label is 0), so there is a bias away 
from that particular tree shape and (b) this problem induces bloat, so there is a 
general pressure towards larger sizes and depths. If, as seems likely, the bloat 
is being driven in large part by the benefits of accurate replication (McPhee and 
Miller, 1995), then this can be obtained using any large tree, regardless of its 
shape and depth. 

Experimental Setup 
All the runs presented in this paper use the same parameters with the excep­

tion of the size or limit. 

Number of generations All runs were for 3,000 generations. 

Control strategy We use a non-elitist generational control strategy. 

Initialization The populations were initialized entirely with fit individuals con­
sisting of full trees of depth 2. 

Size and depth limits These were implemented such that an otherwise fit in­
dividual received a fitness of 0 if its size was strictly greater than the size 
limit, or if its depth was strictly greater than the depth limit. 

Selection mechanism We used fitness proportionate selection in these exper­
iments. Since all individuals have either fitness 0 or 1, this reduces to 
uniform selection from the set of individuals with fitness 1. 

^This could obviously be generalized further to account for trees with a mixture of node arities, but that 
would add complexity that would only complicate the current presentation. 
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Operators We used crossover exclusively in these experiments, so every in­
dividual was constructed by choosing two fit parents and performing 
subtree crossover as described above. There was no mutation or copying 
of individuals from one generation to the next. 

In each run the convergent average size of the population was calculated by 
taking the mean value of the population averages in the final 1000 generations of 
the run. This region was selected because in all cases studied here the population 
had always converged by generation 2000. 

We did a series of about 30 runs each for a variety of size and depth limits in 
order to better understand the larger trends. In particular, we looked at a series 
of depth limits ranging from 5 to 50. We chose a set of 10 values following a 
geometric (exponential) series, yielding the set of values {5, 6, 8, 10, 13, 17, 
23, 29, 38, 50}. We chose the geometric series in an effort to broadly sample 
this range while still focusing more on the smaller values where (as was seen 
in (McPhee et al., 2004)) small differences were likely to be more significant. 
We then used a similar set of size limits ranging from 50 to 5,000, yielding the 
values {50, 83, 139, 232, 387, 645, 1077, 1796, 2997, 5000}. To better see 
the impact of some even larger size limits, we also did runs with size limits 
of 10,000, 12,000, and 15,000. Due to space limitations, only a representative 
sample of these runs are discussed in this paper, but the trends we present here 
hold for the entire data set. 

3. Depth Limit Analysis 
Figure 15-1 presents data about population average size over time for runs 

using a number of different depth limits. Each point in this graph represents 
the average size of the individuals in the population at a specific generation 
for one run. This provides excellent visual evidence that depth limits have an 
impact upon population size that is extremely similar to that of the size limits 
examined in (McPhee et al., 2004). In each case, we see the average size of 
the population increase rapidly in the early generations due to bloat and then 
quickly reach a convergent average size. 

Similar to (McPhee et al., 2004), the strength of the limit being used seems 
to control how much variation there is once the convergent average size has 
been reached. In the case of the depth limit 8 data, for instance, this variance is 
very small- no more than about 3. The depth limit 50 data, however, varies by 
as much as two hundred. Clearly, the stronger depth limit of 8 provides much 
tighter bounds on the convergent average size than does the weaker limit of 50. 
This observation has led us to the more precise definition of size limit strength 
given in Section 2. 

A key feature of Figure 15-1 is that the population average sizes of runs 
using depth limits are very small relative to the maximum size allowable by the 
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2500 3000 

Figure 15-1. Population average size over time for a large number of runs using various depth 
limits. The "bands" of data correspond, from top to bottom, to runs using depth limits of 50, 29, 
17, and 8. 

depth limit. Depth limit 17, for instance, would allow for a maximum tree size 
of 2^̂  — 1, or 262,143. The convergent average size of the runs using depth 
17, however, is approximately 42. This is clearly very much smaller than the 
possible program sizes allowable by the limit, and it is not a priori obvious that 
this would be the case. As mentioned in Section 1, literature suggests that using 
a depth limit like 17 allows for the exploration of the space of very large trees. 
As we shall examine in Section 5, program sizes within a population appear to 
have a left skewed gamma distribution. This indicates that very little exploration 
of large sizes is in fact occurring. This is an important result, and suggests that 
existing assumptions about the behavior of depth limits are incorrect. 

Interestingly, the average depth of the population appears very correlated 
with the population's average size. In other words, there seems to be very little 
variation in average size for a given average depth. Figure 15-2 illustrates this 
phenomenon by presenting the average sizes that were contained in Figure 15-1 
and their corresponding average depths without accounting for time. Though 
there seems to be a general relationship between average size and average 
depth, it is also clear that each depth limit behaves slightly differently. There 
seems to be a "natural" relationship between average size and average depth 



230 GENETIC PROGRAMMING THEORY AND PRACTICE III 

35 

30 h 

25 

S. 20 

% 15 < 

10 

n 1 1 1 1 n 

Depth limit 50 

Depth limit 29 

— Depth limit 17 

^ — Depth limits 

50 100 150 200 250 300 350 400 450 500 

Average Size 

Figure 15-2. Population average size versus population average depth for runs using a variety 
of depth limits. The labeled clusters represent the space of convergent values for runs using 
different depth limits. 

that populations would follow in the absence of any size or depth limits. (See 
Figure 15-4 for an additional example, and Section 6 for additional discussion.) 
Indeed, it appears that for all of the depth limits we examined, runs follow this 
"natural" relationship until they reach convergence, where they cluster slightly 
below the "natural" curve. As the corresponding depths for thee average sizes 
are lower than those in the natural relationship, this suggests that depth limits 
cause trees to become slightly more bushy once the population has reached 
convergence. We examine this idea further in Section 5. 

An Exceptional Case 
We performed hundreds of runs to generate the data presented in this study. 

As we have shown, the behavior exhibited by runs using certain depth limits 
is remarkably consistent. In Section 4, we show this to be true for size limits 
as well. There was one run out of the hundreds, however, which displayed 
startlingly different behavior. 

This run, which used a depth limit of 23, had a convergent average size of 
about 50,000. Every other run using depth limit 23 had a convergent average 
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size of approximately 70. Further, there were individuals in the exceptional case 
which reached sizes of upwards of 3.7 million nodes. These observations made 
us conclude, initially, that some form of programming or software error was 
responsible for the deviant behavior of the run. Further investigation revealed 
the truth: the run, though definitely abnormal, was valid. 

Examination of the run's early generations suggested that, through a series 
of stochastic events, the population grew to consist of large, bushy trees, rather 
than the usual "stringy" trees which seem to be common in the other runs (see 
Section 5) and which are predicted by (Daida, 2003). This initial behavior likely 
produced a positive feedback loop which led to a continued increase in tree size. 
This resulted in the enormous average size observed after the population had 
reached convergence. 

This exceptional run, therefore, provides us with an example of the kind of 
behavior implied by the quote in Section 1. Though we are in no position to 
claim just how frequentiy this actually occurs, the fact that it happened only 
once in the hundreds of runs we performed suggests it is very rare. It also 
suggests disturbing implications about the reliability of depth limits. Though 
this errant run may be the exception (and our data certainly supports that idea), 
the fact that it is possible to unpredictably have program sizes balloon vastly 
beyond normal ranges makes the choice of using depth limits questionable. 
Size limits, for instance, would not have allowed the behavior described above, 
as they explicitly limit program size. 

There are at least two specific concerns about the possibility of this sort of 
aberrant run. The first is the obvious implications for computing resources. 
Using our hardware, for instance, a typical run using a depth limit of 23 took 
approximately five minutes to complete. The exceptional run took about 8 hours 
to complete. Though the times are, of course, specific to both our problem and 
hardware, it seems reasonable to assume a proportionate amount of resources 
would be required for a similar run using other problems and hardware. Second, 
and perhaps more important, is the problems of doing statistical analysis on a 
set of runs containing such outlier results. 

4. Size Limit Analysis 
Figure 15-3 presents data in much the same fashion as Figure 15-1, though 

for runs using a variety of size limits rather than depth limits. Like the runs 
using depth limits, discussed in Section 3, we see a distinct convergence in 
both size and depth after a very small number of generations, again mirroring 
the the findings of (McPhee et al., 2004). Figure 15-3 and 15-1 are in fact 
extremely similar. The scales of the two graphs differ, but this is simply due 
to the disparate strengths of the limits being shown. From a comparison of the 
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Figure 15-3. Population average size over time for a large number of runs using various size 
limits. The "bands" of data correspond, from top to bottom, to runs using size limits of 5000, 
1077, 387, and 139. 

two figures, it appears that size and depth limits have almost the same, if not 
identical, effects upon population average size. 

This is an important observation, as it is not conceptually obvious that size 
and depth limits would restrict population sizes in a similar way. Indeed, the 
fact that depth limits, which could conceivably allow an enormous range of 
sizes, behave in the same way as size limits, which explicitly limit tree size, is 
quite remarkable. 

Figure 15-4 shows the relationship between population average size and 
population average depth, as we did in in Figure 15-2 in Section 3. Unlike 
the depth limits analyzed in Section 3, the size limits used here do not display 
any marked deviance from the "natural'' relationship between average size and 
average depth discussed eariier. This is so much the case, in fact, that it becomes 
hard to discern which data corresponds to which size limit. 

By comparing Figures 15-2 and 15-4, several inferences can be made. The 
"natural" relationship between average size and average depth for this problem 
appears the same whether depth or size limits are used. Size limits seem to 
have no impact upon this relationship. Depth limits, however, evidently bias 
this relationship to some extent by lowering the depth slightly. Whether this bias 
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Figure 15-4. Population average size versus population average depth for a number of size 
limits. The labeled clusters represent the space of convergent values for runs using different 
depth limits. 

has a positive or negative impact upon a given run is almost certainly problem 
dependent, and there is no evidence to suggest what the extent of the bias might 
be for problems with fitness functions that alter tree shape. 

Sub-Quadratic Relationship Between Size and Depth Limits 
Given the close relationship between size and depth limits, an obvious ques­

tion is, for a given depth limit, what size limit is roughly equivalent in the 
sense that it yields a similar convergent average size? An initial analysis of 
our data suggests that, at least for this problem, the relationship can be roughly 
approximated by 5 ^ 0.410063 * D^'^'^, where S is the size limit and D is the 
depth limit. The details of the constants aren't important except to note that 
the exponent is slightly less than two. Thus the "equivalent" size limit grows 
roughly with the square (or less) of the depth limit instead of the exponential 
relationship one might expect. 

From a practitioner's standpoint, this reinforces the idea that one can use 
size limits to achieve a qualitatively similar results to those obtained with depth 
limits. It also suggests that "equivalent" size limits are polynomial (quadratic 
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Figure 15-5. Visualization of ail of the 10,000 individuals taken from the last 10 generations 
(generations 2991-3000) of a representative run using depth limit 17 (on the left) and size limit 
118 (on the right). The inner circle is at depth 17, and the outer circle is at depth 40. 

or slightly sub-quadratic in our case) in the depth limit and not exponential as 
one might expect. 

5, Impact of Limits on Tree Shapes 
In the previous section we found that there are depth and size limits that lead 

to similar convergent average sizes. We saw earlier, however, that depth limits 
tend to push the tree shapes off the "natural" shape and size limits don't (see, 
e.g.. Figs 15-2 and 15-4). This then raises the question of whether the shapes 
of the trees using "equivalent" size and depth limits are in fact different. To see 
this we used the visualization techniques of (Daida et al., 2005) to visualize the 
entire population of a single run for two pairs of limits (depth limit 17 and size 
limit 118, and depth limit 50 and size limit 600) that are roughly equivalent. By 
equivalent, we mean that in each pair the size and depth limits produced similar 
convergent average sizes. 

Fig 15-5 shows a visualization of every individual present in each of the last 
10 generations {i.e., generations 2991 to 3000)^ of a representative run using 
depth limit 17 (on the left) and size limit 118 (on the right). The inner circle 
is at depth 17, so the size limit case has more trees that exceed that depth, and 
they exceed it by considerably more. Thus while the average sizes and depths 
of these two runs are extremely close, their distributions seem to be somewhat 
different. 

^Note, then, that each graph is displaying an aggregate view of 10,000 individuals. 
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Figure 15-6. Visualization of the entire population of 1000 individuals in the final generation 
(generation 3000) of a representative run using depth limit 50 (on the left) and size limit 600 (on 
the right). The inner circle is at depth 50, and the outer circle is at depth 100. 

Figure 15-6 shows a visualization of all the individuals present in the last 
generation (i.e., generation 3000) of a representative run using depth limit 50 
(on the left) and size limit 600 (on the right). The inner circle is at depth 50, 
and again the size limit case has more trees that exceed that depth, and they 
exceed it by considerably more. 

One of the key features of the visualizations in (Daida et al., 2005; Daida, 
2003) was the lack of variety of tree shapes, with the majority of the trees 
sharing a significant amount of structure. In our visualizations, however, there 
is a much wider variety of sizes and shapes. In Figure 15-5, for example, there 
are at least a few trees containing branches in almost every part of the space up 
to depth 17, whereas the population visualizations in (Daida et al., 2005; Daida, 
2003) cover only a tiny fraction of the space. 

It seems likely that this is a result of structural differences between the degree-
2 one-then-zeros problem used here, and the regression problems used in (Daida 
et al., 2005; Daida, 2003). In the one-then-zeros problem, all that matters is 
the simple pattern of having a one at the root and zeros elsewhere (which is 
largely independent of tree size and shape) and avoiding size or depth limits 
as appropriate. This implies that the "meaning" of subtrees is largely indepen­
dent of context in the one-then-zeros problem, so a subtree can be moved, via 
crossover, to an entirely different location in the tree without (in many cases) 
changing the fitness. This is in strong contrast to most GP problems (like re­
gression), where context is crucial to the "meaning" of a subtree, and moving a 
subtree to a different location often has a large, and typically detrimental, effect 
on the fitness. This context dependence presumably plays a large role in the 
uniformity of shapes seen in (Daida et al., 2005; Daida, 2003), just as the lack 
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Figure 15-7. Distribution of sizes (left) and depths (right) for depth limits 17 and 50 and size 
limits 118 and 600. Note the different scales for proportions. 

of this sort of dependence presumably plays a large role in the dispersion of 
shapes in our examples. 

Figures 15-5 and 15-6 speak volumes about the distribution of tree shapes, 
but leave open the question of how the sizes and depths are distributed. Previous 
work on variable length linear structures (Poli and McPhee, 2003; McPhee et al., 
2004) has shown a strong tendency for the size distribution of populations to 
be similar to a gamma distribution, with a very large proportion of short strings 
balancing out a small number of much longer strings. An open question has 
been whether these results would generalize to N-ary trees, and the distributions 
in Figure 15-7 suggest that they do. 

The graphs in Figure 15-7 show the distribution of sizes depths for the same 
two pairs of depth and size limits used in Figures 15-5 and 15-6. In all cases 
the distributions are again very similar within each pair, lending weight to the 
idea that corresponding size and depth limits can have very similar impacts on 
population structure. Note, for example, the size distributions for depth limit 
50 and size limit 600, which are nearly indistinguishable over the bulk of their 
range. 

We also find in all cases that the distributions are similar to the gamma-like 
distributions found in earlier work on variable length linear structures. Thus we 
find here that the distributions of both sizes and depths are skewed significantly 
to the left, with a large number of small sizes/depths being balanced by a much 
smaller number of large sizes/depths. 

These graphs also point out the specific impacts of size and depth limits on 
particular distributions. In the size distribution graph we see a sharp dip in the 
size limit 118 distribution right around size 118. There is a similar, but smaller, 
dip in the size limit 600 distribution that is off the right hand side of the graph. 
There are also similar, but more pronounced, dips in the depth distributions for 
the runs using depth limits, which again suggests that depth limits are having a 
stronger (perhaps undesirable) impact on our population distributions. 
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It's worth noting that in each case where a hmit creates a dip in the corre­
sponding distribution, there is perforce an increase in some other part of the 
distribution to compensate. In the depth limit 17 depth distribution, for ex­
ample, this is seen quite clearly as a significant increase in the proportions of 
depths around 10, indicating that a size limit of 118 allows for a slightly broader 
exploration of a range of depths than does the otherwise similar depth limit of 
17. Similarly, in the size limit 600 size distribution the small dip (not visible 
in this graph) leads to a small rise in the proportions of very small trees when 
compared to the depth limit 50 distribution. These dips and compensations 
are consistent with predictions from the "theory of holes" (Poli and McPhee, 
2003; McPhee et al., 2004), where schema theory analysis shows that limits 
like these (in the case of variable length linear structures) lead to the sort of 
shifts in distributions seen in this work. 

6. Future Work 
This study directly addresses one of the major questions from (McPhee et al., 

2004), namely how well the distribution results from variable length linear 
structures generalize to N-ary trees. Two other questions from that earlier paper 
remain open, however. First, prior results on different mutation operators (Rowe 
and McPhee, 2001) and combinations of genetic operators (McPhee and Poli, 
2002) suggest that these can themselves act to limit size and depth, so studying 
their interaction with explicit limits might be fruitful. Second, preliminary data 
suggests that population size plays a significant role in determining the strength 
of limits and the convergent average sizes and depths. The specifics of this 
relationship are unclear at the moment and warrant further investigation. 

Additionally, this work on binary trees raises questions about the "natural" 
relationship between size and depth (see Figures 15-2 and 15-4). This seems 
likely to be related to both the the Flajolet line (Langdon and Poli, 2002, Chapter 
11) and Region I of (Daida and Hilss, 2003). Exploring the details of these 
relationships is beyond the scope of this paper, but such an exploration would 
likely be fruitful. 

The work presented here is all for a single "toy" problem, and a key question 
is obviously how well the results generalize to other problems. Since our 
results on the relationship between size and shape look quite similar to results 
obtained by other researchers with a broader range of problems (Langdon and 
Poli, 2002; Daida and Hilss, 2003, Chapter 11), we can hope that other results 
will generalize (at least qualitatively) as well. As seen in Section 5, however, 
there is at least one important structural difference between the degree-2 one-
then-zeros problem and the regression problems studied in (Daida et al., 2005). 
Thus some additional work is clearly necessary to better understand which 
results will generalize to other problems, and to what degree. 
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The exceptional case discussed in Section 3 appears to be reasonably rare (we 
only saw such a thing once in over 300 runs), but we currently lack sufficient 
data to estimate how often it is likely to occur. Given how profoundly different 
the performance and results of such a run are going to be, knowing more about 
their frequency would be helpful. 

We've seen {e,g., Section 5) that there are size and depths limits that lead 
to similar outcomes. It would be useful to know more about the nature of 
that relationship, with the ultimate goal being the development of a model 
with predictive power that would allow us to map from size limits to roughly 
equivalent depth limits and vice versa. 

?• Conclusion 
Throughout this chapter, we have examined the behavior of depth limits and 

size limits on binary tree genetic programs. The results of this investigation 
have yielded several major findings. 

In Section 3 we show that depth limits, contrary to GP folklore, do not 
typically allow for large ranges of tree size. Instead, we observe that they 
produce tree sizes that are nearly the same as those produced by size limits with 
maximum sizes that are orders of magnitude below the maximum size possible 
using the depth limit. In only one case out of the hundreds of runs generated 
for this study did we observe tree sizes that were anywhere near the maximum 
possible using depth limits. This leads us to conclude that although in the vast 
majority of cases depth limits seem to control code growth very similarly to 
size limits, their consistency is questionable. Furthermore, since the one case 
where this inconsistency manifested took vastly more computational resources 
than the normal cases and led to results that were wildly different from the other 
cases, the unreliability of depth limits is worrying. 

In both Sections 3 and 4 we show that there is a well defined relationship 
between population average size and population average depth which is visible 
using either size limits or depth limits. Size limits did not appear to affect this 
relationship in any meaningful way, though depth limits appeared to add a small 
yet significant bias towards smaller depths. Though it is unclear how strong 
this bias actually is, lack of understanding regarding it supports the idea that 
using depth limits holds a great deal of uncertainty. 

Visualization of our populations suggests that runs with size limits are able to 
explore more of the tree space than those with depth limits. We also showed that 
both types of limits induce gamma-like distributions of both sizes and depths, 
similar to those seen in earlier work with variable length linear structures (Poli 
and McPhee, 2003; McPhee et al, 2004). 

Another finding of this study has been that our observations of how size 
limits affect population average size were almost identical to those made in our 
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earlier work using variable length linear structures (McPhee et al., 2004). This 
has important implications about the generalizability of research using linear 
structures. Use of analytical tools such as schema theory on N-ary syntax trees 
is exceedingly difficult, which makes the use of linear structures to simplify 
analysis desirable. A question that has always arisen from such analysis is 
whether the results can be generalized to N-ary trees. We show in this study 
that, in at least the context we use here, many of them do. 

It's important to remember that all these results are in the context laid out 
in Section 2, including the use of the degree-2 one-then-zeros problem, so care 
must be taken to not over generalize. We do believe however, that many of these 
results will generalize, at least qualitatively, to a variety of other problems. 
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Abstract This chapter gives a systematic view, based on the experience from The Dow 
Chemical Company, of the key issues for applying symbolic regression with 
Genetic Programming (GP) in industrial problems. The competitive 
advantages of GP are defined and several industrial problems appropriate for 
GP are recommended and referenced with specific applicafions in the 
chemical industry. A systemafic method for selecting the key GP parameters, 
based on stafisfical design of experiments, is proposed. The most significant 
technical and non-technical issues for delivering a successful GP industrial 
application are discussed briefly. 

Keywords: Genetic programming, symbolic regression, industrial applications, design of 
experiments, real world problems, parameter selection 

1. Introduction 

Recently, Genetic Programming (GP) has demonstrated its growing 
potential to resolve various industrial problems in modeling, process 
monitoring and optimization, and new product development (Kotanchek et 
al, 2003). In parallel to the theoretical development in the area of GP, much 
effort has been spent in developing a robust methodology for practical 
implementation that is applicable for a broad range of solutions. 
Unfortunately, the industrial application efforts are not so well published as 
the theoretical development and are virtually unknown to the research 
community. The objective of this chapter is to present a systematic view of 
the key results from exploiting GP in a large global company, such as The 
Dow Chemical Company. 
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The chapter is organized in the following manner. Some guidance on 
finding practical problems which are appropriate to be resolved by GP is 
given in Section 2. A methodology for selecting robust key GP parameters, 
based on Design Of Experiments (DOE), is described in Section 3. The key 
technical and non-technical issues to be resolved for successful GP 
applications in industry are presented in Section 4. 

2. When is Genetic Programming an Appropriate 
Industrial Solution? 

One of the significant factors for success in the current industrial R&D 
environment is the speed of introducing an emergent technology into 
practice. Usually a new technology is introduced in two phases: (1) 
capability exploration and (2) proof-of-concept application. In the first 
phase, the features of the technology are assessed and matched with the 
existing specific needs of each industry. An important component is the 
estimate of the potential effort for adopting the new technology into the 
existing work processes in research and manufacturing. Critical for business 
acceptance, however, is the second phase, which includes a convincing 
demonstration of the benefits in a well-selected case study. Usually it is 
based on real data and very often illustrates a novel solution to a difficult 
industrial problem. 

The first question that needs to be addressed in any new technology 
introduction is a clear definition of its competitive advantages relative to 
other, similar approaches. 

Competitive Advantages of Genetic Programming 

Computational intelligence is a research area that includes many 
competitive approaches with different technical nature (fiazzy logic, 
evolutionary computation, neural networks, swarm intelligence, etc.) for 
solving complex practical problems. On the one hand, this opens new 
opportunities and broadens the scope of potential applications. On the other 
hand, however, it requires additional efforts from industrial practitioners to 
understand the technical features of very diverse technologies and to 
estimate their potential value. The comparative analysis is not trivial and has 
to take into account not only the relative technical advantages but also the 
total cost-of-ownership (potential internal research, software development 
and maintenance, training, implementation efforts, etc.). 
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From our experience, one generic area where GP has demonstrated a 
clear competitive advantage is the development of simple empirical models. 
The specific approach within GP is symbolic regression (Koza, 1992). We 
have shown in several cases that the models generated by symbolic 
regression are a low-cost alternative to both high fidelity models (Kordon et 
al, 2003a) and expensive hardware analyzers (Kordon et al, 2003b). The 
specific competitive advantages of symbolic regression generated by GP and 
related to the generic area of empirical modeling are defined as follows: 

• No Ö priori modeling assumptions - GP model development does 
not require assumption space limited by physical considerations (as 
is in case of first-principle modeling) or by statistical considerations, 
such as variable independence, multivariate normal distribution and 
independent errors with zero mean and constant variance. 

• Empirical models with improved robustness - Using Pareto front 
GP (Smits and Kotanchek, 2004) allows the simulated evolution and 
model selection to be directed toward solutions based on an optimal 
balance between accuracy and expression complexity. The derived 
symbolic regression models have improved robustness during 
process changes relative to both conventional GP and neural-
network-based models. 

• Easy integration into existing work processes - Since the derived 
final solutions, generated by GP are symbolic expressions there is no 
need for specialized software environment for their run-time 
implementation. This feature allows for a relatively easy integration 
of the GP technology into most of the existing model development 
and deployment work processes. 

• Minimal training of the final user - The symbolic regression 
nature of the final solutions generated by GP is universally 
acceptable by any user with mathematical background at the high 
school level. This is not the case either with the first-principle 
models (where specific physical knowledge is required) or with the 
black-box models (where some training on neural networks is a 
must). In addition, a very important factor in favor of GP is that 
process engineers prefer mathematical expressions and very often 
can find an appropriate physical interpretation. They usually don't 
hide their distaste toward black boxes. 

• Low total cost of development, deployment, and maintenance -
Contrary to the common opinion, the key disadvantage of GP - the 
computationally intensive and time-consuming model generation-
does not add significantly to the development cost because it does 
not occipy the model developer's time. What is required from the 
model developer is to set the parameters at the beginning of the 
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simulation and to assess the selected models at the end. With the 
Pareto front GP method, the derived models have minimal total cost. 
They are derived and automatically selected at the optimum 
performance— complexity Pareto front and as such, have better 
robustness (I.e., reduced need for model re-tuning during process 
changes and maintenance cost), are parsimonious (even with 
potential interpretation by the experts), and with minimal 
implementation requirements and cost. The alternative approaches 
require specialized software, expertise on the specific technology, 
training on the approach and the related software, and significant 
model validation and support expenses. 

The major disadvantages of GP relative to other techniques are (1) the 
absence of commercial software infrastructure, (2) the computational effort 
typically required for the model building, and (3) typically lower absolute 
model accuracy relative to techniques such as neural networks. 

Recommendations for Industrial Problems Appropriate for 
Genetic Programming 

With this impressive list of competitive advantages over first-
principle, statistical and neural network frameworks for modeling, GP has 
very broad application potential in industry. Since the mid-90s we've 
explored the capabilities of GP, developed our intemal software toolboxes 
on MATLAB and Mathematica, and gradually introduced the technology to 
the businesses. Critical for the sustainability of the support of this R&D 
effort was the continuous series of successfiil applications that demonstrated 
the value from our GP development agenda. 

Our experience in applying GP to real industrial problems in the 
chemical industry suggests these suitable targets:: 

• Fast development of nonlinear empirical models - Symbolic-
regression problems are very suitable for industrial applications, and 
are often optimal in terms of both development and maintenance 
costs. One area with tremendous potential is inferential or soft 
sensors, i.e. empirical models that infer difficult-to-measure process 
parameters, such as NOx emissions, melt index, interface level, etc., 
from easy-to-measure process variables such as temperatures, 
pressures, flows, etc. (Kordon et al, 2003b). The current solutions in 
the market, which are based on neural networks, require frequent re­
training and specialized run-time software. 

An example of an inferential sensor for propylene prediction 
based on an ensemble of four different models derived by Genetic 
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Programming is given in (Jordaan et al, 2004). The models were 
developed from an initial large manufacturing data set of 23 potential 
input variables and 6900 data points. The size of the data set was 
reduced by variable selection to 7 significant inputs and the models 
were generated by five independent GP runs. As a result of the 
model selection, a list of 12 models on the Pareto front was proposed 
for further evaluation to process engineers. All selected models have 
high performance (R^ of 0.97 - 0.98) and low complexity. After 
evaluating their extrapolation capabilities with "What-If' scenarios, 
the diversity of model inputs, and physical considerations, an 
ensemble of four models was selected for on-line implementation. 
Two of the models are shown below: 

GP Moden=A+B 
Tray64 _T "^Vapor 

2 

Rflx _ ßow 

GP Mockl2=C+D 
Feed^ -sJTrayAe _T - Tray56 _ T 

2 4 

Vcpor * Rflx _ flow 

where A, B, C, and D are fitting parameters, and all model inputs in 
the equations are continuous process measurements. 

These models are simple and interpretable by process engineers. 
The difference in model inputs increases the robustness of the 
estimation scheme in case of possible input sensor failure. The 
inferential sensor is in operation since May 2004. 
Emulation of complex first-principle models - Symbolic 
regression models can substitute parts of ftindamental models for 
on-line monitoring and optimization. The execution speed of most 
complex first-principle models is too slow for real-time operation. 
One effective solution is to replace a portion of the fundamental 
model with a simpler symbolic regression called an emulator, which 
is based only on a subset of variables. The data for the emulator are 
generated by design of experiments from the first-principle model. 
Usually the fundamental model is represented with several simple 
emulators, which are implemented on-line. One interesting benefit 
of emulators is that they can be used to validate fundamental models 
as well. The validation of a complex model in conditions where the 
process is chanting continuously requires tremendous efforts in data 
collection and numerous model parameter fittings. It is much easier 



246 GENETIC PROGRAMMING THEORY AND PRACTICE III 

to validate the simple emulators and to infer the state of the complex 
model on the basis of the high correlation between them. An 
example of such an application for optimal handling of by-products 
is given in (Kordon et al, 2003a). The mechanistic model is very 
complex, and includes over 1500 chemical reactions with more than 
200 species. Ten input variables and 12 output variables were 
suggested by domain experts. A data set based on a four levels 
design of experiments was generated and used for model 
development and validation. For 7 of the outputs a linear emulator 
gave acceptable performance. For the remaining 5 emulators, a 
nonlinear model was derived by GP. An example of a nonlinear 
emulator selected by the experts is given below: 

6X3+X4 + X5+2X6+X2X9 z j -
_ (X2 +X7X1 ) 

ln(V X9X10 ) 

where Y is the predicted output (used for process optimization), and 
the X variables are measured process parameters. The emulators 
have been used for by-product optimization between two chemical 
plants in The Dow Chemical Company since March 2003. 

• Accelerated first-principle model building - Beginning first-
principle modeling not from scratch but from symbolic regression 
models and building blocks (transforms) can significantly reduce the 
hypothesis search space for potential physical/chemical 
mechanisms. New product development effort can be considerably 
reduced by eliminating unimportant variables, enabling rapid testing 
of new physical mechanisms and reducing the number of 
experiments for model validation. The large potential of this type of 
application was demonstrated in a case study for structure-property 
relationships (Kordon et al, 2002). The GP-augmented solution was 
similar to the fundamental model and was delivered with 
significantly less human effort (10 hours vs. 3 months). 

• Linearized transforms for Design Of Experiments - GP-
generated transforms of the input variables can eliminate significant 
lack of fit in linear regression models without the need to add 
expensive experiments to the original design, which can be time-
consuming, costly, or maybe technically infeasible because of 
extreme experimental conditions. An example of such type of 
application for a chemical process is given in (Castillo et al, 2002). 

A selected set of GP applications from the above-mentioned industrial 
problems is given in Table 16-1. For each application the following 
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information is given: initial size of the data set (including all potential 
inputs and data points), reduced size of the data set (after variable selection 
and data condensation), model structure (number of inputs used in the 
selected final models and the number of models; some of them are used in an 
ensemble), and a corresponding reference which contains a detailed 
description of the application, including the GP parameters used. In all the 
cases the final solutions obtained with the help of GP were parsimonious 
models with a significantly reduced number of inputs. 

Table 16-1. Selected GP applications in Dow chemical 

Application 

Inferential 
sensors 
Interface level 
prediction 
Interface level 
prediction 

Emissions 
prediction 

Biomass 
prediction 
Propylene 

prediction 
Emulators 
Chemical 
reactor 

1 Accelerated 
modeling 
Structure-

property 
Structure-
property 

Linearized 
transforms 
Chemical 

1 reactor model 

Initial data 
size 

(25 inputs X 

6500 data pts) 
(28 inputs X 
2850 data pts) 

(8 inputs X 
251 data pts) 

(10 inputs X 
705 data pts) 
(23 inputs X 

6900 data pts) 

(10 inputs X 
320 data pts) 

(5 inputs X 32 

data pts) 
(9 inputs X 24 
data pts) 

(4 inputs X 19 
data pts) 

Reduced 
data size 

(2 inputs X 

2000 data pts) 
(5 inputs X 
2850 data pts) 

(4 inputs X 34 
data pts) 

(10 inputs X 
705 data pts) 
(7 inputs X 

6900 data pts) 

(10 inputs X 
320 data pts) 

(5 inputs X 32 

data pts) 
(9 inputs X 24 
data pts) 

(4 inputs X 19 
data pts) 

Model 
structure 

3 models 

2 inputs 
One model 
3 inputs 

Two models 
4 inputs 

9 models ens 
2-3 inputs 
4 models ens 

2-3 inputs 

5 models 
8 inputs 

One model 

4 inputs 
7 models 
3-5 inputs 

3 transforms 

Reference 

Kordon and 

Smits, 2001 
Kalos et al, 
2003 

Kordon er a/, 
2003b 

Jordaan et al 
, 2004 
Jordaan et al 

, 2004 

Kordon e/a/, 
2003a 

Kordon et al, 

2002 
Kordon and 
Lue, 2004 

Castillo et 
al, 2002 



248 GENETIC PROGRAMMING THEORY AND PRACTICE III 

3, How to Select the Genetic Programming Parameters 

Another important issue in industrial applications of GP is the GP 
algorithm parameter selection. As a first step, the parameters can be selected 
according to the rule-of-thumb recommendations of Koza (Koza, 1992). 
However, a more systematic statistical approach is recommended since the 
numerous parameters and settings used by GP introduce uncertainty about 
the way they affect the search algorithm and therefore the solution found. 
This has significant theoretical implications. Among them is the amount of 
information the parameters provide and the possible restrictions in the set of 
right solutions. It is therefore important to understand the effect of the 
parameters, the effect of the various combinations of them, and how robust 
they are to different data sets. This is of special importance given that the 
GP algorithm is used with a variety of data sets with different degrees of 
complexity. 

The optimum set of GP parameters can be determined through statistical 
experimental design techniques, such as design of experiments (DOE). This 
section explains how to use an appropriate DOE and the appropriate set of 
replications to understand the effect of GP parameters. 

Statistical Experimental Design: Design of Experiments 

Design of Experiments is a statistical approach that provides enhanced 
knowledge of a system by quantifying the effect of a set of inputs (factors) 
on an output (response). This is accomplished by systematically running 
experiments at different combinations of the factor settings (Box et al, 
1978). 

A classical DOE is the t design, in which all factors are investigated at 
an upper and lower level of a range, resulting in t experiments where k is 
the number of factors. This design has the advantage that the effects of the 
individual factors (main effects), as well as all possible interactions 
(combination of factors), can be estimated. However, the number of 
experimental runs increases rapidly as the number of factors increases. If the 
number of experiments is impractical, fractional factorial design can be used. 
Li this case, only a fraction of the fuU 2*" design is run by assuming that some 
interactions among factors are not significant. However, this assumption can 
sometimes confound the main effects and interactions, so they therefore 
cannot be estimated separately. 

Depending on the type of fractional factorial, main effects may be 
confounded with second-, third-, or fourth-order interactions. The level of 
confounding is dictated by the design resolution. The higher the design 
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resolution, the less confounding occurs among factors. For example, a 
resolution III design confounds main effects with second-order interactions; 
a resolution IV design confounds second-order interaction with other 
second-order interactions; and a resolution V design confounds second-order 
interactions with third-order interactions. Felt and Nordin (2000) 
investigated the effect of 17 GP parameters on three binary classification 
problems using highly fractionated designs assuming, in some cases, that 
even second- and third-order interaction are not significant, i,e., the 
combined effect of two factors and three factors has no effect on the 
response. However, these assumptions have not been verified. 

Given that the study of GP parameters involves computing experiments 
as opposed to pilot plant or laboratory experiments, it is desirable to run a 
full factorial when possible, so that any second and third order interaction 
which may have statistically significant effects on the response can be 
quantified. 

Pareto Front Genetic Programming DOE 

The GP experimental design we would like to describe differs from that 
of Felt and Nording in three aspects. First, it allows the estimation of 
interactions. Second, it uses the convergence to the Pareto front as the 
response variable. Third, the robustness of GP parameters to the different 
data sets is investigated with industrial data sets with different degrees of 
complexity based on dimension of input matrix and degree of input 
correlation. 

The need for a more systematic DOE approach is also driven by the 
significant benefits of the Pareto front-based GP, demonstrated in several 
industrial applications (Smits and Kotanchek, 2004). In this approach, the 
optimal models fall on the curve of the non-dominated solutions, called 
Pareto front, i.e., no other solution is better than the solutions on flie Pareto 
front in both complexity and performance. As discussed above in Section 
2.2, parsimonious models with high performance are the greatest importance 
in industry. These occupy the lower left comer of the Pareto front indicated 
in the diagram in Figure 16-2. In that context, the goal is to select GP 
parameters that consistently drive simulated evolution toward the lower left 
of this diagram. The Pareto front GP parameters (factors) and their ranges 
are presented in the following table: 
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Table 16-2. Factors for the Pareto Front GP Doe 

Factor 
xl - Number of cascades 
x2 - Number of generations 
x3 - Population size 
x4 - Probability of function selection 
x5 - Size of archive 

Low level (-1) 
10 
10 
100 
0.4 
100 

High Level (+1) 
50 
50 

500 
0.7 
500 

The response variable proposed is the convergence to the Pareto front 
(Smits and Kotanchek (2004) which includes the prediction error (1-R )̂ as 
the performance measure and the sum of the number of nodes of all sub-
equations as the value of complexity. The factor xl, number of cascades, is 
the number of independent runs with a freshly generated starting population. 
The ranges of the factors have been selected based on the experience from 
various types of practical problems, related to symbolic regression. Since the 
objective is a consistent Pareto front GP, they differ from the 
recommendations for the original GP. 

Once the factors and ranges are selected the necessary number of 
replications must be determined. This is of key importance because in the 
case cf GP parameters we do not know for sure if the variability of the 
response is the same for the different combination of factors. The following 
figure illustrates this situation for three factors. 

To estimate the number of required replications, an initial set of n 
replications can be run, from which the standard deviation of the response is 
calculated. In our case, the response is the convergence to the Pareto Front. 
Li this case a frxed level of complexity for the number of nodes is selected. 

For this level the corresponding number of models is observed and the 
standard deviation of the response between these models can be estimated. 
Figure 16-2 illustrates the concept. 

Once the standard deviation is calculated the number of replications can 
be found applying the half width (HW) confidence interval method 
(Montgomery, 1999)'. The half width can be use to represent the percent 
error in the point estimate of the mean response. The half width (HW) is 
defined as: 

100(l-a)% confidence interval is a range of values in which the true answer is believed to 
lie with 1- a probability. Usually a is set at 0.05 so that 95% confidence interval is 
calculated. Half width, sometimes called accuracy of the confidence interval, is the 
distance between the estimated mean and the upper or lower range of the confidence 
interval. 
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Where tn-i,a/2 is the upper all percentage point of the / distribution with n-1 
degrees of freedom, S is the standard deviation and n is the number of runs. 

Figure 16-1. Combination of factors in a 2 "̂  design showing different variances for the 
different factor combinations. 

A plot of the 100(l-a)% HW confidence interval reveals the number of 
replications above which little improvement in HW is obtained. This is 
illustrated in Fig. 3.3 with an example with 95% confidence interval in 
which 5'=0.08. The graph shows that beyond 10 replications there is little to 
be gained in terms of half width. 

The same procedure can be applied for the different combinations of 
factors, and the desirable half width can be fixed so that the experimental 
design can be completed with the required number of replications for the 
required accuracy. If we knew for certain that the variability of the response 
is about the same for the different combination of factors (experimental 
runs), we could find the confidence interval of the difference in mean 
response for any two combinations of factors, and find the number of 
replications required^ which in this case will be the same for all 
combinations of factors, (see, for example, Montgomery, 1999). 

spread of response for 
chosen level of 
complexity 

Pareto Front Models for 
different replications 

Complexity 100 

Figure 16-2. Spread of response for a chosen level of complexity. 

In this case the HW confidence interval is t a«-a,a/2 {2S In] ^ Where a is the number of 
combination of factors (experimental runs), S is the standard deviation and n is the number 
of replications 
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Robustness of Pareto Front GP Parameters to Different Data Sets. 

To address the issue of the robustness of GP parameters to the data set, the 
experimental design previously described needs to be executed for different 
industrial data sets with various degrees of complexity—for example, low, 
medium, and high. The complete set of experiments follows an orthogonal 
array design which is depicted in Figure 16-4 where yij is the response 
associated with the ith data set and thQjth combination of GP parameters. If 
there are n\ combinations of GP parameters and î  data sets, then we need 
«1*̂ 2 runs for the total experimental design and each run of the design will 
have the required number of replications as indicated by the desired half 
width. For simplicity. Figure 16-2 only shows one replication per 
experimental run. The n'l n2 experimental design is an orthogonal design 
composed of an inner array (GP parameter combinations) and an outer array 
(the data sets). This type of design allows quantifying the interactions 
(combined effect of two and three factors). It also reveals information on the 
combinations of GP parameters that result in a reasonable response even 
when different data sets are used (combinations of GP parameters that 
produce correct responses with minimum variation between data sets). Of 
particular importance in this case are the interactions between the GP 
parameters and the data sets since these interactions determine the sensitivity 
of the GP parameters to the type of data set. This is illustrated in the 
following diagram, Figure 16-5. 

0.15 

0.1 

0.05 

Half width of Confidence Interval 

• 

* • • ^ 

T i i i i i 

5 10 15 
Number of replications 

20 25 

Figure 16-3. 95% Half width confidence interval versus number of replications. 

In this case the diagram of the interaction shows a response that is not 
sensitive to the type of data set if the upper level (+) of parameter x\ is used. 
Determination of these types of interactions is fundamental to understand the 
robustness of Pareto front GP parameter combinations. 
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A proper statistical analysis of the orthogonal design can be valuable; it 
can provide information on how the response is affected by the Pareto front 
GP parameter, and how the choice of data can modify that effect. This can 
be used to determine the best set of parameters for different applications of 
GP symbolic regression in the chemical industry (and elsewhere). 

GP Parametei 

X2 X3 

Variables 

X4 X5 

Different Types of Data Sets 
Data1 

y11 
y12 
y13 
y14 
y15 
y16 
y17 
y18 
y19 
y110 
y111 
y112 
y113 
y114 
y115 
y116 
y117 
y118 
y119 
y120 
y121 
y122 
y123 
y124 
y125 
y126 
y127 
y128 
y129 
y130 
y131 
y132 

Data 2 

y21 
y22 
y23 
y24 
y25 
y26 
y27 
y28 
y29 
y210 
y211 
y212 
y213 
y214 
y215 
y216 
y217 
y218 
y219 
y220 
y221 
y222 
y223 
y224 
y225 
y226 
y227 
y228 
y229 
y230 
y231 
y232 

Data 3 

y31 
y32 
y33 
y34 
y35 
y36 
y37 
y38 
y39 
y310 
y311 
y312 
y313 
y314 
y315 
y316 
y317 
y318 
y319 
y320 
y321 
y322 
y323 
y324 
y325 
y326 
y327 
y328 
y329 
y330 
y331 
y332 

Figure 16-4. Orthogonal design with 32 runs in three data sets 

4. Issues with Genetic Programming Applications 

Applying a new technology, such as GP, in industry requires resolving 
not only many technical issues, but also systematically and patiently 
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handling problems of a non-technical nature. A short overview of the key 
technical and non-technical issues is given below. 
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Figure 16-5. Diagram of the interaction of the ith G? parameter with the data set type. 

Technical Shortcomings 

• Available computer infrastructure - Even with the help of 
Moore's Law, GP model development requires significant 
computational efforts. It is recommended to allocate a proper 
infrastructure, such as a computer cluster, to accelerate this 
process. The growing capability of grid computing to handle 
computationally intensive tasks is another option to improve the 
GP performance, especially in a big global corporation with 
thousand of computers. However, development of parallel GP 
algorithms in user-friendly software is needed. 

• Professional GP software- The current software options for GP 
implementation, either external or internally cfeveloped, are still 
used for algorithm development and research purposes. One 
of the obstacles to mass scale applications of GP is the lack of 
professional-seeming and user friendly software packages, from 
well-established vendors, that would also handle continuous 
product development and product support. Without such a 
product, the implementation effort is very high and it will be 
very difficult to convince people to use for GP industrial 
applications purposes. 

• Symbolic regression is still not accepted as a modeling 
standard - One of the difficulties in developing professional GP 
software is that symbolic regression via GP is still not 
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included in the recently developed Predictive Model Markup 
Language (PMML, 2004). Most of the other modeling 
methods— linear regression, neural networks, rule -based models, 
support vector machines, etc,, are techniques supported by this 
standard and included in the professional software of well-known 
empirical modeling vendors like the SAS Institute, SPSS, and 
StatSoft. The best-case scenario for more widespread industrial 
applications of symbolic regression with GP is to bundle the 
technology in the existing popular statistical and data mining 
tools, such as JMP, STATISTICA, Enterprise Miner, or some 
other package. If that were done, GP would be introduced to the 
modeling and statistical communities in a natural way and could 
be used in combination with the other well-known methods. 

• Special attention to data preparation - Another requirement of 
using symbolic regression in an integrated statistical software 
environment is the need for carefiil data preparation, including 
outlier removal, data pre-processing, scaling, normalization, etc., 
before beginning the simulated evolution. Existing GP software 
tools do not have built-in capabilities for data preparation. The 
hidden assumption is that the available data is of high quality, 
which for industrial data sets is often not the case. 

• Technical limitations of GP - In spite of the fast theoretical 
development since the early 90's, and increasing computational 
speed, GP still has several well-known limitations. Generating 
solutions in a high-dimensional search space takes significant 
time. Model selection is not trivial and is still more of an art than 
a science. Integrating heuristics and prior knowledge is not yet a 
straightforward process for practical applications. Generating 
complex dynamic systems by GP is still in its infancy. 

Non-technical Issues 

• Critical mass of developers - It is very important at this early 
phase of industrial applications of GP to coordinate development 
efforts. The probability for success based only on individual 
attempts is very low. The best-case scenario would be the 
creation of a virtual group that includes not only specialists 
directly involved in GP development and implementation, but 
also specialists with similar areas of expertise like machine 
learning, expert systems, and statistics. 

• GP marketing to business and research communities - Since 
GP is virtually unknown not only to business-related users but 
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also to other research communities as well, it is necessary to 
promote the approach by significant marketing efforts. Usually 
an approach to marketing research-grade includes a series of 
promotion meetings based on two different presentations. One of 
these presentations is directed toward the research communities 
focuses on the "technology kitchen," which gives enough 
technical details to describe GP, demonstrates the differences 
from other known methods, and clearly illustrates the 
competitive advantages of GP. The second presentation, for the 
business-related audience focuses on the "technology dishes," 
i.e., it demonstrates with specific industrial examples the types of 
applications that are appropriate for GP, describes the work 
process to develop, deploy, and support a GP application, and 
illustrates the potential financial benefits of applying GP. 

• Management support - Consistent management support for at 
least several years is critical for introducing any emerging 
technology, including GP. The best way to win this support is to 
define the expected research efforts and assess the potential 
benefits from specific application areas. Of decisive importance, 
however, is the demonstration of value creation by resolving 
practical problems as soon as possible. 

• Lack of initial credibility - As a new and virtually unknown 
approach, GP has almost no application history for convincing a 
potential user. Any GP application requires a risk-seeking culture 
and significant communication efforts. The successfiil 
application discussed in this chapter are a good start to gain 
credibility and increase the potential GP customer base. 

5, Summary 

Among the emerging technologies in the area of computational 
intelligence, GP has clear competitive advantages and potential for solving a 
broad range of industrial problems. Several application areas in the chemical 
industry—for example, inferential sensors, emulators of complex first-
principle models, accelerated development of fundamental models, and 
generation of linearized transforms for design-of-experiments-model-
building—already have demonstrated the power of GP and created value. 
However, a number of technical and non-technical issues, such as well-
defined data preparation, development of well-supported professional 
software packages, GP marketing to business and research communities, 
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consistent management support, etc., have to be resolved before we can 
expect mass-scale applications of GP in industry. 
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Chapter 17 

CHALLENGES IN OPEN-ENDED PROBLEM 
SOLVING WITH GENETIC PROGRAMMING 
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Abstract: This chapter describes how genetic programming might be integrated as a tool 
into the human context of discovery. To accomplish this, a comparison is 
made between GP and a well-regarded strategy in open-ended problem 
solving. The comparison indicates which tasks and skills are likely to be 
complemented by GP. Furthermore, the comparison also indicates directions 
in research that may need to be taken for GP to be further leveraged as a tool 
that assists discovery. 

Key words: genetic programming (GP), open-ended problem solving, McMaster Problem 
Solving 

Introduction 

On July 25, 2002, Raymond Orbach testified before members of the 
United States Congress about the Office of Science, a government agency 
that funds basic research in the physical sciences. As director of the agency 
that has initiated high profile investigations like the Human Genome Project, 
Orbach spoke about, among other things, how the Japanese scientists were 
able to gain leadership over the United States in gbbal climate change 
research. He stated that they were able to do so because they adapted the 
architecture of their computer to the problem rather than the reverse. In so 
doing, "they have realized effective performance on global climate change 
models an order of magnitude greater than we can achieve" (Orbach 2002). 
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Although Orbach was alluding to the use of hybrid vector processing', 
his comment would apply to those of us in the genetic programming (GP) 
community. There is something to be said about adapting machines to the 
needs of our problems. 

In this, GP is perhaps, uniquely situated. Although pitched as a 
technology that can compete against human experts, in actuality the 
technology has gained favor with practitioners for its ability to compbment 
and partner with experts. For example, unlike other heuristic methods that 
produce "black box" solutions, GP can and has produced expert-level 
solutions that come in the form of computer code that human experts can 
later examine. It is not unusual to hear stories that such examinations yielded 
insight, which have in turn lead to discovery and innovation. ̂  

Unfortunately, our understanding of how GP is used as a tool within the 
larger discovery process is largely anecdotal and is focused more on the 
technology than on the people and organizations who would use this 
technology. This chapter, then, takes a small step in trying to understand GP 
in the context of this human activity. However, instead of conducting a 
fieldwork study—which should eventually be done—our group has asked 
the following question: "How does GP compare with what is known about 
how people leam and do open-ended problem solving?" 

We contend that by comparing GP with one of the well-regarded 
strategies of open-ended problem solving, a person can 

• Identify where in the problem-solving process GP 
is most compatible 

• Indicate areas of investigation that could further 
leverage GP in discovery and innovation 

Consequently, this chapter is organized as follows: Section 2 describes 
GP as an invention machine and offers this chapter's motivation for 
comparing GP with the way humans do problem solving. Section 3 provides 
background to MPS, a well-regarded learner's strategy that describes what 
needs to occur in basic open-ended problem solving. Section 4 compares GP 
with MPS and indicates where is GP most compatible in this problem 
solving process. Section 5 describes areas of investigation that could further 
leverage GP in discovery and innovation. Section 6 concludes. 

Hybrid vector processing represents an architecture that is not common in US 
supercomputers, but was used specifically for building Japan's Earth Simulator. Climate 
models that run on the Simulator do rely heavily on mathematical operations that take 
advantage of vector processing. See (Triendl 2002). 
Anecdotal evidence of this has often come up during the U-M Center for the Study of 
Complex Systems Workshop on Genetic Programming Theory and Practice. For example, 
see (Caplan and Beker 2004; Castillo, Kordon, et al. 2004; MacLean and Wollesen, et al 
2004). 
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2. GP as an Invention Machine 

Koza states, "Genetic programming is an automated method for solving 
problems," which "can be used as an automated invention machine" (Koza, 
Jones et al 2004). Koza and his colleagues have actively promoted this view 
of GP in a number of prior works (Koza, Bennett III et al 1999; Koza, 
Keane et al 2000; Koza, Keane et al 2003). By 2003, there were at least 32 
instances of solutions by GP that met criteria that humans would otherwise 
need meet, if such solutions were to be deemed as innovative (e.g., peer-
review or patent law). As of the first quarter of 2005, one of these 32 was 
sufficiently innovative to receive a patent (Keane, Koza et al 2002). Koza 
and his colleagues reasonably contend that someday GP would routinely 
make discoveries and inventions (Koza, Keane et al 2003). 

However reasonable such claims are today, they would have been 
dismissed in the late 80s and early 90s. Back then, Koza had just introduced 
GP, which gamered attention in part because it was an automated method for 
producing computer code. Although there were antecedents in automatic 
code production, Koza's was the first to make a compelling, broad-based 
case. See (Koza 1992). At the time, it was considered novel that computers 
could program themselves at all. 

The change in perception between then and now is partly because of the 
maturation of the field of GP. It is also partly because GP is easily scaleable. 
In particular, Koza (Koza, Keane et al 2003; Koza, Jones et al 2004) has 
argued that one of the primary reasons for GP's current ability to produce 
human-competitive results is because GP can take advantage of the 
exponential gains in computational processing power. In other words, GP 
had to wait until computer technology could match what GP needed for 
producing such results. If the current number of human-competitive results 
is any indication, the wait is over. 

So we are now at a stage where GP can solve for difficult, real-world 
problems, which are generally characterized as open-ended and that require 
solutions that are inventive. A manager who does not know about how GP 
works, but would like to use it to solve real-world problems, can reasonably 
ask what kind of problems it can solve. 

The following is a short, informal list of sample problems that GP can or 
cannot solve given the current state-of-the-art: 

• Design a patentable analog circuit that meets a given 
set of specifications See (Keane, Koza et al 2002; 
Koza, Jones et al 2004) 

• Identify a statistical model that can be used for a 
given Design of Experiments application in an 
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industrial chemical process See (Castillo, Kordon et 
al, 2004) 

• Design a word processor that is comparable in function to 
Microsoft Word version 1.0. (Unlikely) 

• Answer the question: Why are the tops and bottoms of beer cans 
tapered? (Unlikely) 

In some senses, what GP can and has solved is reversed from the human 
experience. For example, GP performs at an expert level: the first two 
questions represent contemporary problems that have required expert 
answers. However, GP stumbles on expert level programming: the third 
question represents a programming problem for an application that is 
decades old. Furthermore, GP stumbles on problems that could be used in 
the hiring of an expert: the fourth question represents a classic interview 
question for many competitive companies in technology (Poundstone 2003).̂  

Insight as to why some questions are potentially harder or easier for GP 
to solve might be gleaned if we examine what goes into the way humans 
approach problem solving. The next section introduces research on problem 
solving from a field that has not previously received much attention from the 
GP community. 

3. What Is Open-Ended Problem Solving? 

The idea of comparing and contrasting what genetic and evolutionary 
computation do to what people do for open-ended problem solving is not 
new. In (Goldberg 2002), Goldberg articulates the beginning of a 
computational theory of innovation based on his work with competent 
genetic algorithms (GA). His work not only seeks to inform how to design 
competent GAs for innovation using theory to inform practice, but also to 
inform what competent GAs say about the design process for innovation. 

My research group's approach to this comparison, at least for GP, has 
taken a different route for two reasons: our long-term research interest in 
problems that are difficult for GP to solve and our experience in education in 
open-ended problem solving. Our long-term research interest has been 
described in previous works, including (Daida 2004; Daida 2005). As for 
education, Fve been developing and teaching an engineering course 
involving design and open-ended problem solving for several years. 

In science and technology education in general, there has been keen 
interest in teaching students how to do open-ended problem solving. In 
particular, engineering education in the United States has institutionalized 

^ Using genetic and evolutionary programming to solve brain teasers and other puzzles is 
considered in (Michalewicz and Fogel 2000). 
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this interest as part of the accreditation standards for engineering schools and 
colleges. There have also been a number of studies that not only recommend 
how to teach open-ended problem solving (as in curricula developed for 
project-based learning), but also those that analyze open-ended problem 
solving as a complex task that involves a variety of skills, states, and goals. 
It is out of engineering education research concerning analyses of problem 
solving by learners that we introduce MPS. 

MPS is an evidence-based strategy for problem solving that has been 
articulated for the engineering education community by Donald Woods at 
McMaster University e.g., see (Woods, Hrymak et al. 1997; Woods 2000). 
In some ways, it is a consequence of directed observation, cognitive 
psychology, and a study of over 150 basic strategies to solve problems in a 
number of fields, including business, science, mathematics, engineering, art, 
and psychology. See the references in (Woods 2000). In other ways, it also 
represents an explicit strategy that has been tested and validated through 
extensive observational and field research. The McMaster Problem Solving 
Program is highly regarded in engineering education research to the degree 
that many colleges have incorporated it into either their first-year curricula 
or assessment programs. 

MPS consists of six stages that subdivide 37 general problem-solving 
skills (both cognitive and attitudinal). Woods depicts MPS as a circular set 
of "rooms" with a center "hallway," as shown in Figure 17-1. The process of 
problem solving that Wood is trying to convey is that a learner starts with 
"Engage," then enters the "hallway" to go to any of the five other stages. 
The learner can visit the stages in any order: what matters is that eventually 
all stages are visited. An 
implication of this work is that 
missing any of the stages results 
in an approach to problem 
solving that is prone to failure. 
Another implication is that if any 
of the cognitive or attitudinal 
skills are missing or 
underdeveloped in any one of the 
stages, that open-ended problem 
solving may also be prone to 
failure. At least from an 
educational standpoint, the idea is 
to develop each of the attitudinal 
and cognitive skills needed for 
each stage to become a doable 
proposition with associated 

Figure 17-1. MPS 6-stage strategy. Redrawn 
and used with permission from Woods (Woods 
1994). 
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exercises and concrete outcomes. MPS can apply to a broad cross-section of 
learners—from elementary school students to professionals. 

If GP is to be used in the discovery process, it also inplies GP would 
apply to somewhere in MPS. In the next section, we subsequently examine 
how each of these stages and associated skills compares to GP. 

4. Comparing GP with MPS 

Tables 17-1 and 17-2 compare MPS with GP. Each table lists the six 
stages of MPS and is based on (Woods 2000). Depending on which table is 
discussed, each stage is expanded (or collapsed) to show (or to hide) the 
cognitive/meta-cognitive skills and the attitudinal skills that are needed for 
that stage. The comparisons are informal and speculative: there is no attempt 
to rigorously measure the degree to which a match or mismatch occurs. Even 
at this level, however, the comparison does illuminate some of the reasons 
why some problems can be solved by GP while others can't, why people 
have used GP as a tool to assist in discovery, and where potential research 
areas are for GP investigators to leverage. 

In particular. Table 17-1 indicates the MPS stages where GP does not 
seem to complement. Those stages are expanded to show the skills that are 
needed for them. The collapsed, highlighted stages correspond to those that 
do seem to complement GP. 

For some stages, it is obvious that GP is not a close match for that stage. 
For example, the Engage stage is something that pertains to people and that 
reading and listening are cognitive skills to which GP does not have any 
inherent capability. While it could be argued that one day, perhaps, there 
would be machines that listen or read with understanding andhQ crafted with 
GP, it remains a stretch. 

For other stages, it is less obvious that GP is not a close match. For 
example, the Do It (or Implementing) stage calls for a solution to be put into 
action. If one were talking about software, it would refer to the writing of 
code that would serve as the "software" solution. Again, it is arguable that 
GP does this already. However, I argue from a professional programmer's 
standpoint— t̂hat what GP generally produces isn't code that would pass a 
Turing test in a community of professional programmers. 

For the most part, GP solutions in the real world do seem to require 
additional vetting and handling before they are adopted into practice e.g., 
(Caplan and Beker 2004; Castillo, Kordon et al 2004; MacLean, Wollesen 
et al. 2004). The challenges of implementing a GP solution do increase if the 
form of a solution differs greatly from the representational 
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Table 17-1. Comparison of MPS with GP where stages do not correspond well. Expanded 
stages from (Woods 2000) elaborate what is included in those stages that do not compare well 
with GP. (The grayed stages, those which GP does compare favorably, are collapsed and are 
elaborated upon in Table 2). 

Task 

Engage: I Want To & I Can 
• Read the problem 
• Listen to someone describing a task to be done 
• Observe a situation and identify the opportunity 
• Manage distress 
• Be motivated 
• Continue to work on the problem 

Define the Stated Problem 
• Classify given information into: goal constraints, 

inferred constraints, criteria, inferred criteria, 
description of system 

Cognitive 
• Read 
• Listen 

• Identify main 
items 

• Use definitions to 
identify parts 

• Analyze / classify 

Attitudinal 
• Courage and drive to 

attack the problem 
• Distress management 

skills 
• Motivated, patient, 

active 
• Willing to cope with 

ambiguity and to risk 
• Monitor 

• Patient, attentive. 
systematic, tolerant. 
active, underline key 
ideas 

• Monitor 

Explore: Create Internal Idea of Problem 

Plan a Solution 

Do It: Carry Out the Plan • Analyze 
• Manage resources 
• Judge critically 

• Concern for accuracy 
• Active, systematic, 

careful, attentive to 
detail 

• Monitor 

Evaluate, Check, & Look Back Reflect 
Elaborate 
Analyze 
Communicate 
Judge critically 
Select "cues" 
Generalize, 
evaluate, create 

• Stress management 
• Motivated, persistent 
• Monitor 

forms used during problem solving. For example, the problem-solving forms 
for Koza's analog circuits consist of mathematical and computational 
representations that can be manipulated and tested on a computer. Although 
however complete the representation, the working form of a solution 
ultimately resides in a physical instance of the actual circuit. Consequently, 
the stage 
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Table 17-2. Comparison of MPS with GP where stages do correspond well. Gray stages are 
those in which GP does compare favorably. They are expanded and detailed [from (Woods 
2000)] to show where in these stages might GP compare well. The other, remaining stages are 
collapsed. 

Task Cognitive Attitudinal 

Engage: I Want To & I Can 

Define the Stated Problem 

Explore: Create Internal Idea of Problem • Apply heuristics 
• See the situation from a wide variety of viewpoints • Simplify, make 
• Ask "What if? '* often and do simple estimations to assumptions 

predict the results • Generalize 
• Translate the situation to a preferred style • Identify "cues" 
• Esümate values for answer • Apply criteria 
• From experience knowledge estimate values for the • Translate 

different parameters that affect the answer , Exploit personal 
• Make simplifying assumptions and solve the simple preference 

problem to begin to get a sense of what the problem ^ Access 
is about and what are the dominant factors or issues knowledee 

• Repeat making a variety of simplifying assumptions , Access past 
• Divide the problem into workable subproblems problems that 
• Identify the key content-knowledge (e.g., *This is were solved 

about forces"; 'That's Physics'*; '*The major laws successfully 
that might relate are...") • Analyze 

• Use pattern recognition skill to identify whether this • Create 
is an exercise or a problem , Reason 

• Try to clarify your internal image by writing out . Judge critically 
what you see as bemg the problem 

• Write down a "good" goal statement 
• Check the reliability of data 

• Able to learn 
from mistakes 

• Monitor 
• Flexible 
• Willing to take 

risk, to make 
assumptions 
and to postpone 
judgment 

• Persistent 

• Distress 
management 
when stuck 

• Focus on each 
sub-problem 
separately 

• Organized 
• Stress 

management 

Plan a Solution 

Do It: Carry Out the Plan 

Evaluate, Check, & Look Back 

• Analyze, manage 
resources, decide, 
identify sequences 
and consequences 

• Apply heuristics 
• Judge critically 

Systematic, 
organized 
persistent, 
tenacious, careful 
Monitor 

Implementing would include the actual building of that circuit."^ It is rare 
that GP actually controls and builds physical artifacts that result from its 

Another example would include (Lohn, Hornby, et al 2004). At the workshop talk 
associated with this chapter, Lohn described the special challenges that arose when having 
to fashion the antennas from wire stock. 
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code solution; typically some other technologies or humans would do it, 
instead. 

Table 17-2 indicates the MPS stages where GP does seem to 
complement. As in the previous table, the highlighted stages correspond to 
those that do seem to complement GP. However, unlike the previous table, 
the highlighted stages are expanded to show the skills that are needed for 
them. 

Most of what GP does well matches with the stage entitled Explore: 
Create Internal Idea of a Problem, Unlike some of the other stages, which 
are described by self-explanatory descriptors. Explore does bear some 
explanation, since as Woods describes, "[It] is probably the most underrated, 
most challenging and least understood stage of all the stages" (Woods 2000 
p. 449). 

Open-ended problem solving presumes that the method and information 
that is ultimately used by the method are not known ahead of time. At some 
point during problem-solving then, there would need to be time set aside to 
explore. Metaphorically speaking. Explore is the stage where one tries to 
glean a path in the uncharted landscape of a problem: the process is not 
straightforward, the way is not clear, and time is spent trying to put together 
a variety of guesses that might hopefully illuminate where to go next. 
According to (Woods 2000), this stage requires one to "explore the situation 
from many conflicting points-of-view," to "connect the goal and the given 
data," and to "guesstimate an answer." 

It is not surprising then, that, practitioners have used GP in the discovery 
process and that GP's use would likely fall in Explore, True, the current 
level of programming skill that GP offers in its solutions isn't yet laudable. 
However, what GP brings to the table does complement the skills that 
humans need during Explore, Humans need to learn from mistakes, to take 
risks, to persist in spite of failures, and to do distress management when 
stuck. These attitudinal skills during Explore are crucial, since attitudes help 
to shape our assumptions of what a solution should be. If there were a way to 
vet out unnecessary assumptions, it would be welcome. Unnecessary 
assumptions have a way of handicapping our ability to solve problems. 

At least in GP, there is a way to assemble and to sift through potential 
guesses in a systematic manner, without burdening assumptions brought 
upon by one's attitudes. Since insight is a way of seeing beyond assumption, 
GP can and has helped in providing insight as to how a problem can be 
solved, if only because the technology provides a way to circumvent 
potential assumptions brought about by attitudes, which are themselves 
shaped by particular points-of-view. And of those attitudes, some of the 
most pervasive are those concerning failure—either real or imagined. In that 
area, GP shines. In the process of deriving a solution (or, in Woods's terms. 
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a guesstimate since a final solution is often not GP code), GP assembles and 
sifts through a multitude of failures as an inherent part of identifying 
success. Its search in combinatorial space is littered with dead ends. There 
are so many negative outcomes during a GP search that were a human to 
replicate what GP does, that human would likely be regarded as equally 
heroic and stupid. Of course, what matters is insight and if GP provides that, 
better it than a human. 

Given this comparison of GP with MPS in Tables 17-1 and 17-2, 
one should note that GP is not a technology that leverages equally well in all 
stages of open-ended problem solving. There are some stages that it applies 
to better than others and so it is limited in what it can and cannot provide to 
the discovery process. Consequently, the next section explores what these 
limitations mean for the GP community. 

5, Implications for GP 

A useful and perhaps obvious observation about MPS is that the process 
of open-ended problem solving consists of a variety of different skills that 
need to be applied to perform distinct tasks within a particular stage. That 
observation has consequences for GP because the observation suggests that 
the technology needs other types of fiinctionality for it to be leveraged in the 
discovery process. In other words, the bottleneck in the adoption of GP in 
the discovery process in general may not necessarily lie in advancing the 
technology itself Rather, the bottleneck may lie not in having the 
appropriate tools that are ancillary to GP, per se, but that are integral to using 
GP in the context of discovery. Specifically, there is a lack of tools that 
support GP and that match well to the other stages in MPS. 

An Illustration 

Koza has argued that the exponential increase in computational 
horsepower should be harnessed so that GP can start solving difficult, real-
world problems. An obvious place to do this is to have GP work with large 
populations of hundreds of thousands to millions of individuals, instead of 
the populations of several hundred to a few thousand individuals that 
researchers study. Reasonable investigations, then, would include research in 
distributed architectures amenable to GP, research in operators that could 
leverage such distributed architectures for GP, and research in GP 
phenomena that occur at those scales. 

Having a better GP that is capable of assembling millions of guesses can 
lead to a kind of dysftinction, however, if one considers the entirety of open-
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ended problem solving. If GP were a human doing open-ended problem 
solving with the kinds of capabilities that it currently has, it would be one 
that suffers from racing. Racing refers to a mental condition where a stream, 
arguably a torrent, of free-associative thought happens unchecked. 
Unfortunately, the ability to turn those thoughts into a reality, however 
brilliant, is crippled because of an inability to plan, implement, and evaluate 
consequences at the rate at which those thoughts occur. In other words, 
ability to crunch through millions of guesses is not really helpful unless there 
is a way to sustain its throughput throughout the entire process of open-
ended problem solving. 

There are at least two key stages in MPS that currently receive scant 
attention in the GP community, if only because it would seem that these 
research developments should happen somewhere else in some other field: 
Le,, Evaluating and Implementing, My list is by no means exhaustive and in 
this chapter only illustrates how MPS can serve as a way to enhance the use 
of GP in the context of open-ended problem solving. As others have pointed 
out in this year's workshop, there are many other ways of applying MPS to 
GP. In any case, the following sections offer examples of extending GP in 
Evaluating and Implementing. 

Evaluating (Understanding) 

Perhaps the greatest bottleneck to using GP in the context of human 
discovery lies in our ability to understand its results and to subsequently 
isolate valuable insights, innovations, and discoveries. Certainly, GP outputs 
code that is eminently more readable and more transparent than black-box 
heuristics like neural nets. That being said, anyone who has tried to analyze 
GP code would conclude that the production of readable code isn't one of 
GP's strong points. Not many people can "read" GP-produced code fluently, 
and have expertise in the domain of a problem, to be able to evaluate 
whether such code contains anything worthwhile. Even for those who can 
"read" GP-code, the process tends to be slow and manpower intensive. 

Root-Bernstein wrote the following when he was discussing tools used 
by scientists in the discovery process: 

Tools of thought, in and of themselves, are useless to a scientist until linked by 
'transformational thinking'—that is, the ability to translate a problem expressed 
in one form (such as numbers) into another form more amenable to problem 
solving (words, perhaps, or mental images); to mentally manipulate these words, 
images, or models to solve the problem; and then to translate this solution into 
yet another form (such as an equation or diagram or experimental protocol) that 
can be communicated to other scientists. (Root-Bernstein 1989), p. 313. 
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It might be that the tools—like GP—have progressed to the point where 
another intermediate form may be needed, one that focuses on a rapid 
evaluation of results in the broader context of determining what is creative to 
an expert or to a field. Such a form might correspond to something that 
currently exists as forms that are used to communicate results to other 
people. It might be, though, that such forms could also be chosen to suit the 
needs of a semi-automated means for doing such an evaluation. 

Again going back to Koza's analog circuits, Koza and his colleagues 
have sidestepped the issue of being able to read GP-produced code by 
focusing on the artifacts produced as an outcome of executing GP code— 
i.e., circuit schematics—as opposed to just the code itself The selection of 
this form happens to be one that is understandable to analog circuit experts, 
but also one that is amenable to rapid, automated analysis. While current 
automated analysis methods fall short of being able to determine whether an 
analog circuit is creative to an expert or to a field, they do allow for a rapid 
evaluation of GP-produced results without the need for understanding 
computer code. 

Even though the notion of extending circuit diagrams to solve other 
problems is not an option for many other fields, the notion of identifying 
artifacts that could be used for rapid evaluation might be. For example, in 
our own work, those artifacts have turned out to be forms for visualizing 
quantitative results e.g., (Daida, Hilss et al. 2005). Our ability to see and to 
evaluate statistical phenomena with these new visualization methods have 
afforded studies that were not previously possible by either archetypes or 
two-variable statistics that have been common in our field e.g., (Daida 
2005). Although researchers have long understood that genetic and 
evolutionary computation could benefit fi-om visualization, not many papers 
have been published in this area, particularly for GP. 

Implementing 

Analogous to the MPS stage Do It, implementing a GP solution is more 
than simply turning code into a physical or logical artifact that people would 
then use. Perhaps the next biggest drawback to using GP in the context of 
human discovery lies in implementing GP-produced findings into the 
workflow of the people who would stand to benefit from these findings. 
Protocols for incorporating GP-produced findings for one's workflow are 
either nonexistent, nontrivial, or both. 

That there needs to be any special handling for GP-findings requires 
some explanation. There is the matter of perception because many humans 
rightfully distrust solutions that are either not understandable or not 
conventional. There is also the matter of hidden consequences, because GP 
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can take shortcuts that may 
not be obvious to humans. 
Of these, the latter may, in 
the long run, be more 
worrying since hidden 
consequences sometimes 
have a way of turning 
catastrophic. 

The identification of 
protocols, such as those 
indicated in (Caplan and 
Beker 2004; Castillo, 
Kordon et al 2004; 
MacLean, Wollesen et al 
2004) represent a promising 
start. Although there are not 
yet enough examples from 
which to draw general 
conclusions about the kinds 
of protocols that work best, 
such work already alludes to 
the kinds of organizational 
structures and methodolo­
gies that may need to 
happen to accommodate GP 
into the discovery process. 
For example. Figure 17-2 
depicts the protocol from 
(Castillo, Kordon et al 
2004), which describes a 
means of using GP to 
identify transforms that 
eliminate lack-of-fit in a 
Box-Behnkin design. In 
Castillo et Ö/.'S case, the 
technology of GP provides 

only a portion—albeit a pivotal portion—of the total overall solution that is 
needed to implement GP into this industrial setting. In particular, nearly all 
of the technology that directly involves GP is confined to the work 
represented by the first, topmost box of Figure 17-2. The rest of the Castillo 
et a/.'s methodology is what was needed to make the GP-derived solutions 
to be useful. Of course, implicit in the rest of their methodology are the 

9. Compare original model, TLM, 
GP model 

Figure 17-2. Example of methodology that implements 
GP-derived solution [from (Castillo, Kordon et al. 
2004)]. Only the first, topmost box, is where most 
published research stops. Used with permission. 
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personnel, organization, and technologies that are needed for 
implementation, which are not directly associated with GP. If Castillo et 
al.'s protocol is any indication, there is a fair amount of work to be done in 
Implementing. 

6. Conclusions 

This chapter began with Raymond Orbach, who commented on an 
approach to some of the most highly profiled research involving the largest 
of supercomputers. Effectiveness came from adapting the architecture of the 
computer to the needs of a problem, rather than the other way around. 

As a technology, GP has the potential not only to help machines adapt to 
the needs of our problems, but also to help machines adapt to the ways we 
solve them. To highlight how this might be so, I compared GP with a well-
regarded strategy that articulates the various tasks and skills associated with 
open-ended problem solving. The comparison served to point out where in 
the open-ended problem solving process GP is most compatible. Not 
surprisingly, this match corresponds to the stage in open-ended problem 
solving where one needs to explore how a path to a possible solution might 
come about in the uncharted "landscape" of a problem. Already, experts in 
various problem domains have used this technology as a tool to do so. 

The comparison also indicated areas of investigation that could further 
leverage GP into the process of traditional modes of human discovery and 
innovation. Although it may be self-evident to some that GP is not a one-
stop tool, the comparison made clear that there are a variety of tasks that 
need to be done in open-ended problem solving that are probably best met 
with other technologies. The challenge lies not in turning GP into a super-
tool, but in developing an infrastructure that can support the volume of data 
and information that GP can produce throughout the rest of the problem-
solving process. 

To show how this might be done, I highlighted two MPS stages— 
Evaluating and Implementing—that point to the kinds of infrastructural 
development needed to support GP. For example, there are bottlenecks in 
Evaluating GP-derived solutions in trying to determine whether they are, in 
fact, discoveries or innovations. There are also many unknown consequences 
and issues in Implementing GP-derived solutions in an industrial workflow. 
Either of these issues currently receives scant emphasis within the GP 
research community, if only because these have been considered ancillary to 
the study of the technology. 

In conclusion, if we were to address the broader challenges of using GP 
as a tool for discovery and innovation, these "ancillary" areas really should 
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not be left to the province of a discovery's research community (e.g., like the 
analog-circuit design community). Given the overall context of problem 
solving, the "ancillary" is actually essential to GP. After all, adapting GP to 
meet the needs of the problem instead of the other way around gets to the 
heart of Orbach's observation. GP needs these other technologies. 
Consequently, if GP is to be such a tool that helps us to chart a path into the 
unknown, it is in our field's best interests to make it so—it is not someone 
else's "problem." 
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Abstract Genetic programming has proved its potential for automated synthesis of a variety 
of engineering systems such as electrical, control, and mechanical systems. Given 
any of these application domains, a set of generic GP functions can be developed 
for its synthesis. In this chapter, however, we illustrate that while a generic GP 
system can often be used to prove a concept, realistic or industrial automated 
synthesis often requires domain-specific GP configuration, especially of the GP 
function sets. As a case study, it is shown how the open-ended topology search 
capability of GP readily exploits "loopholes" in a generic bond-graph-based GP 
function set and evolves high-performance but unrealistic mechanical vibration 
absorbers, even though the bond graphs would be readily implementable in, for 
example, the electrical domain. The preliminary attempt to constrain evolved 
topologies to only those that would be readily implementable in the mechanical 
domain was not sufficiently restrictive. 

Keywords: automated synthesis, genetic programming, passive vibration absorber, bond 
graphs, mechatronic systems, domain knowledge 

1. Introduction 
Since 1997, it has been demonstrated that genetic programming can generate 

human-competitive designs in a variety of domains, including analog circuits 
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(Koza et al., 2003), antennas, and mechanical linkage mechanisms (Lipson, 
2004). Each of these domains is defined by a set of realizable building blocks 
to be assembled into a system. However, the building blocks of the modeling 
tools, such as analog circuits or bond graphs, are composed of primitive com­
ponents, some of which do not have directly corresponding physical entities. 
One question is how it is possible to evolve physically realizable systems using 
primitive building blocks and how domain knowledge should be incorporated 
into the GP system to evolve practical solutions. This chapter describes a pre­
liminary foray into this question, and illustrates that the question is non-trivial, 
even for the domain of passive linear mechanical dynamic systems. 

We are interested in evolving human-competitive results in a classical me­
chanical engineering domain, the design of vibration absorbers, which are 
widely used, for example, in machine tools. The widespread and critical ap­
plication of vibration absorbers in structural control (Soong, 1990; JR et al., 
1997), space structures (Bruner, 1992), vehicle suspension (Hirataetal., 1995), 
and helicopter vibration make it an important domain in which to develop au­
tomated approaches to facilitate creation of innovative solutions. Although the 
first vibration absorber technology was invented a century ago (Frahm, 1911), 
research in this field is still far from complete, and innovations continue to arise 
frequently (Filipovic and Schroder, 1998). 

In this chapter, we report lessons and failures to date involved in an effort 
to evolve human-competitive vibration absorbers using the primitive building 
blocks of bond graphs - a generic modeling tool for dynamic systems (Kamopp 
et al., 2000). In our previous work, a generic synthesis framework based on 
genetic programming and bond graphs (GPBG) was used to successfully evolve 
a variety of mechatronic systems (Fan et al., 2001; Seo et al., 2002). Here, we 
want to demonstrate that the GPBG system has the potential to duplicate signifi­
cant innovations in passive vibration absorber design in terms of fitness function 
values. Unfortunately, most of the solutions evolved to date are not practical for 
physical realization. We show that to prepare the GP/bond graph paradigm for 
wide industrial adoption, it is necessary to re-configure the generic GP system 
to accommodate domain-specific physical implementation constraints. 

The remainder of this paper is organized as follows: Section 2 reviews some 
representative vibration absorber designs as well as previous work on automated 
synthesis of electrical circuits, mechatronic systems, and mechanisms. Section 
3 defines the vibration absorber design problem and presents our GPBG frame­
work for their automated synthesis. The experiments and an analysis of results 
are then introduced in Section 4. Finally, Section 5 concludes this chapter with 
a discussion of planned future work. 



Domain Specificity of Genetic Programming Based Automated Synthesis 277 

2. Related Work 
The idea of exploiting domain knowledge in configuring GP systems is well 

known. In the very beginning, one has to consider the types of system compo­
nents and possible meaningful topological operations to design the GP function 
set. However, most of the previous work of using GP for hard problems belongs 
to domains where physical implementation is not a serious problem. Examples 
include the analog circuit synthesis (Koza et al., 1999), control systems (Koza 
et al , 2000), or computer programs. All of these systems allow very flexible 
implementation. The physical constraints on the topologies of the designs are 
not a big issue. Despite this, Koza (Koza et al., 2004a) suggested that exploiting 
domain, or problem-specific knowledge, may be helpful to improve efficiency. 
McConaghy and Gielen (McConaghy and Gielen, 2005) discussed the issue of 
how to evolve industrially useful analog circuits, including use of specialized 
GP for real-world problems, which is a similar thrust to ours. In our previous 
work, we tried to evolve MEMS systems which can only be implemented using 
a certain types of physical building blocks, which puts constraints on the GP 
function set design (Fan et al , 2003). However, in that work, the realization 
constraints were so strong that the set of available components and connection 
topologies was strongly restricted, so the GP results were realizable. 

The invention history of vibration absorbers has spanned almost a century. 
The first patented vibration absorber was invented by H. Frahm (Prahm, 1911). 
As shown in Figure 18-1, his passive vibration absorber attaches a mass to a 
primary vibrating system through a damper and spring. By tuning the damping 
coefficient and the spring's stiffness, one can dramatically reduce the magnitude 
of vibration in response to a specified frequency of vibration. The limitation of 
these passive vibration absorbers is that they work well only at that specified 
frequency. If the frequency of the excitatory vibration changes, the vibration 
absorber will become ineffective or even become harmful due to the "de-tuning" 
phenomenon. A natural solution is to add an active controller to the whole 
system, as shown in Figure 18-1(b). The benefits of active vibration absorbers 
are that they can track a change in frequency of the excitation source and that 
they work for a wide frequency band. They are especially useful for vibration 
sources of unknown characteristics. The shortcoming of active controllers is 
that the combined system could suffer from control-induced instability and from 
large control effort requirements, making them inapplicable in many industrial 
applications (Jalili, 2002). The third type of vibration absorber, as shown in 
Figure 18-1(c), combines the advantages of passive and active absorbers by 
integrating a tuning control mechanism with tunable passive devices, such as 
variable rate damping and stiffness (Franchek et al., 1995; Nemir et al., 1994). 
These adaptive passive vibration absorbers are welcomed by industry due to 
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their low energy requirements and low cost. There are several reviews available 
for further details (Kamopp, 1995; Jalili, 2002). 

Figure 18-1. A typical primary structure equipped with three versions of vibration control 
systems (absorbers): (a) passive, (b) active, and (c) semi-active configuration 

Vibration absorbers are a class of dynamic systems which can be modeled 
as analog circuits, block diagrams, bond graphs, etc. A special characteristic 
of these particular dynamic,systems is that the building blocks usually have a 
fixed number of interface ports and may not be connected arbitrarily. Automated 
synthesis of dynamic systems has been investigated intensively in the past ten 
years (Koza et al., 1999; Koza et al., 2003; Koza et al., 1997; Koza et al., 
2000; Lohn and Colombano, 1999). Instead of using electrical circuits and 
block diagrams, we developed a GP-based framework for automated synthesis 
of mechatronic systems using bond graphs as the modeling scheme. The so-
called GPBG approach has been applied to automated synthesis of analog filters 
(Fan et al., 2001), redesign of an old-fashioned mechanical printer (Seo et al., 
2002) and pump (Seo et al., 2003), automated synthesis of MEMS systems 
(Fan et al., 2004), and synthesis of robust analog filter circuits (Hu et al., 2005). 
Figure 18-2 illustrates a very simple bond graph, marked up to show sites 
at which topological modifications are allowed in the GPBG system, and a 
corresponding electrical circuit. In previous work with the GPBG system, no 
attempt has been made to duplicate or compare its designs with those invented 
by experts. 

3. Mechanical Vibration Absorber Synthesis Using Bond 
Graphs and Genetic Programming 

In this section, we define the vibration absorber synthesis problem and 
present an improved methodology for open-ended computational synthesis 
of multi-domain dynamic systems based on Genetic Programming and Bond 
Graphs (Kamopp et al., 2000)-the GPBG approach. Compared to the basic 
GPBG approach introduced in (Seo et al., 2003), methodological improvements 
have been made in several aspects to be discussed next. 
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Problem Definition: Synthesis of Passive Vibration Absorbers 
In this work, we are mainly interested in synthesizing passive vibration ab­

sorbers to reduce the vibration response of primary systems of various configu­
rations. Figure 18-3 shows a primary system and its corresponding bond graph 
model. The design task is to attach some new components to the primary system 
such that the frequency response at the excitation frequency uj be minimized. 
Figure 18-4 shows the first vibration absorber, invented by H. Frahm in 1911, 
and its bond graph model. The frequency response of the stand-alone primary 
system and the primary system with vibration absorber is shown in Figure 18-5. 
It can be seen that the vibration absorber can significantly quench the response 
of the primary system at the excitation frequency. An advanced version of the 
vibration absorber synthesis problem is to minimize the sum of the frequency 
responses at two excitation frequencies (dual-frequency vibration absorber) or 
across a frequency band in which response is to be minimized, corresponding 
to the band-vibration absorber (Filipovic and Schroder, 1998). 
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Figure 18-2. A bond graph and its equivalent electrical circuit. The dotted boxes in the left 
graph indicate modifiable sites at which further topological manipulations can be applied. 

F(t) 

K 

(a) 'y^ 

' ' 

M 

i ^ 
/}/// ///// 

W 

/.(b) 

SI* -TP-< 1 h-

Figure 18-3. Schematic of the primary system and its bond graph model (a) The primary system 
under perturbation of excitation force F(t); (b)The bond graph model of the embryo system. 
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Figure 18-4. Schematic of the first patented vibration absorber and its bond graph model. 

;-300 

§350 

-300 

-400 

(a) 
500 1000 1500 

frequency (Hz) 

-450 

(b) 
500 1000 1500 

frequency (Hz) 

Figure 18-5. Frequency responses of the primary system under perturbation of excitation force 
F(t): (a) without vibration absorber; (b) with a vibration absorber. 

Bond Graphs 
The bond graph is a multi-domain modeling tool for analysis and design of 

dynamic systems, especially hybrid multi-domain systems, including mechan­
ical, electrical, pneumatic or hydraulic components. Details of notation and 
methods of system analysis related to bond graphs can be found in (Kamopp 
et al., 2000). Figure 18-2 illustrates a bond graph that represents the accompa­
nying electrical system. Figure 18-6 shows the complex bond graph model of a 
vibration absorber. A typical simple bond graph model is composed of (using 
notation from electrical systems): inductors (I), resistors (R), capacitors (C), 
transformers (TF), gyrators (GY), 0-Junctions (JO), 1-junctions (JI), sources 
of effort (SE), and sources of flow (SF). In this paper, we are only concemed 
with linear dynamic systems represented as bond graphs, which are composed 
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of inductors (I), resistors (R), capacitors (C), sources of effort (SE) (as input 
signals), and sources of flow (SF) as output signal access points. 

Input Sgnal 

Figure 18-6. The bond graph structure of a vibration absorber with 7 components exclusive of 
the embryo components. (Component sizing values are omitted in the figure for simplicity.) 

Evolving Dynamic Systems Using Bond Graphs and Genetic 
Programming: the GPBG framework 

The problem of automated synthesis of bond graphs involves two basic 
searches: the search for a good topology and the search for good parameters for 
each topology, in order to be able to evaluate its performance. We developed 
a developmental GP system for synthesizing mechatronic systems represented 
as bond graphs (Seo et al, 2003). It includes the following major components: 
1) an embryo bond graph with modifiable sites at which further topological 
operations can be applied to grow the embryo into a functional system, 2) a GP 
function set, composed of a set of topology manipulation and other primitive 
instructions which will be assembled into a GP tree by the evolutionary process 
(execution of this GP program leads to topological and parametric manipulation 
of the developing embryo bond graph), and 3) a fitness function to evaluate the 
performance of candidate solutions. 

Choosing a good function set for bond graph synthesis is not easy. In our 
earliest work (Fan et al., 2001), a basic GP function set was used for evo­
lutionary synthesis of analog filters. In that approach, the GP functions for 
topological operation included {InsertJO/Jl, Add_C/I/R, and Replace_C/I/R}, 
which allowed evolution of a large variety of bond graph topologies. The short­
coming of this approach is that it tended to evolve redundant and sometimes 
causally ill-posed bond graphs. Later, we used a causally well-posed modular 
GP function set to evolve more concise bond graphs with much less redundancy 
(Hu et al., 2004). However, that encoding had a strong bias toward a chain-type 
topology and thus may have limited the scope of topology search. In this paper, 
we have improved the basic function set in (Fan et al., 2001) and developed the 
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following hybrid function set approach to reduce redundancy while enjoying 
the flexibility of topological exploration: 

F={ Insert_JOE, I n s e r t _ J l E , Add_C/I/R, EndNode, EndBond, 
ERC} 

where the InsertJOE, InsertJlE functions insert a new 0/1-junction into a 
bond while attaching at least one and at most three elements (from among 
C/I/R). EndNode and EndBond terminate the development (further topology 
manipulation) at junction modifiable sites and bond modifiable sites, respec­
tively; ERC represents a real number (Ephemeral Random Constant) that can 
be changed by Gaussian mutation. In addition, the number and type of ele­
ments attached to the inserted junctions are controlled by three "flag" bits. A 
flag mutation operator is used to evolve these flag bits, each representing the 
presence or absence of the corresponding C/I/R component. Compared with 
the basic set approach, this hybrid approach can effectively avoid adding many 
bare (and redundant) junctions. At the same time, Add_C/I/R still provides 
the flexibility needed for broad topology search. For any of the three C/I/R 
components attached to each junction, there is a corresponding parameter to 
represent the component's value, which is evolved by a Gaussian mutation op­
erator in the modified genetic programming system used here. This is different 
from our previous work in which the "classical" numeric subtree approach was 
used to evolve parameters of components. Our comparison experiments (to be 
published elsewhere) showed that this function set was more effective on both 
an eigenvalue and an analog filter test problem, so this new function set was 
used in this paper. 

VI V2 V3 OB 

OB: Old bond modifiable site 
NB:New bond modifiable site 
NJ: New Junction modifiable site 
Vi: ERC values for 1/R/C 

OBNJl NB 
01 0 

I R C 
V1V2V3 

OJ NB 

S o C/I/R 
OJ: old junction modifiable site (12.0) 
NB: new bond modifiable site 

ERC: numeric value for C/I/R 

Figure 18-7. Left: the InsertJOE GP function inserts a new junction into a bond along with 
a certain number of attached components. InsertJlE works in a similar way. Right: The 
Add_C/I/R GP function adds a C/I/R component to a junction. 
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Evolving Vibration Absorbers 
In this work, we are interested in evolving three types of vibration absorbers. 

The vibration absorbers of each type are evolved with several different config­
urations, such as different maximum numbers of masses to be used, the starting 
embryo and its modifiable site(s), and the maximum number of components. 
The synthesis problems include the following. 

Single frequency vibration absorber In this problem, we want to see first 
whether the GPBG system can reinvent the first patented vibration absorber, 
shown in Figure 18-4. The design problem is extracted from (Jalili, 2002). The 
parameters of the primary system are as follows: 

rrip = 5.77 kg; Ä;p=251.132 *le6 N/m; Cp= 192.92 kg/s 
The parameters of the standard passive absorber solution are the following: 

rua = 0.227 kg; A:a=9.81e6 N/m; Ca= 355.6 kg/s 
We used the bond graph embryos in Figure 18-3 for this problem. The modifiable 
site is the 1-junction. We could also have different function sets for this GP-
based synthesis. Since it is not physically realistic to have many masses attached 
to the primary structures, we limit the maximum number of masses to 2 in all 
the experiments. 

In this problem, the synthesis objective is to synthesize a vibration absorber 
such that the frequency response 

of the primary system mass (displacement) at the frequency u) of excitation 
force / = /o * sinujt is minimized. The normalized fitness is defined as: 

/ „ = ^ ^ ^ ^ (18.2) 

where NORM is a normalization term aimed at adjusting the fnorm iî to the 
range of [0,1]. This process transforms the minimization of deviation from 
target frequency response into a maximization of fitness process as used in our 
GP system. Since tournament selection is used as the selection operator, the 
normalization term can be an arbitrary positive number. Here, NORM is set to 
10, which gives a fitness range within [0, 1]. 

According to Equ.18.1, we need to calculate the frequency response as the 

ratio j^/V where Xi is the displacement of the primary mass. However, we 

can only extract from a bond graph the source effort signal X (s). We use the 
following procedure to get the fraw'-

• calculate A, B, C, D matrices from a given bond graph; 

• convert A, B, C, D into transfer function TFraw\ 
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• TF^orm-TF^au;* 1/5 is equal to ^ ; 

• convert TFnorm back to A', B', C', D' matrices and simulate its frequency 
response with Matlab. 

Dual frequency vibration absorber This problem is borrowed from Olgac 
et al, (Olgac et al , 1996)'s patented vibration absorber. In this problem, 
the primary system parameters and corresponding standard passive absorber 
parameters used in (Olgac et al., 1996) are as follows: 

rup = 7.756 kg; A:p=62,000 N/m; Cp= 2,500 kg/s. 
ma = 4 kg; fca=722,470 N/m; Ca= 1513.2 kg/s 

The excitation force is 

/ == / i * sinoüit + f2sinuj2t 

where ui = 25Hz and ÜÜ2 = 70Hz. 
The raw fitness in this case is defined as: 

and the normalized fitness is defined in Equation 18.2. Since, in this paper, only 
passive vibration absorbers are evolved, we are not aiming at outperforming the 
dual frequency absorber invented by Olgac et al (Olgac et al., 1996), but at 
determining how well a passive absorber can approximate the performance of 
the active absorbers for this problem. 

Bandpass frequency vibration absorber This problem is taken from the 
vibration absorber invented by Filipovic and Schroder, reported as patent pend­
ing (Filipovic and Schroder, 1998). Their active absorber with a local feedback 
force has the capability to absorb all disturbance in a given frequency band, 
rather than only at discrete frequencies as do most other vibration absorbers. 
In this problem, we are interested in testing how closely the evolved passive 
absorbers can approximate the performance of the invention. 

The parameters of the primary system are the following: 

rrip = 20,000 kg; A:p=25,300,000 N/m; Cp= 39,700 kg/s 

The natural frequency is thus Un — 35.7 rad/s. Filipovic and Schroder (Fil­
ipovic and Schroder, 1998)'s absorber sets the following parameters for the 
corresponding passive absorber: 

ma = 5,00 kg; A:a=632,500 N/m; Ca-=^ 4,900 kg/s 

with the natural frequency ijJa —^n- The excitation force frequency bandwidth 
is hw = Wrad/s and the center frequency is wo = 35rad/s. 

To evolve a bandpass vibration absorber, we sum the frequency responses at 
12 logarithmically distributed sampling frequencies in the frequency band. 
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Modified Developmental Genetic Programming 
Compared to the GP systems used in (Koza et al., 1999) for analog circuit 

synthesis, our GP system made the following modifications. First, a flag bit 
mutation operator is introduced to evolve the configuration of C/I/R elements 
attached to a junction. Second, a subtree-swapping operator is used to exchange 
non-overlapping subtrees of the same individual (GP tree). In such operations, 
two type-compatible nodes are randomly selected such that the two subtrees do 
not overlap, and then a normal crossover operation is applied. This operator 
does not add or remove components, but reconfiguring the connections among 
existing components or subcomponents was found to enable better topology 
search in our experiments. Next, an ERG mutation operator is developed to 
evolve the parameter values for all C/I/R components. We found that our pa­
rameter search method had the benefit of reducing the sizes of high-performance 
GP trees as one single parameter node replaces a numeric subtree of standard 
GP. Finally, single individual elitism is used throughout the evolution process. 
The running parameters are specified in Section 4. 

4. Experiments and Results 

Experimental Settings 
Compared to the evolutionary synthesis of electrical circuits, a mechanical 

vibration absorber usually has a much smaller number of components. So the 
topological and parameter search space is thus greatly decreased. Most of the 
experiments are finished in less than an hour. Some of them require only a 
few minutes. Here we set the maximum number of components to be 7. Other 
standard GP parameters are summarized in Table 18-1. 

Table 18-1. Experimental parameters for vibration absorber synthesis 
Parameter 
No. of subpopulations 
Sub population size 
Maximum evaluation 
Migration Interval 
Migration Size 
Init.MaxDepth 
Init.MinDepth 
StronglyTyped 

Value 
5 
400 
100000 
5 gen 
40 
3 
2 
True 

Parameter 
Tournament Selection Size 
pCrossover 
pMutationStandard 
MutateMaxDepth 
pMutationParameter 
pSwitchBit 
pSwapSubtree 
TreeMaxDepth 

Value 
7 
0.4 
0.05 
3 
0.3 
0.2 
0.05 
7 
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Results 
Single-frequency vibration absorber. Figure 18-8 shows an evolved sin­
gle frequency vibration absorber and its frequency response compared to the 
responses of the primary structure without any absorber and with the standard 
passive absorber invented in 1912. It is very interesting that the frequency 
response of the evolved vibration absorber has a very deep spike at the excita­
tion frequency to minimize the frequency response at that single frequency. If 
the excitation frequency is relatively constant with little shifting, our evolved 
absorber will achieve better performance at that specific frequency. Another 
observation of the evolved design is that it does not contain any damper but 
a single mass and four springs which can be reduced to 3 springs (C in the 
figure). In practice, it is possible to implement such mechanical vibration ab­
sorbers. However, implementing an all-spring suspension of the absorber mass 
has serious consequences outside the notch frequency as there is no dampers to 
consume the energy. 
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Figure 18-8. The evolved single-frequency vibration absorber and its performance compared 
to standard vibration absorber. 
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Figure 18-9. The evolved dual-frequency vibration absorber and its performance compared to 
standard vibration absorber. 

Dual-frequency vibration absorber. In this problem, the two excitation 
frequencies are 25Hz and 75Hz, respectively. Very interestingly, the GP sys-
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tern again evolved an absorber at 25Hz with greatly reduced response while 
the frequency response at 75Hz is worse than the standard passive absorber 
(Figure 18-9). In contrast to the solution in the previous problem, GPBG se­
lected a damper for inclusion in this dual-frequency vibration absorber. We 
also checked the parameter values of the evolved solution. The mass value is 
3.93 kg, the damper ratio is 1499.58, and both are in a very reasonable range. 
The sizing values of the other three springs are also easy to realize. However, 
the shortcoming of our evolved VA is that the frequency response at 75Hz is 
not damped well, probably because of our (in hindsight, inadequate) defini­
tion of the fitness function, which simply minimizes the average the frequency 
responses at these two frequencies. In this respect, our vibration absorber is 
worse than the standard one. 

Bandpass vibration absorber. Figures 18-6 and 18-10 show the evolved 
bandpass vibration absorber. It consists of one damper, one mass and five 
springs. The parameters of this VA are relatively easy to realize, although we 
did not impose restrictive parameter constraints during the evolution. The mass 
of the PVA is 10 kg, the damper ratio is 5994.39 kg/s. The spring parameters 
are all within realizable range. In this problem, the target frequency band is 
from 4.77Hz to 6.37Hz. As we can see from the figure, the evolved VA has 
much lower frequency responses across the chosen band. Compared to the 
standard passive absorber, our solution is significantly better, while also using 
only passive components. However, we also find that this solution is not as good 
as the active bandpass absorber proposed by Filipovic and Schroder (Filipovic 
and Schroder, 1998). Their active VA is able to almost completely damp any 
frequency response within the target band area. This discrepancy suggests the 
necessity and promise of introducing synthesis of both controllers and passive 
vibration absorbers simultaneously. 
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Figure 18-10. The performance of the evolved bandpass vibration absorber compared to the 
standard vibration absorber. 
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5. Discussion and Conclusions 
In this chapter, we present a GP-based method being developed for automated 

synthesis of passive mechanical vibration absorbers. With three vibration ab­
sorber problems, we showed that GP can easily find designs with competitive 
performance in terms of the fitness function. However, we find that many of 
these evolved solutions are not practically useful, or are extremely difficult to 
implement. It is found that genetic programming is able to exploit the loopholes 
in the GP function set: it evolves a solution with springs attached in parallel 
to a mass, which is not realizable by mechanical means. GP can also cheat 
the fitness function by evolving a high value only at the sampling frequency 
(problem 1), while introducing a worse response at a nearby frequency. We 
also showed that seeking to introducing a more robust type of fitness function 
(problem 3) can be healthy for evolving better results, as also suggested by 
McConaghy and Gielen (McConaghy and Gielen, 2005). 

As shown by many researchers (Yu and Bentley, 1998), domain-specific 
knowledge can be incorporated in various GP components such as the fitness 
function or the genetic operators. Penalty terms can be added to fitness functions 
to bias the population toward legal phenotypes. However, our lesson is that it 
may be more effective to constrain search within physically legal solutions 
by incorporating domain-constraints within GP operators rather than adding 
penalties in fitness functions as an a posteriori approach. This suggests that 
exploiting domain- or problem-specific knowledge is strongly desirable for 
successful GP applications to real-world problems, through which we may 
significantly reduce the search space and avoid the evolution process being 
misled by individuals without reasonable ways of physical implementation. 

Currently, we are working to implement a physically realizable vibration-
absorber-specific GP function set. Human competitiveness is achieved only 
when the evolved solutions can be implemented to solve real problems. Another 
kind of work that we plan to do is to evolve active or semi-active vibration 
absorbers, in which most contemporary progress in vibration design is being 
made. Since both mechatronic system synthesis (Seo et al., 2003) and controller 
synthesis (Koza et al., 2000) have been shown to be very successful, we are now 
trying to combine these two system capabilities to rediscover delayed response 
vibration absorbers, and perhaps to advance the state of the art. 
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Chapter 19 

GENETIC PROGRAMMING IN INDUSTRIAL 
ANALOG CAD: APPLICATIONS 
AND CHALLENGES 
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Abstract This paper investigates the application of genetic programming to problems in 
industrial analog computer-aided design (CAD). One CAD subdomain, analog 
structural synthesis, is an often-cited success within the genetic programming 
(GP) literature, yet industrial use remains elusive. We examine why this is, by 
drawing upon our own experiences in bringing analog CAD tools into industrial 
use. In sum, GP-synthesized designs need to be more robust in very specific 
ways. When robustness is considered, a GP methodology of today on a reasonable 
circuit problem would take 150 years on a 1,000-node 1-GHz cluster. Moore's 
Law cannot help either, because the problem itself is 'Anti-Mooreware' - it 
becomes more difficult as Moore's Law progresses. However, we believe the 
problem is still approachable with GP; it will just take a significant amount of 
' algorithm engineering.' We go on to describe the recent application of GP to two 
other analog CAD subdomains: symbolic modeling and behavioral modeling. In 
contrast to structural synthesis, they are easier from a GP perspective, but are 
already at a level such that they can be exploited in industry. Not only is GP the 
only approach that gives interpretable SPICE-accurate nonlinear models, it turns 
out to outperform nine other popular blackbox approaches in a set of six circuit 
modeling problems. 

Keywords: analog, CAD, synthesis, industrial, genetic programming, robust, yield 

1. Introduction 
One of the flagship problems in Genetic Programming is that of analog 

structural synthesis, where the aim is to automatically determine the circuit 
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components, interconnections, and suggested component dimensions to meet 
a set of circuit design goals. This is an industrially relevant problem and a 
challenge to automated design techniques. 

In this domain, GP has evolved several patent-quality circuits (Koza et al., 
2003), which is a remarkable success by almost any measure. It is an espe­
cially notable accomplishment from an artificial intelligence perspective be­
cause "patent-worthiness" is a good measure of success for testing techniques 
in automated "creative" design. 

Given such impressive results, a GP researcher might have expected GP to 
be barnstorming the field of analog design. However, this is not the case; GP 
is actually not in use at all for topology design in industry. In fact, industrial 
analog engineers and CAD developers would be very surprised to hear that 
analog synthesis is considered a success within the field of GP. In effect, the 
bar of "GP success," even success on industrially relevant problems, is different 
than the bar of "usefulness to industry." How can GP make the transition? In 
this paper, we draw upon our experiences in industrial analog CAD, with the 
aim to identify what would make GP useful to that field. 

This chapter is organized as follows. We first describe analog CAD's context, 
then how GP-based synthesis would fit in. We highhght industrial robustness 
issues and tactics, which we use to reframe the problem of GP-based synthesis. 
Then, we show two other analog CAD applications where GP is making inroads: 
symbolic modeling and behavioral modeling. 

2. The Problem Domain: Analog CAD 
Context. Electronic Design Automation (EDA) is the field devoted to 
building computer-aided design (CAD) tools for electrical engineers. Because 
of the massive size of the semiconductor industry and the constant changes in 
design constraints due to Moore's Law, EDA is an active industry, with billions 
in revenue every year. Analog CAD (Gielen and Rutenbar, 2002) is a subfield 
devoted to tools for analog circuit designers. 

Design "Implementation". When researchers in GP read about GP for 
analog synthesis, they're used to reading about "front-end design," in which the 
problem input is circuit specifications {e.g. get power consumption < lOmW), 
and the target output is a "nedist," which describes the synthesized circuit in 
terms of components, interconnections, and component dimensions. 

That's actually just one step in a much broader flow. Somehow, that netlist 
has to get into the real world, /, e, as part of a discrete circuit, or as a "chip" (VLSI 
circuit). The industrial value is in chips. The back-end flow is as follows: Once 
the netlist is determined, it is converted into a "layout," which is essentially a 
set of overlapping polygons, where specific shapes represent specific types of 
components and interconnects. The layout is integrated into an overall system 
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layout, which is sent to a billion-dollar fabrication facility. The system layout 
is used for creation of process masks, which are a sort of physical filter on 
whether to dope / etch / etc, different parts of a silicon wafer. Process mask 
generation can cost hundreds of thousands of dollars or more. Using the masks, 
many chips at once are fabricated on a wafer. The chips are sliced apart from 
each other, then packaged, and finally tested. 

If a problem is detected after a step, then the process backtracks to the 
previous step. The most expensive step is creation of the process masks, so 
this is where it is most important to avoid backtracking. In a worst case, which 
still often happens in practice, a fabricated chip does not work at all, and to 
make it work one needs to go back to front-end design. This is known as a 
"respin." Obviously, respins are to be avoided because of mask costs, but even 
more importantly, loss of profitability in time-to-market. 

A new analog topology significandy raises the chance of a respin due to lack 
of experience with that topology; this makes adoption of an analog structural 
synthesis tool a risky proposition (and costly to try). But, ultimately, GP would 
need to demonstrate working chips. 

3. GP Application: Analog Structural Synthesis, Part I 

Designer Perspective 
Since the late 1980's, analog designers have been presented with impressive-

sounding claims about "analog synthesis." Researchers have labeled "analog 
synthesis" to mean many things, including global parameter optimization, au­
tomated conversion from netlist to layout, and automated topology design (the 
version that GP targets). For a survey, see (Gielen and Rutenbar, 2002). 

Our focus here is automated topology design. Most analog designers would 
acknowledge that if such a technology actually worked, it would drastically 
change the field. Their counterparts in digital design have already experienced 
such a revolution: the mid 1980's introduction of digital circuit logic synthesis. 

Unlike digital synthesis, few claims of analog synthesis have held true. The 
analog synthesis techniques were typically too unscalable or brittle to be useful 
in industry. Of the dozens of various types of analog synthesis technologies 
reported over the last twenty years, just a few have found their way into industrial 
use, and that was only recendy (Synopsys, 2005; Cadence, 2005b; Cadence, 
2005a). None of these do automated topology design. Thus, when designers 
hear about a new structural synthesis technology, from GP or elsewhere, they 
immediately question them, and to a much stronger degree than automation-
friendly digital designers. 

How do the claims of GP look, from a designer's perspective? 
For starters, they're not shocked, even when they see the patent results. 

With every other structural synthesis technology reported until now, something 
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was missing, something that Hmited its widespread industrial use. Despite their 
hmited understanding of GP, designers have no real reason to treat GP specially. 
They simply believe that something's missing for GP too. 

They're right. When an analog designer digs more deeply into the GP 
methodology for automated topology design, he/she finds problems. Some 
are obvious (to an electrical engineer), and some are subtle. But, whereas prior 
analog structural synthesis approaches had showstopping problems of brittle-
ness and scalability, we believe that GP has no such problems. Instead, GP faces 
''engineering-style'' challenges in problem setup, and especially in improving 
GP's speed. 

Current Industrial Practice 
It is fruitful to look at what flow and automation tools that industry uses 

which are closest to the analog structural synthesis problem. 
Figure 19-1 illustrates the overall flow of front-end design for cell-level 

circuits. 
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Figure 19-1. State of the Art Industrial Front End Analog Design Flow 

The automation happening at the front end is in local / global optimization 
tools (Synopsys, 2005; Cadence, 2005b), which take in a fixed topology, and 
automatically determine the component values in order to best meet the de­
sign specifications. This step is often referred to as circuit sizing or circuit 
optimization, rather than synthesis. The topology has been manually designed 
beforehand. Yield improvement is typically manual, though there is a shift to 
automation there too. 

These tools need to make chips that meet certain performance measures 
once they've been manufactured. Thus, the tools need a means for estimating 
performance and taking robustness into account. 

Performance Estimation and Robustness 
In analog synthesis, robustness is strongly related to performance estima­

tion. A performance estimator takes in a candidate design {i,e. a topology and 
component values in our case), and estimates the performances of the circuit. 
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To achieve a robust design, one has to estimate performance as accurately as 
possible. 

The ideal performance estimator would predict with 100% accuracy how 
a design performs after layout, manufacturing, and testing without actually 
fabricating it. It would run quickly enough to be invoked thousands or millions 
of times throughout optimization, to allow automated exploration of designs. 
SPICE is the most accurate and general estimator, but there are also faster, less 
general, less accurate ones. 

Layout issues. "Layout parasitics" are effects that were not accounted for 
prior to layout. An example layout parasitic is when the material between two 
wires acts like a circuit component {e,g, a capacitor) which is supposed to be 
an open circuit. 

Environmental conditions. The manufactured chip will need to work at the 
desired performance level, even as temperatures change, power supply changes, 
and load changes. These are conditions of the circuit's operating environment. 

Manufacturing variations. When manufacturing a VLSI circuit, random 
variations get introduced into the implementation of the designs as an inherent 
effect of the fabrication process. The automated tool must model this and handle 
it. 

The simplest model is so-called "Fast/Slow comers," which in effect try to 
capture the 3-sigma extremes in each type of transistor's operating speed due 
to manufacturing variations. This approach is popular for its simplicity and 
availability. However, comers do not model the problem well because they do 
not bracket the variations in analog design goals (they are really only suitable 
for digital design). 

Some approaches build empirically-based statistical models to estimate a 
probability density function, such as (Power et al., 1994). These models almost 
always make assumptions that render them inaccurate, for example, assuming 
that certain random variables are independent when they are not, or ignoring 
local statistical variations as in (Alpaydin et al, 2003). 

One approach (Drennan and McAndrew, 2003) uses a more physical basis 
for randomness modeling and is quite accurate, though an implication is that 
for every transistor, 8 random variables are introduced; thus, a medium sized 
circuit could have hundreds of random variables. 

Analog Structural Synthesis Problem 
The problem of analog structural synthesis is the same as the sizing prob­

lem, except the design space is broadened drastically, to include choice of the 
topology (devices and connections among devices, in addition to device sizes). 
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Synthesis cannot make assumptions about the topology; this has big implica­
tions, which we will discuss later. 

Current Industrial Practice: Details 
We are now ready to ask how the industrial tools account for robustness. 
For environmental variations, they use a set of user-defined "comers," with 

each comer specifying a temperature, power supply, etc. SPICE is used to 
estimate performance for each comer, and the worst-case value is taken. 

For layout, they can ignore it for a first-pass design. Then, after layout has 
been done, if layout parasitics degrade the performance too much, the most 
important parasitics can be inserted into the design and a local optimization 
performed. 

For manufacturing variations, they (Synopsys, 2005; Cadence, 2005b) use 
model comers, which as mentioned, is less accurate. There are many other 
approaches in the literature (Phelps et al., 2000; Schenkel et al., 2001; Smedt 
and Gielen, 2003), but each is forced to trade oif accuracy for feasible mntime, 
or pessimistic design. GP tactics such as (Teller and Andre, 1997; Hu and 
Goodman, 2004b) are too expensive for refining designs. 

4. Analog Design for Robustness (on a Fixed Topology) 
This section highlights how a fixed topology implicitly brings robustness, or 

conversely, what other robustness issues must be considered when evolving a 
topology. 

Robustness in Manual Topology Design 
By definition, optimization approaches operate on manually designed topolo­

gies. For VLSI circuits, and perhaps as a surprise to GPers, manually-designed 
topologies are almost always designed with robustness in mind. 

We now examine what analog designers do to make topologies more robust. 
We will refer to a well-known circuit shown in Figure 19-2. 

Topologies Are Designed For Process Variations. The effect of "local" 
or "mismatch" variations within a chip ("mismatch") has always been smaller 
than "global" variations which are between chips and between runs (1-2% vs. 
10-20%). 

The main tactic to deal with global variations is to design structures in which 
performance is a function of ratios ofsizings, rather than absolute values. For 
example, in common-source gain stages, a load resistor would have variation 
of 10-20%. So, designers use a PMOS load instead, matched up to an NMOS 
gain transistor, and gain is dependent on the ratios (e,g. in Figure 19-2, M5a is 
a resistive load for M3a). 
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Figure 19-2. "High-speed operational transconductance amplifier (OTA)" analog circuit 

Differential design is another tactic to move away from "absolute" values. 
Here, "mirrors of structures" are created, and the circuit operates on a difference 
between two voltages, rather than one voltage and ground. The Figure 19-2 
OTA is symmetrical about a vertical axis centered on M5 and M7; the output is 
a function of the difference between the positive and negative inputs, nin_p and 
nin_n. 

A precise current is expensive to generate; it's a much better idea to generate 
one or a few reference currents and copy them throughout the circuit with 
"current mirrors." The OTA does this: the three transistors on the left are the 
"biasing" circuitry to generate currents, which are then copied throughout the 
circuit. Sometimes a single current can be shared, rather than trying to match 
two separate currents. The OTA's differential pair (Mia and Mlb) does this: 
instead of having different "tail" currents, they share the same current which 
goes through M6 and M7. 

Negative feedback is a well-known general engineering technique for com­
promising some performance in the interest of precision. Analog circuits often 
do this too, such as for improving common-mode rejection ratio of a differential 
amplifier or for reducing variation of an amplifier's gain (Razavi, 2000). 

Trust and Re-Use. The topology is trusted because it has been created and 
characterized by expert analog designer(s), and has been fabricated and tested in 
many process generations. Topology re-use is widespread because past success 
means more confidence that the topology will work. A new topology is typically 
a derivative of an existing topology, because similarity maintains trust. 



298 GENETIC PROGRAMMING THEORY AND PRACTICE III 

SPICE can lie. SPICE can lie due to problems in its device models, conver­
gence, and perhaps inadequate models of parasitics. SPICE transistor models 
seem to be in a continually inadequate state, with known deficiencies {e.g. non-
smooth transitions from one operating region to another). Part of the difficulty 
is that the models have to work for several processes, typically require hundreds 
of parameters that should be easy to extract, and strive to have as good a phys­
ical basis as possible. Because of this, designers consciously avoid transistor 
operating regions where the models are known to be inadequate. 

Whitebox Constraints. Topologies have whitebox constraints based on the 
strategy underlying the topology's design. Every transistor in a circuit has been 
designed with the assumption that it will be operating in a specific operating 
region; there is a good chance that the assumptions break down outside those 
constraints. 

Clear Path To Layout. The designer knows that, for manually-designed 
topologies, there is a clear path to layout; to a large extent, the designer has 
already anticipated the parasitics. Layout designers also have tactics to improve 
robustness, such as: folding transistors, guard rings, and careful routing to avoid 
cross-coupling between sensitive wires (Hastings, 2000; Lampaert et al., 1999). 
Analog layout synthesis is another analog CAD subproblem (Rutenbar and 
Cohn, 2000); it is difficult to model and solve well, as illustrated by continued 
research activity. When layout parasitics are more pronounced, such as in RF 
design, there are ways to tighten the coupling between sizing and layout design 
(DeSmedt and Gielen, 2003; Zhang et al., 2004; Bhattacharya et al., 2004). 

To properly account for layout effects in synthesis, one possibility is to unite 
the front-end design space (topology and circuit sizes) with the back- end space 
(layout), and approach the whole problem at once, as in Section 5.2 of (Koza 
et al., 2003). Unfortunately, runtime was 1.5 orders of magnitude slower, and 
that work drastically simplified the layout synthesis problem - it didn't even 
extract the parasitics from the layout before simulating the netlist. 

Synthesis Exaggerates "Cheating" of Search Algorithms. We say a 
"cheat" occurs when design has good measured performances, but which upon 
inspection is useless {e.g. not physically realizable). An example is too many 
long, narrow transistors; the solution is to add more constraints on width/length 
ratios. Each added constraint takes time to detect, correct, and re-run. There 
is more opportunity for structural synthesis to cheat compared to optimization, 
because synthesis design space is drastically larger, and SPICE can cheat more 
readily. Evolvable hardware research is filled with examples of odd designs; 
however, in non-reprogrammable analog VLSI, one cannot embrace odd designs 
because of the high cost of fabrication. 
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5. GP Application: Analog Structural Synthesis, Part II 

An Updated Model of the Analog Synthesis Problem 
Most earlier GP structural synthesis work such as (Koza et al, 1999; Lohn 

and Colombano, 1998; Zebulum et al., 2002; Sripramong and C.Toumazou, 
2002; Koza et al., 2003) did not have a very thorough model of the problem 
compared to analog CAD optimization, but is has been getting better recently. 
In (Koza et al., 2004a), comers have been added to account for environmental 
and (very roughly) manufacturing variations. And, they employ testbenches 
directly from an industrial CAD vendor (Synopsys, 2005). Though some recent 
research has not yet acknowledged the need for more robustness (Dastidar et al., 
2005). 

GP does not have whitebox constraints, because it does not make assump­
tions about what region each transistor will operate in. GP actually has stronger 
performance measures in one regard: it also tries to match waveforms of be­
havior. 

Compared to analog CAD optimization work, GP's biggest deficiency in 
problem modeling is its lack of a good model of manufacturing variations. The 
closest, robust HFC (Hu and Goodman, 2004a), did have Monte Carlo sampling, 
but the randomness model is not suitable for VLSI circuits. 

Beyond analog CAD optimization, GP-evolved circuits must somehow get 
the same advantages as a manually-designed topology. Such circuits must get 
designer trust, including an explanation and formulae for behavior; ultimately, 
successful fabrication and testing. On the way, there are the hurdles of SPICE 
(mis)behavior, layout parasitics, search space cheats, and extra challenges from 
first-order process variations. 

New Computational Challenges 
Ultimately, the only way to accurately model manufacturing variations is via 

simulation on good statistical models. Let us examine the runtime of a typical 
structural synthesis run that uses brute force Monte Carlo sampling. Except 
for layout, we will temporarily ignore all the extra challenges wrought by a 
non-fixed topology. 

Let us say: 8 comers (for environmental variations), 10 Monte Carlo sam­
ples (for manufacturing variations, 10 is optimistic), and simulation time of 1 
minute for a circuit at one comer and one sample on all testbenches on a 1 GHz 
machine. Parasitic-extracted layouts might mean lOx longer. Larger designs 
and/or longer-than-transient analyses could easily take 6x, 60x, or even 600x 
longer to simulate. 
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It is typical for a GP run to explore 100 million designs for more challenging 
problems. 1 billion or even 10 billion would not be unreasonable (Koza et al , 
2003). But let us have 1,000 1-Ghz machines in parallel. 

Then, total run time = 152 years! And it's even longer for tougher problems, 
where simulation time is 6x-600x longer and number of individuals is lOx-lOOx 
more. One might ask if Moore's Law can ease this challenge. 

The Impact of Moore's Law 
Mooreware vs. Anti-Mooreware. GP is considered an example of "Moore-
ware" (Koza et al., 1999), where an algorithm becomes more effective with more 
computational power, and therefore with the march of Moore's Law over time. 

However, Moore's Law, when attacking VLSI design problems, is a double-
edged sword. Each new technology generation also requires more modeling 
effort, and therefore more compute time! For example, the need for substrate 
noise modeling is growing; to model this takes 30 minutes on four modem 
processors (Soens et al., 2005), i.e, 120x more computational effort. 

Thus, analog synthesis is an "Anti-Mooreware" problem: it gets more diffi­
cult as Moore's Law progresses. So, we cannot rely on the "Mooreware" aspect 
of GP to eventually be fast enough. 
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Figure 19-3. Effects of Moore's Law on Analog Structural Synthesis 

Moore's Law Breaks Topologies. Topologies are getting constrained in 
new ways due to Moore' Law. Here is an example. Supply voltages and 
threshold voltages are steadily decreasing, but threshold voltages cannot scale 
as quickly because of fundamental physical constants. At some point, "cascode" 
configurations, which stack two transistors on top of each other, are unusable 
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Table 19-1. GP-generated symbolic circuit models with < 10% train and test error. 

Perf. Char. 

ALF 

fu 

PM 

voffset 

SRp 

SRn 

Expression 

-10.3 + 7.08e-5 / idl + 1.87 * ln( -1.95e-f9 + l.OOe+10 / (vsgl*vsg3) 
+ 1.42e+9 *(vds2*vsd5) / (vsgl*vgs2*vsg5*id2)) 

10( 5.68 - 0.03 * vsgl / vds2 - 55.43 * idl+ 5.63e-6 / idl ) 

90.5 + 190.6 * idl / vsgl + 22.2 * id2 / vds2 

- 2.00e-3 

2.36e+7 + 1.95e+4 * id2 / idl - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * idl 

- 5.72e+7 - 2.50e+l 1 * (idl*id2) / vgs2 + 5.53e4-6 * vds2 / vgs2 + 109.72 / idl 

{e.g, M4b and M5b in figure 19-2 are in cascode). The alternatives are less 
ideal: folded cascodes mean larger power consumption, and extra stages mean 
slower speed and instability risk. Figure 19-3 summarizes. 

The Road Ahead for GP and Structural Synthesis 
GP has come a long way along the road of analog structural synthesis and 

the milestones have been remarkable, but a full industrial-strength version is 
orders of magnitude away. 

Speeding up GP sufficiently may actually be possible because there are so 
many facets to the problem and the algorithms. It comes down to an "algo­
rithm engineering" problem. There are possible speedups at (1) the general EA 
level, for example in population management, handling modularity / hierarchy, 
exploiting advances in theory, reuse of run information, in representation and 
operators, parallelism; (2) at the robustness level, for example exploiting the 
transparency in manufacturing variations, environmental variations, and simu­
lation analyses; and (3) at the domain-specific level of cell-level analog circuits, 
for example to guide design of representation, operators and building blocks, 
special constraints, faster performance estimators. Koza has elaborated on some 
possibilities (Koza et al., 2004b). 

6. GP Application: Symbolic Modeling 
Given the overall goal of finding ways to aid analog engineers in the design 

process, we can ask ourselves what other problems GP might help in. That's a 
question that we asked in the last year, and so far we've demonstrated two other 
industrially-relevant applications. Let's examine each, starting with symbolic 
modeling. 
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In all designs that an engineer does, the more he or she understands a circuit, 
the more he will be able to improve it (in terms of performance and yield), 
and the more productive he or she will be. This is independent of whether the 
tools are automated or manual. Equations are a very useful tool for helping 
designers improve understanding, e.g. equations that map design variables 
{e.g. component values) to circuit performances {e.g. power consumption). 
Such equations have traditionally been created by hand, but they are so useful 
that since the early 90s, there has been considerable research effort to devise 
algorithms to automate this (Gielen, 2002). This subfield of of analog CAD 
is called "symbolic analysis" when the equations are directly extracted from 
the topology, or "symbolic modeling" when the equations come from SPICE 
simulations. The ideal approach would produce SPICE-accurate, interpretable 
equations of arbitrary nonlinear circuits. So far, no approach could do all those 
things at once. 

Interestingly (and almost surprisingly), no one had yet used OF in symbolic 
regression mode on SPICE-generated training data. So, we applied it, with a few 
modifications to GP to keep the expressions readily interpetable (McConaghy 
et al., 2005). Table 19-1 gives models for each of six different performance 
expressions, for the circuit previously examined (Figure 19-2). 
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Figure 19-4. Comparison of prediction error for several state-of-the-art modeling approaches. 

GP turned out to predict remarkably well. In a separate study on six circuit 
datasets (McConaghy and Gielen, 2005a), we found that GP could generate 
nonlinear expressions that outperformed several state-of-the-art approaches, as 
shown in Figure 19-4. 
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Table 19-2. GP-generated behavioral models for a latch circuit. 

Train error 

15.11% 

6.25% 

3.32% 

Expression 

dxl/dt = nBit 
dx2/dt = Bit*xl 

dxl/dt = - 21.3 - 9.28e-03 * bufclk * xl + l.Oe+04 * nBit * bufclk 

dxl/dt = 2.21e-02 - 3.72e-02 * xl - 21.8 * Bit*nBit * bufclk 
dx2/dt = nBit * bufclk * xl 
dx6/dt = xl 

1. GP Application: Behavioral Modeling 
Another challenge in circuit design is how to manage system-level design. 

One of its sub-problems is how to simulate a whole system in a feasible time, 
ideally fast enough to optimize with. A good approach is behavioral models, 
which approximate the dynamic behavior of each of the system's sub-blocks. 
Automatically devising behavioral models is very difficult: it's common for a 
student to spend his whole Ph.D on (manually) designing a good behavioral 
model for one building block! There's a long history of attempts to automated 
approaches as well, starting from linear, progressing to weakly nonlinear, and 
finally recent successes in strongly nonlinear behavioral models. But those 
approaches are, once again, black box. With behavioral modeling, even more 
than symbolic analysis, trustworthiness of a model is very important, and black-
box models compromise that because there is no guarantee how the model will 
perform under other input stimuli. 

Once again, we saw opportunity. We adapted our GP system to build dy­
namic models, and tested it on a strongly nonlinear circuit (McConaghy and 
Gielen, 2005b). It successfully built interpretable behavioral models with good 
prediction ability. Table 19-2 gives some of the behavioral models generated, 
at different levels of complexity and accuracy. 

8. Conclusions 
While GPers have considered analog synthesis a success story for GP, and 

with good reason from an AI perspective, it still remains for GP to be put into 
industrial analog design practice. 

To understand why, we examined the problem context and the details of how 
a design is implemented. It comes down to achieving more robust designs, with 
the main aim of reducing risk of costly manufacturing respins. Furthermore, it 
needs to be trusted by the designer. To address this, the GP computational effort 
goes up drastically, and Moore's Law cannot be relied upon to help because the 
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problem is "Anti-Mooreware." Thus, we have a grand "algorithm engineering" 
challenge for clever GP researchers. 

Structural synthesis is not the only opportunity for GP in analog CAD. We 
demonstrated GP as applied to two other applications, symbolic modeling and 
behavioral modeling, where the barrier to entry was far lower, and the industrial 
payoff much sooner. 

GP is not barnstorming the field of analog design... yet. But it is slowly 
gaining ground in multiple aspects of analog CAD. 
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